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Abstract. We employ an approach based on ensemble Kalman filter coupled with stochastic moment equations (MEs-EnKF) 10 

of groundwater flow to explore the dependence of conductivity estimates on the type of available information about 

hydraulic heads in a three-dimensional randomly heterogeneous field where convergent flow driven by a pumping well takes 

place. To this end, we consider three types of observation devices, corresponding to (i) multi-node monitoring wells 

equipped with packers (Type A), (ii) partially (Type B) and (iii) fully (Type C) screened wells. We ground our analysis on a 

variety of synthetic test cases associated with various configurations of these observation wells. Moment equations are 15 

approximated at second order (in terms of the standard deviation of the natural logarithm, Y, of conductivity) and are solved 

by an efficient transient numerical scheme proposed in this study. The use of an inflation factor imposed to the observation 

error covariance matrix is also analyzed to assess the extent at which this can strengthen the ability of the MEs-EnKF to 

yield appropriate conductivity estimates in the presence of a simplified modeling strategy where flux exchanges between 

monitoring wells and aquifer are neglected. Our results show that (i) the configuration associated with Type A monitoring 20 

wells leads to conductivity estimates with the (overall) best quality; (ii) conductivity estimates anchored on information from 

Type B and C wells are of similar quality; (iii) inflation of the measurement-error covariance matrix can improve 

conductivity estimates when an incomplete/simplified flow model is adopted; and (iv) when compared with the standard 

Monte Carlo -based EnKF method, the MEs-EnKF can efficiently and accurately estimate conductivity and head fields. 

1 Introduction 25 

Parameter estimation for groundwater system modeling is a key and important challenge, due to our incomplete knowledge 

of the spatial distributions of hydrogeological attributes, such as hydraulic conductivity. The ensemble Kalman filter (EnKF, 

Evensen, 1994) is a powerful approach to parameter estimation in subsurface flow (Hendricks Franssen and Kinzelbach, 

2008; Zheng et al., 2019) and solute transport (Liu et al., 2008; Li et al., 2012; Chen et al., 2018; Xu and Gómez-Hernández, 

2018) scenarios. Estimated system parameters can include conductivity/permeability (Zovi et al., 2017; Botto et al., 2018), 30 
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porosity (Li et al., 2012), specific storage (Hendricks Franssen et al., 2011), dispersivity (Liu et al., 2008), river bed 

conductivity (Kurtz et al., 2014), or unsaturated flow characteristic quantities (Zha et al., 2019; Li et al., 2020). 

EnKF can assimilate data sequentially through a real-time updating process. Alternatively, all collected measurements can 

be assimilated simultaneously, for example within a typical model calibration framework. With reference to the latter aspect, 

EnKF becomes an ensemble smoother (ES, van Leeuwen and Evensen, 1996), as it is associated with a smoothing 35 

probability density function (PDF) rather than a filtering PDF (Jazwinski, 1967). With reference to the ES, observations in 

the past and current stages are assimilated only once, thus yielding increased efficiency with respect to EnKF (Skjervheim et 

al., 2011). Iterative forms of EnKF and ES, usually denoted by IEnKF (Gu and Oliver, 2007; Sakov et al., 2012; Luo, 2014) 

and IES (Chen and Oliver., 2013; Emerick and Reynolds, 2013; Luo et al. 2015; Chang et al., 2017; Li et al., 2018), have 

been developed to improve assimilation performance in scenarios characterized by strongly nonlinear behaviors. A variety of 40 

studies investigate challenges linked to such (ensemble) data assimilation algorithms, including, e.g., the possibility of 

coping with non-Gaussian model parameter distributions (Zhou et al., 2011; Li et al., 2018), physical 

inconsistency/unphysical results stemming from the estimation workflow (Wen and Chen, 2006; Song et al., 2014), or 

spurious correlations (Panzeri et al., 2013; Bauser et al., 2018; Luo et al., 2018; Soares et al., 2019). All of these works 

contribute to improve the robustness of these algorithms for parameter estimation in complex environmental systems. 45 

Recent studies include the work of Xia et al. (2018), who tackle conductivity estimation in a two-dimensional variable-

density flow setting using a localized IEnKF to balance central processing unit (CPU) time and estimation accuracy. Bauser 

et al. (2018) develop an adaptive covariance inflation method for the EnKF to reduce the negative effect of spurious 

correlations and illustrate an application of the method in a soil hydrology field context. Mo et al. (2019) use a deep-learning 

based model as a surrogate of a solute transport model to reduce the CPU time associated with ensemble-based data 50 

assimilation through an iterative local update ensemble smoother in a contaminant identification problem considering a 

synthetic two-dimensional heterogeneous conductivity field. Li et al. (2020) compare benefits and drawbacks of embedding 

machine-learning-based (artificial neural network, ANN) and physics-based models into an IES for a set of synthetic 

unsaturated flow scenarios and find that (a) the performance of IES relying on the Richards’ equation is significantly 

impacted by soil heterogeneity, initial, and boundary conditions, and (b) IES based on either ANN or Richards’ equation can 55 

be notably affected by the quality of the measurements. 

In this broad framework, it is noted that the accuracy of parameter estimation for a given environmental system is jointly 

determined by the ability of the mathematical model to describe the system of interest (Sakov et al., 2018; Alfonzo and 

Oliver, 2019; Luo, 2019; Evensen, 2019), the ability of the used assimilation algorithm (Emerick and Reynolds, 2013; 

Bocquet and Sakov, 2014) as well as by the quantity and quality of available observations (Zha et al., 2019; Xia et al., 2018 60 

and references therein). 

With reference to a groundwater system, data which are commonly collected in a borehole and then employed for 

parameter estimation include head (water level or pressure), solute concentration, and/or in some cases fluxes. A well screen 

opened at multiple depths can provide information associated with preferential pathways of flow and/or solute transport. 
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Hydraulic heads observed in such a setting can be considered to constitute an integrated type of information and to be 65 

representative of an average system state (Ecli et al., 2001; 2003; Konikow et al., 2009; Zhang et al., 2018). Ecli et al. (2001; 

2003) conclude that the use of long-screen wells to collect measurements should be approached with caution, as these can 

yield misleading and ambiguous information concerning, e.g., hydraulic head, solute concentration, location of contaminant 

source, and plume geometry. These types of monitoring wells can be found in a variety of field settings where head and/or 

solute concentration data are collected (see, e.gs., Ecli et al., 2001; 2003; Post et al., 2007; Konikow et al., 2009; Zhang et 70 

al., 2019 and references therein). As an alternative, a somehow localized information could be provided through the use of 

packers. Installing the latter can be costly and in some cases impractical. 

Here, we aim at exploring the effect that assimilating hydraulic head information collected over time within wells 

equipped with screens of differing lengths can have on our ability to characterize the spatial distribution of conductivity of a 

three-dimensional fully saturated heterogeneous aquifer. We consider multi-node wells (Knoikow et al., 2009) to represent 75 

observation boreholes which can be (a) equipped with packers to mimic point-like measurements, (b) fully screened, or (c) 

partially penetrating. To this end, we focus on a convergent flow scenario driven by a partially penetrating pumping well 

operating in a three-dimensional heterogeneous conductivity field. Hydraulic head information is collected at a network of 

multi-node wells, to represent data associated with screened intervals of differing lengths along the vertical. We consider 

synthetic scenarios to provide transparent comparative analyses of the extent at which the quality of the estimated 80 

conductivity fields is influenced by the type of multi-node wells considered. 

