Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2567-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2567-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GRAINet: mapping grain size distributions in river beds from UAV images with convolutional neural networks
EcoVision Lab, Photogrammetry and Remote Sensing, ETH Zürich, Zurich, Switzerland
Andrea Irniger
CORRESPONDING AUTHOR
Hunziker, Zarn & Partner, Aarau, Switzerland
Agnieszka Rozniak
EcoVision Lab, Photogrammetry and Remote Sensing, ETH Zürich, Zurich, Switzerland
Roni Hunziker
Hunziker, Zarn & Partner, Aarau, Switzerland
Jan Dirk Wegner
EcoVision Lab, Photogrammetry and Remote Sensing, ETH Zürich, Zurich, Switzerland
Konrad Schindler
EcoVision Lab, Photogrammetry and Remote Sensing, ETH Zürich, Zurich, Switzerland
Related authors
No articles found.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
B. Xiang, T. Peters, T. Kontogianni, F. Vetterli, S. Puliti, R. Astrup, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 605–612, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023, 2023
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
O. Kantarcioglu, K. Schindler, and S. Kocaman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 161–167, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-161-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-161-2023, 2023
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
A. Yilmaz, J. D. Wegner, R. Qin, F. Remondino, T. Fuse, and I. Toschi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 7–7, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-7-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-7-2022, 2022
A. Yilmaz, J. D. Wegner, R. Qin, F. Remondino, T. Fuse, and I. Toschi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 7–7, https://doi.org/10.5194/isprs-annals-V-2-2022-7-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-7-2022, 2022
C. Stucker, B. Ke, Y. Yue, S. Huang, I. Armeni, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 193–201, https://doi.org/10.5194/isprs-annals-V-2-2022-193-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-193-2022, 2022
A. Yilmaz, J. D. Wegner, F. Remondino, T. Fuse, and I. Toschi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 7–7, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-7-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-7-2021, 2021
Y. Xie, K. Schindler, J. Tian, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 247–254, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-247-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-247-2021, 2021
A. Yilmaz, J. D. Wegner, F. Remondino, T. Fuse, and I. Toschi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 7–7, https://doi.org/10.5194/isprs-annals-V-2-2021-7-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-7-2021, 2021
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Mathematical applications
A wavelet-based approach to streamflow event identification and modeled timing error evaluation
Variability in epilimnion depth estimations in lakes
Hydrodynamic and environmental characteristics of a tributary bay influenced by backwater jacking and intrusions from a main reservoir
Automatic identification of alternating morphological units in river channels using wavelet analysis and ridge extraction
Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour
Estimating extreme river discharges in Europe through a Bayesian network
KULTURisk regional risk assessment methodology for water-related natural hazards – Part 2: Application to the Zurich case study
Reply to D. L. Peters' Comment on "Streamflow input to Lake Athabasca, Canada" by Rasouli et al. (2013)
Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China
A model based on dimensional analysis for prediction of nitrogen and phosphorus concentrations at the river station Ižkovce, Slovakia
A hybrid model of self organizing maps and least square support vector machine for river flow forecasting
Spatial variability in floodplain sedimentation: the use of generalized linear mixed-effects models
Flood trends and variability in the Mekong river
Erin Towler and James L. McCreight
Hydrol. Earth Syst. Sci., 25, 2599–2615, https://doi.org/10.5194/hess-25-2599-2021, https://doi.org/10.5194/hess-25-2599-2021, 2021
Short summary
Short summary
We present a wavelet-based approach to quantify streamflow timing errors for model evaluation and development. We demonstrate the method using real and simulated stream discharge data from several locations. We show how results can be used to identify potential hydrologic processes contributing to the timing errors. Furthermore, we illustrate how the method can document model performance by comparing timing errors across versions of the National Water Model.
