Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-595-2020
https://doi.org/10.5194/hess-24-595-2020
Research article
 | 
12 Feb 2020
Research article |  | 12 Feb 2020

Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: a probabilistic approach

Bartosz Szeląg, Roman Suligowski, Jan Studziński, and Francesco De Paola

Related authors

An advanced tool integrating failure and sensitivity analysis into novel modeling of the stormwater flood volume
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci., 27, 3329–3349, https://doi.org/10.5194/hess-27-3329-2023,https://doi.org/10.5194/hess-27-3329-2023, 2023
Short summary
The role of catchment characteristics, sewer network, SWMM model parameters in urban catchment management based on stormwater flooding: modelling, sensitivity analysis, risk assessment
Bartosz Szeląg, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Francesco Fatone
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-109,https://doi.org/10.5194/hess-2022-109, 2022
Manuscript not accepted for further review
Short summary
Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments
Francesco Fatone, Bartosz Szeląg, Adam Kiczko, Dariusz Majerek, Monika Majewska, Jakub Drewnowski, and Grzegorz Łagód
Hydrol. Earth Syst. Sci., 25, 5493–5516, https://doi.org/10.5194/hess-25-5493-2021,https://doi.org/10.5194/hess-25-5493-2021, 2021
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Mathematical applications
Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments
Francesco Fatone, Bartosz Szeląg, Adam Kiczko, Dariusz Majerek, Monika Majewska, Jakub Drewnowski, and Grzegorz Łagód
Hydrol. Earth Syst. Sci., 25, 5493–5516, https://doi.org/10.5194/hess-25-5493-2021,https://doi.org/10.5194/hess-25-5493-2021, 2021
Short summary
Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications
L.-P. Wang, S. Ochoa-Rodríguez, C. Onof, and P. Willems
Hydrol. Earth Syst. Sci., 19, 4001–4021, https://doi.org/10.5194/hess-19-4001-2015,https://doi.org/10.5194/hess-19-4001-2015, 2015
Short summary

Cited articles

Abushandi, E. and Merkel, B.: Rainfall estimation over the Wadi Dhuliel arid catchment, Jordan from GSMaP_MVK+, Hydrol. Earth Syst. Sci. Discuss., 8, 1665–1704, https://doi.org/10.5194/hessd-8-1665-2011, 2011. 
Adams, B. J. and Papa, F.: Urban Stormwater Management Planning with Analytical Probabilistic Models, John Wiley & Sons, Chichester, UK, 2000. 
Alhammoud, B., Claud, C., Funatsu, B. M., Beranger, K., and Chaboureau, J. P.: Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations, Atmosphere, 5, 370–398, https://doi.org/10.3390/atmos5020370, 2014. 
Andrés-Doménech, I., Múnera, J. C., Francés, F., and Marco, J. B.: Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment, Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, 2010. 
Bacchi, B., Balistrocchi, M., and Grossi, G.: Proposal of a semiprobabilistic approach for storage facility design, Urban Water J., 5, 195–208, https://doi.org/10.1080/15730620801980723, 2008. 
Download
Short summary
A method for linking releases of a storm overflow with the precipitation-forming mechanism, depending on air circulation, was presented. The logit model was used to simulate overflow releases, and a rainfall generator accounting for a forming mechanism was used for forecasting. It was found that the logit model is universal and can be applied to a catchment with diverse geographical characteristics and that the precipitation-forming mechanism has an impact on the operation of the storm overflow.