Data assimilation is performed upon relying on an EnKF coupled with stochastic moment equations (MEs) of transient 

groundwater flow (e.g., Tartakovsky and Neuman, 1998a, b; Zhang, 2002; Ye, et al., 2004). The latter are approximated at 

second order (in terms of the standard deviation of the natural logarithm of hydraulic conductivity) and are solved by an 

efficient numerical scheme proposed in this study. 85 

While we refer to Zhang (2002) and Winter et al. (2003) for reviews of MEs in heterogeneous conductivity fields, we 

recall that MEs of groundwater flow have been previously incorporated into geostatistical inverse modeling approaches (e.g., 

Hernandez et al., 2003) or stochastic pumping test interpretation (Neuman et al., 2004, 2007), and have been considered in 

field settings (Riva et al., 2009; Bianchi Janetti et al., 2010; Panzeri et al., 2015). More recent developments have allowed 

embedding stochastic MEs of steady-state groundwater flow in model reduction strategies (Xia et al., 2020). MEs of 90 

transient groundwater flow have also been framed in the context of data assimilation/ parameter estimation approaches based 

on the EnKF approach (Li and Tchelepi, 2006; Panzeri et al., 2013; 2014). 

Panzeri et al. (2013, 2014, 2015) present an approach for data assimilation (hereafter termed MEs-EnKF) which relies on 

embedding MEs of groundwater flow within an EnKF framework. They (a) demonstrate that the method does not suffer 

from spurious correlation, thus avoiding resorting to any localization or inflation techniques, (b) document the computational 95 

feasibility and accuracy of the approach in two-dimensional synthetic log-conductivity domains, and then (c) explore a first 

field application to estimate log-transmissivity through assimilation of drawdown data collected during a series of cross-hole 

pumping tests. 
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An aspect which is still somehow limiting the advantages of MEs-EnKF is related to the formulation of MEs in terms of a 

Green’s function approach (see also Ye et al., 2004). One is then required to solve the equation satisfied by a (zero-order 100 

mean) Green’s function for each node of the numerical grid employed to discretize the computational domain. While one can 

take advantage of symmetries related to the evaluation of the Green’s function, Panzeri et al. (2014) show that in their 

illustrative examples the CPU time required by MEs-EnKF is equivalent to performing a classical EnKF relying on a 

collection of 35,000 Monte Carlo (MC) realizations. The negative impact of this computational scheme could be aggravated 

in three-dimensional scenarios. Here, we circumvent this issue by solving MEs for three-dimensional transient groundwater 105 

flow by relying on the (second-order accurate) approximations of MEs presented by Zhang (2002). 

The remainder of the work is structured as follows. Section 2 details the main elements associated with the mathematical 

background of MEs and multi-node wells. Section 3 introduces the coupling between MEs and the EnKF approach. Section 

4 illustrates the synthetic settings we analyze together with the criteria according to which the performance of MEs-EnKF 

and the standard Monte Carlo-based EnKF (MC-EnKF) is assessed. Section 5 is devoted to the presentation and analysis of 110 

the key results. Main conclusions of this work are presented in Section 6. 

2 Theoretical Background 

2.1 Stochastic moment equations for groundwater flow 

We consider transient groundwater flow in a three-dimensional domain Ω described by 

( )
( )

( ) ( )
,

, ,s x

h t
S t tf

t


+  =




x
x q x x    with   ( ) ( ) ( ), ,t K th= − q x x x , (1) 115 

subject to initial and boundary conditions 

( ) ( )0 0,h t H=x x   x  (2) 

( ) ( ), ,h t H t=x x  Dx  (3) 

( ) ( ) ( ), ,t Q t =  − x n x xq  Nx  (4) 

where x denotes the vector of Euclidian coordinates; t is time; K is hydraulic conductivity; sS  is specific storage; h is 120 

hydraulic head; q is Darcy flux; f is a forcing term; ( )0H x  is initial hydraulic head; ( ),H tx  is head along the Dirichlet 

boundary; and Q is a prescribed flux along the Neuman boundary. In the following, we consider ( )sS x , ( , )H tx  and ( , )Q tx  

as deterministic, while ( )0H x , ( ),f tx  and ( )K x  are taken to be random quantities. 

The natural logarithm of hydraulic conductivity, ( ) ( )lnY K=x x , is assumed to be a second-order stationary process 

correlated in space with mean ( )Y x  and variance 2

Y . Tartakovsky and Neuman (1998a, b) derive integro-differential 125 

MEs to compute space-time dynamics of (ensemble) means and covariances of hydraulic heads and fluxes. They then resort 
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to a perturbation approach to derive recursive approximations of these otherwise exact integro-differential MEs. Ye et al. 

(2004) solve second-order (in the standard deviation of Y, 
Y ) approximations of these MEs by finite elements for 

superimposed mean-uniform and convergent flows for two-dimensional settings. Since numerical solutions of moment 

equations are heavy in terms of computational resources (Zhang, 2002; Ye et al., 2004), in the following subsections we 130 

illustrate a workflow which enables us to evaluate all quantities of interest (up to second order in 
Y ) with reduced 

computational efforts. 

2.1.1 Mean head and flux 

We start by expressing a given random quantity,  , as the sum of its (ensemble) mean,  , and a zero-mean random 

fluctuation,  . Here and in the following mean head and flux are approximated up to second order in 
Y  as 135 

( ) ( ) ( ) ( ) ( )20
, , ,h t h t h t +x x x ;  ( ) ( ) ( ) ( ) ( )0 2

, , ,t t t +q x q x q x , (5) 

and the following equations hold 
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Here, superscript (i) indicates terms that are strictly of order i (in terms of powers of Y ), ( )
( )

Y

GK e=
x

x  is the geometric 140 

mean of K(x), and ( ), tr x  is the second-order residual flux evaluated as ( ) ( ), lim , ,x
y x

t u t
→

= −  r x y x  (e.g., Xia et al., 2019 
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and references therein), where ( ) ( ) ( )
( )2

, , ,u t K h t =y x y x  is the second-order approximation of the cross-covariance 

between hydraulic head and conductivity, computed as detailed in Section 2.1.2. 

2.1.2 Cross-Covariance between hydraulic head and conductivity  

Multiplying Eqs. (1)-(4) by ( )K  y  and taking expectation yield the following equation governing the evolution of 145 
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Here, ( ), ( ) ( )YC Y Y =x y x y  is the covariance of the log-conductivity field, ( ) ( ) ( )
( )2

, , ,fKC t K f t =y x y x  is the second-

order cross-covariance between conductivity ( )K y  and forcing term ( ),f tx , and ( ) ( ) ( )
( )2

0 0,U K H =y x y x  is the 

second-order approximation of the cross-covariance between K and initial hydraulic head. Note that ( )0 ,U y x  vanishes 150 

when H0 is deterministic. 