Harriet L. Wilson, Ana I. Ayala, Ian D. Jones, Alec Rolston, Don Pierson, Elvira de Eyto, Hans-Peter Grossart, Marie-Elodie Perga, R. Iestyn Woolway, and Eleanor Jennings
Hydrol. Earth Syst. Sci., 24, 5559–5577, https://doi.org/10.5194/hess-24-5559-2020, https://doi.org/10.5194/hess-24-5559-2020, 2020
Short summary
Short summary
Lakes are often described in terms of vertical layers. The
epilimnionrefers to the warm surface layer that is homogeneous due to mixing. The depth of the epilimnion can influence air–water exchanges and the vertical distribution of biological variables. We compared various methods for defining the epilimnion layer and found large variability between methods. Certain methods may be better suited for applications such as multi-lake comparison and assessing the impact of climate change.
Xintong Li, Bing Liu, Yuanming Wang, Yongan Yang, Ruifeng Liang, Fangjun Peng, Shudan Xue, Zaixiang Zhu, and Kefeng Li
Hydrol. Earth Syst. Sci., 24, 5057–5076, https://doi.org/10.5194/hess-24-5057-2020, https://doi.org/10.5194/hess-24-5057-2020, 2020
Short summary
Short summary
We aim to understand the hydrodynamic and environmental characteristics of a tributary bay influenced by a main reservoir. The results showed that the tributary bay was mainly affected by backwater jacking of the main reservoir when the water level dropped and by intrusion of the main reservoir when the water level rose. An obvious quality concentration boundary existed in the tributary bay. The results of this study can provide guidance for water environment protection in tributary bays.
Mounir Mahdade, Nicolas Le Moine, Roger Moussa, Oldrich Navratil, and Pierre Ribstein
Hydrol. Earth Syst. Sci., 24, 3513–3537, https://doi.org/10.5194/hess-24-3513-2020, https://doi.org/10.5194/hess-24-3513-2020, 2020
Short summary
Short summary
We present an automatic procedure based on wavelet ridge extraction to identify some characteristics of alternating morphological units (e.g., pools to riffles). We used four hydro-morphological variables (velocity, hydraulic radius, bed shear stress, local channel direction angle). We find that the wavelengths are consistent with the values of the literature, and the use of a multivariate approach yields more robust results and ensures a consistent covariance of flow variables.
Adrien Michel, Tristan Brauchli, Michael Lehning, Bettina Schaefli, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, https://doi.org/10.5194/hess-24-115-2020, 2020
Short summary
Short summary
This study constitutes the first comprehensive analysis of river
temperature in Switzerland combined with discharge and key meteorological variables, such as air temperature and precipitation. It is also the first study to discuss the large-scale seasonal behaviour of stream temperature in Switzerland. This research shows the clear increase of river temperature in Switzerland over the last few decades and may serve as a solid reference for future climate change scenario simulations.
Dominik Paprotny and Oswaldo Morales-Nápoles
Hydrol. Earth Syst. Sci., 21, 2615–2636, https://doi.org/10.5194/hess-21-2615-2017, https://doi.org/10.5194/hess-21-2615-2017, 2017
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 19, 1287–1292, https://doi.org/10.5194/hess-19-1287-2015, https://doi.org/10.5194/hess-19-1287-2015, 2015
T. Zhang, W. H. Zeng, S. R. Wang, and Z. K. Ni
Hydrol. Earth Syst. Sci., 18, 1493–1502, https://doi.org/10.5194/hess-18-1493-2014, https://doi.org/10.5194/hess-18-1493-2014, 2014
M. Zeleňáková, M. Čarnogurská, M. Šlezingr, D. Słyś, and P. Purcz
Hydrol. Earth Syst. Sci., 17, 201–209, https://doi.org/10.5194/hess-17-201-2013, https://doi.org/10.5194/hess-17-201-2013, 2013
S. Ismail, A. Shabri, and R. Samsudin
Hydrol. Earth Syst. Sci., 16, 4417–4433, https://doi.org/10.5194/hess-16-4417-2012, https://doi.org/10.5194/hess-16-4417-2012, 2012
A. Cabezas, M. Angulo-Martínez, M. Gonzalez-Sanchís, J. J. Jimenez, and F. A. Comín
