Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2567-2021
https://doi.org/10.5194/hess-25-2567-2021
Research article
 | 
19 May 2021
Research article |  | 19 May 2021

GRAINet: mapping grain size distributions in river beds from UAV images with convolutional neural networks

Nico Lang, Andrea Irniger, Agnieszka Rozniak, Roni Hunziker, Jan Dirk Wegner, and Konrad Schindler

Related authors

AGBD: A Global-scale Biomass Dataset
Ghjulia Sialelli, Torben Peters, Jan D. Wegner, and Konrad Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 829–838, https://doi.org/10.5194/isprs-annals-X-G-2025-829-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-829-2025, 2025
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, and Naoto Yokoya
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-269,https://doi.org/10.5194/essd-2025-269, 2025
Preprint under review for ESSD
Short summary
Unrecognised water limitation is a main source of uncertainty for models of terrestrial photosynthesis
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2025-1617,https://doi.org/10.5194/egusphere-2025-1617, 2025
Short summary
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024,https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
TOWARDS ACCURATE INSTANCE SEGMENTATION IN LARGE-SCALE LIDAR POINT CLOUDS
B. Xiang, T. Peters, T. Kontogianni, F. Vetterli, S. Puliti, R. Astrup, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 605–612, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023, 2023

Cited articles

Adams, J.: Gravel size analysis from photographs, J. Hydr. Eng. Div.-ASCE, 105, 1247–1255, 1979. a
Babej, J., Máčka, Z., Ondrejka, P., and Peterová, P.: Surface grain size variation within gravel bars: a case study of the River Opava, Czech Republic, Geogr. Fis. Dinam. Quatern., 39, 3–12, 2016. a
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014. a
Black, M., Carbonneau, P., Church, M., and Warburton, J.: Mapping sub-pixel fluvial grain sizes with hyperspatial imagery, Sedimentology, 61, 691–711, 2014. a, b
Brasington, J., Vericat, D., and Rychkov, I.: Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning, Water Resour. Res., 48, W11519, https://doi.org/10.1029/2012WR012223, 2012. a
Download
Short summary
Grain size analysis is the key to understanding the sediment dynamics of river systems and is an important indicator for mitigating flood risk and preserving biodiversity in aquatic habitats. We propose GRAINet, a data-driven approach based on deep learning, to regress grain size distributions from georeferenced UAV images. This allows for a holistic analysis of entire gravel bars, resulting in robust grading curves and high-resolution maps of spatial grain size distribution at large scale.
Share