2.1.3 Head covariance 

The equation governing the evolution of the (second-order) head covariance between space-time locations (y, τ) and (x, t), 

( ) ( ) ( )
( )2

, , , , ,hC t h h t  =y x y x , is given by (Zhang, 2002) 
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 (9) 
155 

where ( )
( )2

, , ( ) ( , )u K h  =x y x y  is given by Eq. (8), and ( ) ( ) ( )
( )2

, , , , ,fhC t h f t  =y x y x  is the second-order cross-

covariance between forcing term ( ),f tx  and hydraulic head ( ),h y . To minimize redundancy, hereinafter we omit stating 
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that all cross-/auto- covariances of quantities of interest appearing in our formulations are to be considered as second-order 

approximations. It is worth noting that spatially heterogenous conductivities of aquifer systems are often modeled through a 

single, in some cases multimodal, distribution (Winter et al., 2003). This approach corresponds to a homogenization of 160 

conductivity values, which might be associated with diverse geomaterials, within a unique system. Otherwise, the domain 

can be conceptualized as composed by zones, each associated with a given geomaterial and hydrogeological attributes. This 

leads to modeling the system under investigation as composed by a collection of disjoint blocks, whose location might be 

uncertain and within which a quantity such as conductivity can be spatially heterogeneous (see e.g., Winter and Tartakovsky, 

2000, 2002; Winter et al., 2002, 2003; Guadagnini et al., 2004; Short et al. 2010; Perulero Serrano et al., 2014; Bianchi 165 

Janetti et al., 2019 and references therein). In this framework one can represent conductivity within each block upon relying 

on a distribution associated with low to mild variance, which is compatible with the order of approximation associated with 

the groundwater flow moment equations we consider (Winter and Tartakovsky, 2002; Winter et al., 2002, 2003 and 

references therein). The scenario we investigate can then be seen as corresponding to the type of internal variability 

associated with a given geologic unit. 170 

2.2 Monitoring wells 

We consider three kinds of observation wells, leading to three diverse types of hydraulic head information (see Fig. 1). Type 

A wells are characterized by packers located at three depths, where point-wise hydraulic head observations are collected. 

Otherwise, Type B and/or C wells represent partially and fully penetrating wells, respectively, and provide hydraulic head 

values that are averaged along the corresponding screened intervals. Note that, even though there is no pumping from B- and 175 

C-wells, there are flux exchanges between these wells and the surrounding aquifer system, as opposed to the setting 

associated with packers (A-wells). Such flow is related to the difference between the water level within the well and 

hydraulic head values along the borehole. 

Following Konikow et al. (2009), neglecting linear (due to skin effects) and non-linear (due to turbulent flow) well loss 

terms, the water level at well I, w

Ih , (Type B and/or C) at a given time t (omitted in the following equations for brevity) can 180 

be evaluated through 

1

1

n

i i iw i

I n

i ii

b K h
h

b K

=

=

=



 (10) 

where n is the number of nodes in the multi-node observation well I, i.e., the number of cells according to which the well 

screen is discretized; hi, bi, and Ki are the hydraulic head, thickness and conductivity of the cell of the numerical grid whose 

centroid corresponds to the 
thi  node in the multi-node well, respectively. Note that Eq. (10) has been derived assuming that 185 

the flux exchange, i.e., the flow into (or out of) the monitoring well at the 
thi  node, Qi, depends linearly on the product i ib K  

(see also Section 2.2.2). Numerical evaluation of hi at a given time t requires evaluating Qi, as shown in Section 2.2.2. 
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2.2.1 Moments for hydraulic head at observation wells 

Mean head at well I is approximated (at second order in 
Y ) as ( ) ( )0 2w ww

I I Ih h h +  where, starting from Eq. (10), one 

can obtain the zero-, ( )0w

Ih , and second-, ( )2w

Ih , order components as 190 
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Here, 
, ,G i i G iT b K= , ( )0

ih , ( )2

ih , 
,G iK  and 2

,Y i  correspond to the zero- (evaluated by Eq. (6)) and the second- (evaluated 

by Eq. (7)) order mean head, geometric mean of conductivity and variance of log-conductivity at the 
thi  cell of a multi-node 

monitoring well, respectively; 
( )2

ii i iu K h =  is the cross-covariance between conductivity and head at the 
thi  cell; 

( )2
w

i IK h   195 

is the cross-covariance between well head and conductivity at the 
thi  cell (evaluated as detailed below, see Eq. (15)). 

The covariance between water levels at wells I (i.e., w

Ih ) and J (i.e., w

Jh ), 
(2)

w

w w

I Jh
C h h = , can be evaluated as (see also 

Appendix A, Eqs. (A1)-(A3)) 
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 (13) 

where 
, ,G i i G iT b K= , 

, ,G j j G jT b K= , I and J are indices ranging from 1 to Nw (i.e., the total number of monitoring wells of 200 

Type B and C); n and m correspond to the total number of cells according to which the screens of boreholes I and J are 

discretized, respectively; 
,Y ijC  is the log-conductivity covariance between the ith and jth cells of boreholes I and J, 

respectively; 
jiu  (or 

iju ) is the cross-covariance between the conductivity of the jth cell of well J (or the ith cell of well I) and 

head of the ith cell of well I (or the jth cell of well J); 
,h ijC  is the head covariance between the ith cell of well I and the jth cell 

of well J. Terms 
jiu  (or 

iju ) and 
,h ijC  can be readily obtained by solving Eqs. (8)-(9). 205 
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The cross-covariance between w

Ih  at a given time t and aquifer head h at time   (at a given location, omitted for brevity), 

i.e., ( ) ( )
( )2

w
I

w

Ih h
C h t h  =  is given by 

( ) ( )( )0 0,

, , , ,1 1
,

w
I

n n wi

G i G i h i i Ih h i i
G i

u
C T T C h h

K




= =

 
= + − 

  
   (14) 

Here, ( )
( )2

,i iu K h  =  represents the cross-covariance between conductivity at the ith cell of well I and aquifer head (at a 

given location) at time . Likewise, ( ) ( )
( )2

, ,h i iC h t h  =  represents head covariance between head at time t at the ith cell of 210 

the monitoring well I and head at time τ at a given location in the aquifer. 

The cross-covariance between w

Ih at time t and conductivity at a given location in the aquifer, ( )
( )2

=w
I

w

Ih K
C h t K  , can be 

expressed as 

( ) ( )( )0 0

, , ,1 1
w
I

n n w

G i G i i G Y i i Ih K i i
C T T u K C h h

= =

 = + −
     (15) 

where 
'

,Y i iC Y Y =  is the covariance between log-conductivity at the ith cell along the monitoring borehole I and log-215 

conductivity at a given location in the domain, and ( )
( )2

i iu K h t =  is cross-covariance between conductivity at a given 

point in the domain and aquifer head at time t at the ith cell along the monitoring borehole I. 

It is worthwhile to note that covariances and cross-covariances evaluated in Eqs. (13)-(15) depend explicitly on the 

difference between the mean water level at the monitoring well and the mean hydraulic head along the well screen. 

2.2.2 Moments for flux between a monitoring well and the aquifer 220 

Assuming that the evolution of head at the observation borehole I can be conceptualized as a sequence of temporal events 

(each associated with the attainment of instantaneous equilibrium conditions). Following Konikow et al. (2009), the link 

between w

Ih , hi, and Qi can then be obtained by relying on the Thiem (1906) formulation as 

w i

I i

i i

Q
h h

a b K
= + , with 

( )0

2

ln w

a
r r


=  (16) 

where 0r  and wr  are the effective (i.e.., the radius of a well that would be associated with the same head as that calculated at 225 

the node of the cell that contains the well) and the actual well radius, respectively. The mean flux exchange is approximated 

as ( ) ( )0 2

i i iQ Q Q +  and from Eq. (16) one can write 

( ) ( ) ( )( )0 0 0

,

w

i G i I iQ aT h h= − ;  (17) 
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( ) ( ) ( ) ( ) ( )( )
( ) ( )2 22

2 2 2 0 0,

,

, ,2

w

I iw wY i i i

i G i I i I i

G i G i

h K h K
Q aT h h h h

K K

     
= − + − + − 

  

 (18) 

The cross-covariance between 
iQ  at time t and aquifer head at time  , ( ) ( )

( )2

i
iQ h

C Q t h  = , can be expressed as 230 

( ) ( )( )0 0,

,

,

w
i I i

wi

G i I iQ h h h h h
G i

u
C aT C C h h

K
  


  

= − + − 
  

 (19) 

where ( ) ( )
( )2

w
I

w

Ih h
C hh t =  , ( ) ( )

( )2

i
ih h

C hh t =  . Finally, one can obtain the following expression for the cross-

covariance between 
iQ  and K, 

( )2
'

iQ K iC Q K = , 

( ) ( )( ) 0 0

, ,w
i I

w

Q K G i i G Y i I ih K
C aT C u K C h h= − + −  (20) 

2.3 Numerical solution strategy 235 

We solve numerically Eqs. (6)-(9) by approximating the spatial derivatives through a finite element approach and the 

temporal derivatives through an implicit method. As in Xia et al. (2019), moments ( )0
h , u , and ( )2

h  are sequentially 

obtained by solving Eqs. (6), (8), and (7), respectively. Details associated with the evaluation of 
hC , which requires ( )0

h  

and u  as inputs, are illustrated in the following. 