Hydrol. Earth Syst. Sci., 14, 1655–1668, https://doi.org/10.5194/hess-14-1655-2010, https://doi.org/10.5194/hess-14-1655-2010, 2010
J. M. Delgado, H. Apel, and B. Merz
Hydrol. Earth Syst. Sci., 14, 407–418, https://doi.org/10.5194/hess-14-407-2010, https://doi.org/10.5194/hess-14-407-2010, 2010
Cited articles
Adams, J.: Gravel size analysis from photographs, J. Hydr. Eng. Div.-ASCE, 105, 1247–1255, 1979. a
Babej, J., Máčka, Z., Ondrejka, P., and Peterová, P.: Surface grain size variation within gravel bars: a case study of the River Opava, Czech Republic, Geogr. Fis. Dinam. Quatern., 39, 3–12, 2016. a
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014. a
Brasington, J., Vericat, D., and Rychkov, I.: Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning, Water Resour. Res., 48, W11519, https://doi.org/10.1029/2012WR012223, 2012. a
Bunte, K. and Abt, S. R.: Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2001. a, b, c, d, e, f, g, h, i
Buscombe, D. and Masselink, G.: Grain-size information from the statistical properties of digital images of sediment, Sedimentology, 56, 421–438, 2009. a
Buscombe, D., Rubin, D., and Warrick, J.: A universal approximation of grain size from images of noncohesive sediment, J. Geophys. Res.-Earth, 115, F02015, https://doi.org/10.1029/2009JF001477, 2010. a
Carbonneau, P. E.: The threshold effect of image resolution on image-based automated grain size mapping in fluvial environments, Earth Surf. Proc. Land., 30, 1687–1693, 2005. a
Carbonneau, P. E., Lane, S. N., and Bergeron, N. E.: Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery, Water Resour. Res., 40, W07202, https://doi.org/10.1029/2003WR002759, 2004. a, b, c
Carbonneau, P. E., Bergeron, N., and Lane, S. N.: Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes, Water Resour. Res., 41, W11426, https://doi.org/10.1029/2005WR003994, 2005. a, b
de Haas, T., Ventra, D., Carbonneau, P. E., and Kleinhans, M. G.: Debris-flow dominance of alluvial fans masked by runoff reworking and weathering, Geomorphology, 217, 165–181, 2014. a
Graham, D. J., Rollet, A.-J., Piégay, H., and Rice, S. P.: Maximizing the accuracy of image-based surface sediment sampling techniques, Water Resour. Res., 46, W02508, https://doi.org/10.1029/2008WR006940, 2010. a
Gregory, K. J.: Human influence on the morphological adjustment of river channels: The evolution of pertinent concepts in river science, River Res. Appl., 35, 1097–1106, 2019. a
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H.,
Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing rivers, Nature, 569, 215–221, 2019. a
Habersack, H., Hengl, M., Huber, B., Lalk, P., Tritthart, M., Habersack, H., Hengl, M., Huber, B., Lalk, P., and Tritthart, M.: Fließgewässermodellierung – Arbeitsbehelf Feststofftransport und Gewässermorphologie [River modelling–working aid for sediment transport and fluvial morphology], Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management and Österreichischer Wasser-und Abfallwirtschaftsverband ÖWAV, Vienna, 2011. a, b, c
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778, 2016. a
He, K., Gkioxari, G., Dollár, P., and Girshick, R.: Mask r-cnn, in: Proceedings of the IEEE international conference on computer vision, 2961–2969, 2017. a
Huang, G.-H., Atkinson, P. M., and Wang, C.-K.: Quantifying the scales of spatial variation in gravel beds using terrestrial and airborne laser scanning data, Open Geosci., 10, 607–617, 2018. a
Ibbeken, H. and Schleyer, R.: Photo-sieving: A method for grain-size analysis of coarse-grained, unconsolidated bedding surfaces, Earth Surf. Proc. Land., 11, 59–77, 1986. a
Ioffe, S. and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv: preprint, arXiv:1502.03167, 2015. a
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv: preprint, arXiv:1412.6980, 2014. a
Krumbein, W. C. and Pettijohn, F. J.: Manual of Sedimentary Petrography. XIV + 549 pp., 8:o, 265 fig. New York and London 1938,
(1939). D. Appleton – Century Company. 8 6.50 (30 s.), Geologiska
Föreningen i Stockholm Förhandlingar, 61, 225–227, https://doi.org/10.1080/11035893909452786, 1938. a
LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.: Efficient backprop, in: Neural networks: Tricks of the trade, Springer, 9–48, 2012. a
Meyer-Peter, E. and Müller, R.: Formulas for bed-load transport, in: IAHSR 2nd meeting, Stockholm, appendix 2, IAHR, 1948. a
Nelson, J. M., McDonald, R. R., Shimizu, Y., Kimura, I., Nabi, M., and Asahi, K.: Modelling flow, sediment transport and morphodynamics in rivers, Tools in fluvial geomorphology, Wiley, 412–441, https://doi.org/10.1002/9781118648551.ch18, 2016. a
Piégay, H., Arnaud, F., Belletti, B., Bertrand, M., Bizzi, S., Carbonneau, P., Dufour, S., Liebault, F., Ruiz-Villanueva, V., and Slater, L.: Remotely Sensed Rivers in the Anthropocene: State of the Art and Prospects, Earth Surf. Proc. Land., 45, 157–188, https://doi.org/10.1002/esp.4787, 2019. a
Poeppl, R. E., Keesstra, S. D., and Maroulis, J.: A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems, Geomorphology, 277, 237–250, 2017. a
Ramdas, A., Trillos, N. G., and Cuturi, M.: On wasserstein two-sample testing and related families of nonparametric tests, Entropy, 19, 47, https://doi.org/10.3390/e19020047, 2017. a
Rice, S. and Church, M.: Grain size along two gravel-bed rivers: statistical variation, spatial pattern and sedimentary links, Earth Surf. Proc. Land., 23, 345–363, 1998. a
Rice, S. P. and Church, M.: Grain-size sorting within river bars in relation to downstream fining along a wandering channel, Sedimentology, 57, 232–251, 2010. a
Settles, B.: Active learning literature survey, Tech. Rep., University of Wisconsin–Madison, Department of Computer Sciences, available at: http://digital.library.wisc.edu/1793/60660 (last access: May 2021), 2009. a
Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang, K., Li, D., Li, X., and Tsai, W.-P.: HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656, https://doi.org/10.5194/hess-22-5639-2018, 2018. a, b
Sime, L. and Ferguson, R.: Information on grain sizes in gravel-bed rivers by automated image analysis, J. Sediment. Res., 73, 630–636, 2003. a
Simon, A. and Rinaldi, M.: Disturbance, stream incision, and channel evolution: The roles of excess transport capacity and boundary materials in controlling channel response, Geomorphology, 79, 361–383, 2006. a
Spada, D., Molinari, P., Bertoldi, W., Vitti, A., and Zolezzi, G.: Multi-Temporal Image Analysis for Fluvial Morphological Characterization with Application to Albanian Rivers, ISPRS Int. J. Geo.-Inf. 7, 314, 2018. a
Surian, N. and Rinaldi, M.: Morphological response to river engineering and management in alluvial channels in Italy, Geomorphology, 50, 307–326, 2003. a
Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona, P., and Belongie, S.: Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 595–604, 2015. a, b
Vázquez-Tarr'io, D., Borgniet, L., Liébault, F., and Recking, A.: Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps), Geomorphology, 285, 94–105, 2017. a
Wolman, M. G.: A method of sampling coarse river-bed material, EOS T. Am. Geophys. Un., 35, 951–956, 1954. a
Wu, F.-C., Wang, C.-K., and Huang, G.-H.: Delineation of gravel-bed clusters via factorial kriging, Geomorphology, 308, 161–174, 2018. a
Zettler-Mann, A. and Fonstad, M.: Riverscape mapping and hyperscale analysis of the sediment links concept, Geomorphology, 350, 106920, https://doi.org/10.1016/j.geomorph.2019.106920, 2020. a
Short summary
Grain size analysis is the key to understanding the sediment dynamics of river systems and is an important indicator for mitigating flood risk and preserving biodiversity in aquatic habitats. We propose GRAINet, a data-driven approach based on deep learning, to regress grain size distributions from georeferenced UAV images. This allows for a holistic analysis of entire gravel bars, resulting in robust grading curves and high-resolution maps of spatial grain size distribution at large scale.
Grain size analysis is the key to understanding the sediment dynamics of river systems and is an...