For the purpose of our data assimilation workflow, we start by noting that we are interested in computing 
hC  associated 240 

with two identical time coordinates, i.e., ( ) ( ) ( )
( )2

, , = , , ,hC t t h t h t  = =y x y x . We then recall that Zhang (2002) computes 

( ), , = ,hC t ty x  for each time t (while ( ), , = ,hC t t t − y x  is also unknown, Δt being a constant temporal step size) by 

solving for ( ), , = , 'hC t ty x  from 't  = 0 to 't  = t. While this procedure can be computationally heavy for long times, Zhang 

(2002) points out that when flow changes only mildly, ( ), , ,hC t t t = − x y   ( ), , ,hC t t t t = −  − x y , an approximation 

whose general validity is still not completely explored. 245 

Here, we circumvent this issue and obtain high computational efficiency by directly evaluating ( ), , = ,hC t ty x  from 

( ), , = ,hC t t t t −  − y x  via (i) computing ( ), , = ,hC t t t − y x  through the solution of the equation obtained by considering 

Eq. (9) where the space and time derivatives operate on τ and y (instead of t and x) from time t − Δt to t using 

( ), , = ,hC t t t t −  − y x  as initial condition and then (ii) assessing ( ), , = ,hC t ty x  by solving Eq. (9) using 

( ), , = ,hC t t t − y x  as initial condition. 250 
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It is further noted that Eqs. (6)-(9) are characterized by the same format, their discretization leading to a system of 

equations where the coefficients of the unknown quantities are identical, the corresponding right-hand-side terms (i.e., the 

forcing terms) being a function of the (ensemble) moment to be solved. In this context, one can resort to a direct solver for 

each time step. Thus, factorization of the matrix containing the coefficients of the system of equations is performed only 

once, resulting in a high computational efficiency because only the right-hand-side term needs to be updated, depending on 255 

the moment of interest. 

With reference to the forcing terms ( )0
f , ( )2

f , 
fKC , and 

fhC  in Eqs. (6)-(9), we note that these vanish for Type A 

wells and when one disregards flux exchanges between Type B (or C) wells and the aquifer. In these instances, mean head 

values and the associated covariance are simply obtained upon evaluating numerically Eqs. (6)-(9). Thus, when considering 

a time interval  ,t t t−  , the main computational cost stems from the evaluation of ( ), ,u ty x , ( ), , = ,hC t t t − y x , and 260 

( ), , = ,hC t ty x , each of these requiring N times the computational cost (hereafter denoted as MEs

cC ) associated with the 

solution of the system of N equations resulting after discretization. Therefore, the total computational effort required for 

solving Eqs. (6)-(9) at each time step is 3N MEs

cC . Note that the computational effort is reduced to 2N MEs

cC  for the first time 

interval, when the initial head is deterministic, or for a steady-state flow scenario (see Xia et al., 2019). 

Otherwise, considering flux exchange processes when representing Type B (or C) wells entails evaluation of the source 265 

terms in Eqs. (6)-(9) as ( ) ( )0 0

if Q= , ( ) ( )2 2

if Q= , 
ifk Q KC C= , and 

i
fh Q h

C C = . The evaluation of the (ensemble) 

moments of interest across time interval  ,t t t−   is then performed through the workflow depicted in Fig. 2. In this case, we 

note that convergence of the iterative procedure is attained when the absolute difference between mean well heads at 

iteration iter+1, 
1

w

I iter
h

+
, and iter, 

w

I iter
h , is lower than a pre-set value  . The main computational effort required for 

these evaluations corresponds to 3(iter+1)N MEs

cC  for each time step. 270 

3 Ensemble Kalman Filter coupled with moment equations 

We start by introducing the mean system state vector φ  as 

T
w =

 
φ h h Y  (21) 

where h , Y  correspond, respectively, to N-dimensional vectors of mean head and mean log-conductivity, and 
w

h  is a 

wN -dimensional mean well head vector, subscript T representing transpose. 275 
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Each data assimilation cycle, corresponding to time interval  ,t t t−   comprises a forecast (or forward propagation) step 

and an update (or analysis) step. The forecast step is implemented by solving the moment equations described in Section 2. 

We write the predicted mean and covariance of the system state as 

T
ff f w =

  
φ h h Y ; 

w

w w w

w

T T
f f f

h Yhh h

T
f f f f

h h h Yh

f f f

Yh YYh

       
 

 =   
 
 
 

C C C

P C C C

C C C

 (22) 

Here, superscript f represents predicted quantities obtained in the forecast step, 
f

h  is the predicted mean head (Eq. 5), 280 

f
w

h  is the predicted mean water level at monitoring borehole (Eqs. 11-12), Y  is the updated natural logarithm of 

conductivity obtained at the previous data assimilation cycle, f

hC  is the predicted N N -dimensional head covariance 

matrix, (Eq. 9), w

f

h h
C  is the wN N -dimensional predicted cross-covariance between well and aquifer head (Eq. 14), w

f

h
C  is 

the predicted w wN N -dimensional covariance of well head (Eq. 13), f

YhC  is the predicted N N -dimensional cross-

covariance between Y and aquifer head h (Eq. 8), w

f

Yh
C  is the predicted wN N -dimensional cross-covariance between Y and 285 

well head 
wh  (Eq. 15), f

YC  is N N -dimensional Y covariance and is equal to its updated counterpart associated with the 

previous updating step. 

The equations used to evaluate the state updated vector 
up

φ  and the updated covariance matrix 
up

P  are 

( ) ( )1
+

up f

d dd D so obs 
−

= + −φ φ C C C φ d  (23) 

and 290 

( )( )1up f

d dd D 
−

= − +P I C C C H P  (24) 

where 
dC  (=

f T
P H ) is the (2N + wN )  d-dimensional cross-covariance between the system state and the simulated 

observations, matrix H of dimension d  (2N + wN ) is the observation operator that describes the relationship between the 

system state and the observations, ddC  (=
f T

HP H ) is the d  d-dimensional covariance matrix of the simulated 

observations, DC  is the d  d-dimensional covariance of observation errors, I  is the identity matrix,   is a constant 295 

inflation factor,  = 1 corresponding to the uninflated ensemble Kalman filter, soφ  is the mean vector of the simulated 

observations, and obsd  is the d-dimensional observation vector. 

After the update step, 
up

φ  and 
up

P  are expressed as 
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=
T

upup up upw 
  

φ h h Y ; 

w

w w w

w

T T
up up up

h Yhh h

T
up up up up

h h h Yh

up up up

Yh YYh

       
 

 =   
 
 
 

C C C

P C C C

C C C

 (25) 

where all symbols have the same meaning (yet updated) as in Eq. (22). 300 

When moving to a subsequent time interval during the assimilation process, we follow Panzeri et al. (2013) and (i) use the 

updated mean head vector 
up

h  as the initial condition of the governing equation for the zero-order mean head, i.e., Eq. (6); 

(ii) making use of 
up

Y , evaluate the updated geometric mean N-vector up

GK ; (iii) obtain the initial condition of Eq. (8) 

through the product up up

G YhCK ; (iv) use up

hC  as the initial condition of Eq. (9); and (v) use up

GK  and up

YC  as inputs to Eqs. (6)-

(9) and Eqs. (11)-(20). 305 

It should be noted that, if one neglects flux exchanges between the aquifer and Type B and/or C monitoring wells (or a 

Type A well is considered), moments including water level at well (i.e., 
w

h , wh h
C , wh

C , wYh
C ) should be omitted in Eqs. 

(21)-(25). 

4 Illustrative examples 

We consider a three-dimensional domain (Fig. 3a) of size 600 600 60   (hereafter, all quantities are considered in consistent 310 

units, following notation associated with prior studies, including, e.g., Panzeri et al., 2013 and references therein), the system 

being discretized onto a numerical mesh comprising 25 25 13   nodes, for a total of 34,560 tetrahedrons. A partially 

penetrating pumping well pumps at a constant rate of 1,000 for 0  t  30, after which water withdrawal stops and a 

recovering process takes place for 30 < t  60. We subdivide the overall simulation time according to 20 uniform intervals, 

which can potentially be used for assimilation of head observations. The well pumping rate is uniformly distributed across 315 

the central nodes of layers no. 1 and 2 in the numerical mesh (numbering is from top to bottom of the domain). The left and 

right sides of the system are set as Dirichlet boundaries, where a deterministic head H = 100 is fixed, the remaining 

boundaries being considered impervious. Initial head and storativity are deterministic and set equal to 100 and 10 -3, 

respectively. The natural logarithm of conductivity, Y, is modeled as a spatially correlated second-order stationary random 

field with covariance given by 320 

2 31 2

1 2 3

expY YC
 


  

  
= − + +   

  
 (26) 

Here, i  and i  denote, respectively, the lag and correlation scale between two points along direction ix  (with i = 1, 2, 3). 
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Twenty virtual monitoring wells are regularly distributed across the domain (Fig. 3b). Type A boreholes are mimicked by 

considering three packers positioned at three distinct depths, corresponding to layers no. 4, 7, and 10. Type B wells are 

equipped with three screens (i.e., n = 3) whose barycenter is set at the same depths of the packers in Type A wells (see Fig. 325 

1) and ib  = 5 with i = 1, 2, 3. Type C wells are completely penetrating across the 13 layers of the domain (i.e., n = 13) with 

1b  = 
13b  = 2.5 and 

ib  = 5 for i = 2, …, 12. 

Reference hydraulic head values which are collected at Type B and C wells and employed in the data assimilation 

procedure are evaluated upon solving the flow problem on the reference hydraulic conductivity fields described in the 

following. Flux exchanges between the aquifer and monitoring wells are evaluated according to the procedure described in 330 

Sections 2.2 and 2.3 upon setting the convergence criterion   = 10-6. 

The effective radius of the monitoring wells is evaluated as (Chen and Zhang, 2009) 0.25 0.75

0 2 0.113 2.81r e x x−=    =  

(Δx = 25 being the horizontal size of a given element in the computational mesh). For the purpose of our illustration 

example, we set wr  = 0.1 (i.e., a = 1.88). 

We organize our exemplary settings according to the following four groups (for a total of 26 Test Cases, TCs) collected in 335 

Table 1. 

(1) Group 1. It includes 7 TCs (TC1-TC7) that allow exploring the way conductivity estimates can be influenced by 

relying on the assimilation of head data collected at diverse types of virtual observation boreholes, while considering a 

simplified modeling approach where flux exchanges between the aquifer and Type B (or C) monitoring wells are neglected 

during the data assimilation procedure, head observations (considered in the data assimilation procedure) corresponding to 340 

depth-averaged values along the corresponding screens. We note that relying on this approach is tantamount to considering 

an imperfect flow model and would possibly oversimplify the mathematical representation of the system behavior, when 

compared to the one employed for constructing the reference head field. Nevertheless, it has the advantage of requiring a 

straightforward numerical implementation. 

A zero-mean reference Y field is generated at the nodes of the computational mesh upon relying on the widely tested and 345 

used SGSIM code (e.g., Deutsch and Journel, 1998) by setting a unit variance, 1  = 2  = 100 and 3  = 20. While the 

correlation scale values are considered as perfectly known, we aim at estimating mean and variance of Y. The initial guesses 

employed for the variance and mean of Y during data assimilation are 1.0 and 0.2, respectively. Test Cases 1-3 are designed 

in a way that all 20 observation boreholes are of Type A, B, or C, respectively. Test Cases 4-7 enable one to explore the way 

conductivity estimates can depend on the use of Type A boreholes (i.e., equipped with packers) within different zones, while 350 

considering Type B or C wells in the remaining regions. Test Case 4 comprises Type A wells within zone 1 in Fig. 3b (i.e., 

within distances shorter than 1  from the pumping well), Type B boreholes being installed in zones 2 and 3 (at distances 

larger than 1  from the pumping well). Test Case 5 is characterized by the presence of Type A wells in zones 1 and 2, and 

Type B wells in zone 3. Test Cases 6 and 7 are characterized by the presence of Type A wells in zone 1 and in zones 1-2 
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respectively, Type C wells being located in the remaining zones. We note that the spatial arrangement of the observation 355 

boreholes is designed to allow these to be spaced by a distance approximately corresponding to a correlation scale of Y, thus 

encompassing strong to low degrees of correlation with respect to the pumping well location. 

(2) Group 2. It includes 6 TCs (TC#2-TC#7) that are a variant of those of Group 1 and consider the solution of the data 

assimilation procedure without neglecting flux exchanges between virtual monitoring boreholes of Type B and/or C and the 

aquifer, i.e., data assimilation is performed by considering perfect knowledge of the groundwater flow model, which 360 

includes all of the processes underpinning the reference head fields. 

(3) Group 3. It includes 7 TCs designed to explore (i) the impacts of the mean and variance of the Y reference field on the 

data assimilation results associated with Type B and C boreholes (TC2#*1-TC2#*2, TC3#*1-TC3#*2); and (ii) settings where 

head data are assimilated solely from one depth (instead of all three locations) where a packer is installed along Type A 

wells (TC1*1-TC1*3). 365 

In details, here we consider (i) a nearly uniform (while random) zero-mean Y reference field with variance equal to 0.01 

(TC2#*1 and TC3#*1), the initial guesses employed for the variance and mean of Y during data assimilation being 0.09 and 

0.2, respectively; (ii) a Y reference field with mean and variance equal to 0.2 and 1.70, respectively (TC2#*2 and TC3#*2), 

the initial guesses employed for the variance and mean of Y during data assimilation being 1 and 0, respectively; and (iii) 

three variants of TC1: TC1*1 considers assimilating head information only from the upper packer (i.e., the one positioned at 370 

layer 4), TC1*2 and TC1*3 being designed to assimilate head data only from the intermediate (positioned at layer 7) and 

bottom (positioned at layer 13) packer, respectively. 

(4) Group 4. It includes 6 TCs where we explore the effect of inflating the measurement-error covariance matrix on the 

data assimilation when the latter is performed in a way similar to the corresponding TC2 and TC3 of Group 1. As such, data 

assimilation is based on an imperfect flow model (where flux exchanges between the aquifer and monitoring boreholes are 375 

disregarded). To cope with this, inflation on measurement-error covariance matrix is considered during data assimilation, the 

inflation factor being set to   = 5 (TC2α1 and TC3α1), 10 (TC2α2 and TC3α2), and 100 (TC2α3 and TC3α3; note that TC2 

and TC3 correspond to   = 1). 

Initial input quantities required to solve moment equations and spatial fields of GK  and YC  are obtained through the 

generation of 10,000 realizations of Y. The latter form the collection of realizations upon which the traditional Monte Carlo 380 

(MC)-based ensemble Kalman filter (MC-EnKF) is also applied. Results based on MEs-EnKF are then compared against 

those obtained through MC-EnKF. Head observations in all TCs are considered to be noisy and are obtained by adding a 

Gaussian white noise with a standard deviation of 0.01 to the reference heads collected at the virtual boreholes and used in 

the data assimilation procedure. The strength of the noise is selected on the basis of the calculated reference head fields and 

considering the level of accuracy that is related to measuring devices commonly employed in practical settings (e.g., when 385 

considering water loggers, accuracy of pressure head observations is commonly comprised between ~ ±0.005 and ~ ±0.05 

m). 
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We rely on the criteria illustrated in the following to appraise the quality of the data assimilation performance. These are 

(i) the average absolute difference between the estimated (or updated) Y field and its reference counterpart, 
YE , (ii) the 

square root of the average estimation variance, YS , and (iii) the average absolute difference between the estimated (or 390 

updated) aquifer head and its reference counterpart, 
hE , evaluated as 

1

1 N
u r

Y i i

i

E Y Y
N =

= −  (27) 

( )2

,

1

1 N
u

Y Y i

i

S
N


=

=   (28) 

1

1 N
u r

h i i

i

E h h
N =

= −  (29) 

where 
u

iY , ( )2

,

u

Y i and r

iY  indicate the estimated mean, variance and reference Y values at the 
thi  node of the 395 

computational mesh, respectively; 
u

ih  and r

ih  represent the estimated mean and reference aquifer head value at the 
thi  node 

of the grid. We note that YS  is a metric quantifying the uncertainty associated with the estimated Y field conditional on the 

data assimilated (see, e.g., Panzeri et al., 2014; and Nowak, 2010). 

5 Results and discussion 

5.1 Comparison between MC-EnKF and MEs-EnKF 400 

In this Section we compare the results obtained with our MEs-EnKF approach and a standard MC-EnKF for two selected test 

cases, TC1 and TC2#. Table 2 summarize the outcomes computed via MEs-EnKF and MC-EnKF (increasing the number of 

MC simulations from 100 to 10,000) at the end of the assimilation process in terms of YE , YS , and hE . These results 

suggest that the overall quality of conductivity estimates grounded on MEs-EnKF is similar to what one can obtain upon 

relying on a MC-EnKF based on 10,000 realizations, which is also consistent with the results illustrated by Panzeri et al. 405 

(2014) in two-dimensional settings. Table 2 also includes the computational cost (CPU in seconds) needed for each test case 

and approach using the processor Inter(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz with 128 GB RAM. The CPU time 

required by MEs-EnKF is 20 times lower than the one required by a standard Monte Carlo based EnKF relying on 10,000 

realization. When compared with the findings of Panzeri et al. (2014) in their two-dimensional settings, our results further 

support the computational appeal and feasibility of relying on a MEs-EnKF approach also in a three-dimensional setting. 410 

Note also that the CPU time required by TC2# is significantly larger (about six times) than the one needed for TC1, due to 

the implementation of flux exchanges between the aquifer system and the boreholes. 
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As an additional term of comparison, Fig. 4 depicts the spatial distributions of the estimated values of mean and variance 

the log-conductivity field computed with MEs-EnKF and MC- EnKF relying on 100, 500, 1,000 and 10,000 realizations at 

the end of the data assimilation window at layers 4, 7, and 10 (where the packers are located) in TC1. The reference Y field is 415 

also depicted (see the left column of Fig. 4). Analogous outcomes are reported in Fig. 5 for TC2#. Visual inspection of these 

results provides further support to the ability of the MEs-EnKF to yield conductivity distributions consistent with the 

corresponding reference values in these settings. As expected, the degree of spatial variability of the estimated mean and 

variance values of Y tends to stabilize as the number of realizations increases, being very similar to their MEs-based 

counterparts when 10,000 realizations are employed. 420 

5.2 Effect of neglecting flux exchanges between boreholes and aquifer during data assimilation (Group 1) 

Figure 6 shows the temporal behavior of YE  (Fig. 6a), YS  (Fig. 6b), and hE  (Fig. 6c) for TCs1-7 (i.e., Group 1 in Table 1) 

obtained through MEs-EnKF. The lowest values of YE  are associated with TC1, where packers are set for all observation 

wells. Very similar results are also obtained for TC5 and TC7, where Type B or C wells are installed only at the farthest 

locations (i.e., zone 3 in Fig. 3b) from the pumping well, respectively, Type A boreholes being installed within the regions 425 

(i.e., zones 1-2 in Fig. 3b) closest to the well. 

The highest values of YE  correspond to TC3, where fully screened monitoring wells (Type C wells) are located in the 

entire domain. These are closely followed by the results associated with TC2, where observation wells screened across 

multiple (Type B wells) levels are considered. Considering the trend displayed by the results in Fig. 6a, one can then 

conclude that relying on point values of head contributes to increase the overall quality of the data assimilation procedure, as 430 

expressed in terms of YE , when compared to considering vertically averaged head information while relying on a simplified 

groundwater flow model which neglects flux exchanges between screened intervals of boreholes and the surrounding 

aquifer. 

Comparison between the values of YE  related to TC1 and TCs 5, 7 further suggests that the use of packers at locations far 

away (in terms of the horizontal correlation scale of Y) from the pumping well does not add additional information with 435 

respect to fully or partially screened wells, because vertical variability of head at such locations is modest. The importance of 

capturing vertical head variations during data assimilation is also manifest when comparing results related to TC4 and TC6. 

The values of YE  related to the former are consistently lower than those associated with the latter, a result which is 

consistent with the use of fully screened (TC6) compared to partially screened (TC4) observation boreholes in most of the 

domain. The behavior of hE  is very similar to the one displayed by YE , thus strengthening the above conclusions. 440 

One can note that the scenarios characterized by a dominance of Type C boreholes (i.e., TC3 and TC6) are characterized 

by the lowest values of YS  (Fig. 6b). This result is related to the observation that depth-averaged well head information is 

here employed during data assimilation. Doing so tends to introduce a corresponding homogenization of the conductivity 
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field resulting from the data assimilation procedure, which is reflected by the lower values of 
YS . As such, while the results 

associated with 
YS  would suggest that the estimation variance associated with Y is low, the overall accuracy, as given in 445 

terms of 
YE , is also low when relying mostly on vertically averaged data. Otherwise, temporal values of 

YS  are virtually 

indistinguishable for the other configurations considered. 

The lowest hE  values are visually indistinguishable and are related to TC1, TC5, and TC7, which is generally consistent 

with the behavior of 
YE . The highest 

hE  values are associated with TC3, where fully screened monitoring wells (Type C 

wells) are located in the entire domain. These are followed by TC2, where partially screened monitoring wells (Type B 450 

wells) are distributed across the domain. 

5.3 Effect of including flux exchanges between boreholes and aquifer during data assimilation (Groups 2 and 3) 

Figure 7 depicts the temporal behavior of YE  (Fig. 7a), YS  (Fig. 7b), and hE  (Fig. 7c) for TC1 and TC2#-TC7# (i.e., 

Group 2 in Table 1) obtained through MEs-EnKF. The lowest values of YE  are again associated with TC1. These are very 

closely matched by those obtained for TC5# and TC7#, where Type B or C wells are installed only at the farthest locations 455 

(i.e., zone 3 in Fig. 3b) from the pumping well. It is worth noting that the values of YE  in TCs 5# and 7# are virtually 

identical. The highest values of YE  correspond to TC3#, where only fully screened monitoring wells are distributed across 

the domain. These are very closely followed by the results associated with TC2#, where observation wells screened across 

multiple levels (Type B wells) are considered. Note that the temporal evolution of YE  in these two TCs (TC2# and TC3#) is 

almost identical and tends to the same value at the end of the assimilation window. Comparison between values of YE  for 460 

TC4# and TC6# is also consistent with this finding. 

Different from the results of Group 1, the temporal behavior of YS  (Fig. 7b) is very similar to one displayed by YE . 

These results are in line with (i) the observation that each Type A borehole provides three head observations, while only one 

well head observation is essentially linked to Type B or C boreholes and (ii) the intuition that constraining the system with 

an increased number of observations would yield conductivity estimates characterized by an increased accuracy (in terms of 465 

lower YE  and possibly YS  values). 

The lowest hE  values are related to TC1, TC5# and TC7# and are visually indistinguishable (see Fig. 7c), a finding 

which is consistent with the behavior of YE  (see Fig. 7a). The highest hE  values are associated with TC3#, closely 

followed by TC2#, TC6#, and then TC4#. Otherwise, the values of hE  become virtually indistinguishable. 

Figure 7d depicts relative (percentage) differences between YE  evaluated for TCs2#-7# and TCs2-7, considering the 470 

values of TCs2-7 as references (negative values correspond to lower values of YE  in TCs2#-7# as compared with TCs2-7). 
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Analogous results are reported for 
YS  (Fig. 7e) and 

hE  (Fig. 7f). The largest accuracy improvement of Y estimates, as 

suggested by Fig. 7d, corresponds to TC3# (where the inclusion of flux exchanges between boreholes and aquifer is 

particularly relevant, since all monitoring wells fully penetrate the aquifer), followed by TC2#, TC6# and TC7#, with respect 

to their counterparts in Group 1. 475 

Uncertainty associated with conductivity estimates increases in TCs2#-7# as compared against their counterparts in Group 

1 (see Fig. 7e, where relative differences of 
YS  are all positive), this result being related to the vertical variability of flux 

exchanges along Type B and C boreholes which is embedded in Group 2 TCs. The lowest (negative) relative differences for 

hE  correspond to TC3#, a result which is consistent with the depiction offered in Fig. 7d. 

The temporal evolution of YE  (Fig. 8a, d), YS  (Fig. 8b, e), and hE  (Fig. 8c, f) for TC2#*1, TC3#*1, TC2#*2 and 480 

TC3#*2 is displayed in Fig. 8. These results show that head observations collected at Type B or C screened wells yield 

conductivity and head estimates of similar quality (in terms of YE  and YS , or hE , respectively) for the degrees of 

heterogeneity analyzed. Mean absolute differences between YE  values associated with TC2#*1 and TC3#*1 is 0.008, while 

being virtually null when considering TC2#*2 and TC3#*2. Results of corresponding quality are also obtained when 

comparing YS  and hE  values related to TC2#*1 and TC3#*1, or TC2#*2 and TC3#*2. We further note that values of YE  in 485 

Fig. 8d (or hE  in Fig. 8f) are always higher than their counterparts depicted in Fig. 8a (or Fig. 8c), consistent with the 

observation that the accuracy of conductivity (and head) estimates tends to deteriorate with increasing degree of spatial 

heterogeneity of conductivities.  

Figure 9 juxtaposes the temporal variability of YE  (Fig. 9a), YS  (Fig. 9b), and hE  (Fig. 9c) values for TCs 1*1, 1*2 and 

1*3 (see Group 3 in Table 1), TC1 (Group 1) and TC2# (Group 2). Values of YE  for TC2# are close to those of TC1*2 490 

(where only data at the central layer of the system are assimilated). Otherwise, values of YE  at the end of the assimilation 

window for TC1*3 (where only data at the bottom of the system are assimilated) are lowest when considering the TCs 

TC1*1, TC1*2, TC1*3, and TC2#. Values of YS  for all test cases but TC1 are visually indistinguishable. Finally, the 

temporal behavior of hE  for each test case is consistent with the one displayed by YE . These results seem to suggest that 

the benefit (in terms of YE  and hE ) of collecting head observations from packers installed along the borehole depends on 495 

the observation depth and on the duration of the assimilation period. 

5.4 Effect of inflation on measurement-error covariance matrix (Group 4) 

Figure 10 depicts the temporal evolution of YE  (Fig. 10a), YS  (Fig. 10b), and hE  (Fig. 10c) for TC2α1, TC2α2 and TC2α3 

(see Group 4 in Table 1), where partially screened monitoring wells (Type B wells) are located across the entire domain. The 

lowest values of YE  are mainly associated with   = 10 (i.e., TC2α2) while the highest values correspond to   = 1 or 100 500 
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(i.e., TC2 or TC2α3, respectively). The magnitude of 
YS  is seen to increase with  , in line with Eq. (24) according to 

which resorting to an inflation factor tends to decrease the strength of the dependence of conductivity estimates on head data. 

The highest hE  values are generally linked to TC2 at observation times shorter than 10 (i.e., corresponding to stop of 

pumping), all other 
hE  values being otherwise visually indistinguishable. 

Based on these results, we conclude that the accuracy of conductivity and head estimates is generally improved when 505 

inflating the measurement-error covariance matrix. As stated above, these results are consistent with the observation that 

inflating the measurement-error covariance matrix results in a reduced weight of the mismatch between modeled and 

observed values during data assimilation. We recall that using inflation (i.e., setting   > 1) may be useful to compensate for 

relying on an imperfect mathematical model, a scenario which is consistent with TC2-7 in Group 1. For instance, the 

iterative ensemble smoothers (Chen et al., 2013; Luo et al., 2015) and the ensemble smoother with multiple data assimilation 510 

(ES-MDA; Emerick and Reynolds, 2013) rely on the action of an inflation factor on the measurement-error covariance 

matrix to cope with highly nonlinear systems. 

Figure 11 shows the temporal behavior of YE  (Fig. 11a), YS  (Fig. 11b), and hE  (Fig. 11c) for TC3 α1, TC3α2 and 

TC3α3 (see Group 4 in Table 1), where fully screened monitoring wells (Type C wells) are located in the entire domain. The 

lowest YE  values are mainly associated with   = 100 (i.e., TC3α3). The value of YE  at the end of the assimilation period is 515 

largest for TC3. The magnitude of YS  values tends to increase with   also in these cases. The highest and lowest hE  

values are generally linked to TC3 and TC3α3, respectively, for the early assimilation times and become virtually 

independent of   as time progresses. These results suggest that the highest inflation factors required to increase the quality 

of the data assimilation process (as measured through YE  and hE ) are associated with the scenarios where head data are 

collected in fully screened boreholes (see, e.g., TC3α3 as compared against TC2α2). 520 

6 Conclusions 

We draw the following main conclusions based on this study: 

⚫ The use of packers to collect point-wise head data (Type A wells) yields higher accuracy of conductivity estimates than 

what can be obtained upon relying on partially or fully penetrating wells. The lowest values of YE  (average absolute 

difference between the estimated mean of the logarithm of the conductivity field, Y, and its reference counterpart) are 525 

associated with the scenario where Type A wells are set across the domain. It is additionally worth noting that the 

benefit of installing Type A wells as opposed to partially (Type B) or fully screened (Type C) monitoring wells is 

mainly associated with regions (e.g., zone 1 in this study) where strong variations of head along vertical can take place.  

⚫ Using depth-averaged head data from Type B and C wells leads to comparable results in our settings, in terms of YE , 
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YS  (square root of the average estimation variance of Y), and 
hE  (average absolute difference between the estimated 530 

aquifer heads and their reference counterparts). 

⚫ Neglecting flux exchanges between the aquifer and partially/fully screened monitoring wells in the groundwater flow 

model can significantly deteriorate the accuracy of conductivity estimates. Considering the application of an inflation 

technique to measurement-error covariance matrix can improve conductivity estimates when an imperfect flow model 

is applied. 535 

⚫ The computational feasibility and accuracy of the moment equations-based ensemble Kalman filter (MEs-EnKF) are 

explored. MEs-EnKF is as accurate as a typical Monte Carlo (MC) -based ensemble Kalman filter which relies on a 

large number (of the order of 10,000) of MC realizations. Otherwise, MEs-EnKF is more efficient than its MC-EnKF 

counterpart, the latter requiring about 20 times the central process unit (CPU) time of the former, on the basis of our 

examples. 540 
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Appendix A: Cross-covariance between water levels in partially/fully screened monitoring boreholes 

The water level at well I, w

Ih  (with I = 1, …, Nw), can be written as 
w w w

I I Ih h h= + . Making use of Eq. (10) one can obtain 550 

the following expression for the water level fluctuation w

Ih  

( )1 1

n nw w

I i i i i i Ii i
h b K b K h h

= =
 = −   (A1) 

n being the total number of cells according to which the screen of borehole I is discretized. In a similar way, the water level 

fluctuation at well J, w

Jh , is given by 

( )1

m mw w

J j j j j j Ji j j
h b K b K h h

= =
 = −   (A2) 555 

where m corresponds to the total number of cells according to which the screen of borehole J is discretized. Multiplying Eq. 

(A1) by Eq. (A2), taking expectation and disregarding moments of order larger than two yields 
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Evaluation of Eq. (A3) at second order yields Eq. (13). 

 560 
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Figures and Tables 

 710 

 

Figure 1: Type of monitoring wells: point-wise (Type A), partially (Type B) and fully penetrating (Type C) observation boreholes. 

 

 

Figure 2: Workflow for the numerical solution of MEs within time interval [t-Δt, t] when flux between monitoring wells and the aquifer is 715 

considered. 
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Figure 3: Reference log conductivity (Y) field (a) and location of monitoring wells within the flow domain (b). 
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Figure 4: Reference Y field (left column) and estimates of mean and variance of Y at the end of the assimilation process across layers 4, 7, 

and 10 for TC1. Results computed via MC-EnKF (with 100, 500, 1,000, and 10,000 realizations) and MEs-EnKF are included. 
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 725 

Figure 5: Reference Y field (left column) and estimates of mean and variance of Y at the end of the assimilation process at layers 4, 7, and 

10 for TC2#. Results computed via MC-EnKF (with 100, 500, 1,000, and 10,000 realizations) and MEs-EnKF are included. 
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Figure 6: Temporal evolution of YE  (a), YS  (b), and hE  (c) for TC1-TC7. 730 

 

 

Figure 7: Temporal evolution of YE  (a), YS  (b), and hE  (c) for TC1 and TC2#- TC7#. Temporal evolution of the relative difference 

between  (d), YS  (e), and hE  (f) evaluated in TC2#- TC7# and their counterparts related to TC2- TC7. 
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Figure 8: Temporal evolution of YE  (a, d), YS  (b, e), and hE  (c, f) for TC2#*1 and TC3#*1 (top row) and for TC2#*2 and TC3#*2 

(bottom row). 

 

 740 

Figure 9: Temporal evolution of YE  (a), YS  (b), and hE  (c) for TC1*1, TC1*2, TC1*3, TC1, and TC2#. 
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Figure 10: Temporal evolution of YE  (a), YS  (b), and hE  (c) with   = 1 (TC2), 5 (TC2α1), 10 (TC2α2), and 100 (TC2α3). 

 745 

 

Figure 11: Temporal evolution of YE  (a), YS  (b), and hE  (c) with   = 1 (TC3), 5 (TC3α1), 10 (TC3α2), and 100 (TC3α3). 
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Table 1: Summary of the Test Cases analyzed. 

Groups TCs 
Type of monitoring well 

Modeling approach for 

borehole/aquifer flux 

exchanges 

Initial guessed log-

conductivity fields 

Reference log-

conductivity fields 
Inflation 

factor (α) 
zone 1 zone 2 zone 3 Mean Variance Mean Variance 

Group 1 

TC1 A A A Full model 0.2 1.0 0.0 1.0 1.0 

TC2 B B B Simplified model 0.2 1.0 0.0 1.0 1.0 

TC3 C C C Simplified model 0.2 1.0 0.0 1.0 1.0 

TC4 A B B Simplified model 0.2 1.0 0.0 1.0 1.0 

TC5 A A B Simplified model 0.2 1.0 0.0 1.0 1.0 

TC6 A C C Simplified model 0.2 1.0 0.0 1.0 1.0 

TC7 A A C Simplified model 0.2 1.0 0.0 1.0 1.0 

Group 2 

TC2# B B B Full model 0.2 1.0 0.0 1.0 1.0 

TC3# C C C Full model 0.2 1.0 0.0 1.0 1.0 

TC4# A B B Full model 0.2 1.0 0.0 1.0 1.0 

TC5# A A B Full model 0.2 1.0 0.0 1.0 1.0 

TC6# A C C Full model 0.2 1.0 0.0 1.0 1.0 

TC7# A A C Full model 0.2 1.0 0.0 1.0 1.0 

Group 3 

TC1*1 A A A Full model 0.2 1.0 0.0 1.0 1.0 

TC1*2 A A A Full model 0.2 1.0 0.0 1.0 1.0 

TC1*3 A A A Full model 0.2 1.0 0.0 1.0 1.0 

TC2#*1 B B B Full model 0.2 0.09 0.0 0.01 1.0 

TC2#*2 B B B Full model 0.0 1.0 0.2 1.7 1.0 

TC3#*1 C C C Full model 0.2 0.09 0.0 0.01 1.0 

TC3#*2 C C C Full model 0.0 1.0 0.2 1.7 1.0 

Group 4 

TC2α1 B B B Simplified model 0.2 1.0 0.0 1.0 5.0 

TC2α2 B B B Simplified model 0.2 1.0 0.0 1.0 10.0 

TC2α3 B B B Simplified model 0.2 1.0 0.0 1.0 100.0 

TC3α1 C C C Simplified model 0.2 1.0 0.0 1.0 5.0 

TC3α2 C C C Simplified model 0.2 1.0 0.0 1.0 10.0 

TC3α3 C C C Simplified model 0.2 1.0 0.0 1.0 100.0 
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Table 2: Comparison of results obtained by MEs-EnKF and MC-EnKF (based on 100, 500, 1,000, and 10,000 realizations) for TC1 and 

TC2#. 

TCs Criterion 
MC-EnKF 

MEs-EnKF 
100 500 1,000 10,000 

TC1 

YE  0.84 0.59 0.55 0.53 0.53 

YS  0.12 0.52 0.60 0.68 0.67 

hE  9.42E-3 5.60E-3 4.48E-3 3.75E-3 3.28E-3 

CPU (sec) 544 2,549 6,010 57,088 2,686 

TC2# 

YE  0.80 0.69 0.66 0.65 0.65 

YS  0.31 0.66 0.71 0.74 0.72 

hE  8.33E-3 5.91E-3 5.36E-3 5.30E-3 5.27E-3 

CPU (sec) 3,077 16,469 35,676 346,483 16,667 

 


