Research article
12 Feb 2020
Research article | 12 Feb 2020
Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: a probabilistic approach
Bartosz Szeląg et al.
Related subject area
Cited articles
Abushandi, E. and Merkel, B.: Rainfall estimation over the Wadi Dhuliel arid catchment, Jordan from GSMaP_MVK+, Hydrol. Earth Syst. Sci. Discuss., 8, 1665–1704, https://doi.org/10.5194/hessd-8-1665-2011, 2011.
Adams, B. J. and Papa, F.: Urban Stormwater Management Planning with
Analytical Probabilistic Models, John Wiley & Sons, Chichester, UK, 2000.
Alhammoud, B., Claud, C., Funatsu, B. M., Beranger, K., and Chaboureau, J.
P.: Patterns of Precipitation and Convection Occurrence over the
Mediterranean Basin Derived from a Decade of Microwave Satellite
Observations, Atmosphere, 5, 370–398, https://doi.org/10.3390/atmos5020370,
2014.
Andrés-Doménech, I., Múnera, J. C., Francés, F., and Marco, J. B.: Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment, Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, 2010.
Bacchi, B., Balistrocchi, M., and Grossi, G.: Proposal of a semiprobabilistic
approach for storage facility design, Urban Water J., 5, 195–208,
https://doi.org/10.1080/15730620801980723, 2008.
Bagley, S. C., White, H., and Golomb, B. A.: Logistic regression in the
medical literature: standards for use and reporting, with particular
attention to one medical domain, J. Clin. Epidemiol., 54, 979–985,
https://doi.org/10.1016/S0895-4356(01)00372-9, 2001.
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards,
42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007.
Bayo, J., Angosto, J. M., Serrano-Aniorte, J., Cascales-Pujalte, J. A.,
Fernández-López, C., and López-Castellanos, J.: Evaluation of
physicochemical parameters influencing bulking episodes in a municipal
wastewater treatment plant, WIT Trans. Ecol. Envir., 95, 531–541,
https://doi.org/10.2495/WP060521, 2006.
Berg, P. and Haerter, J.: Unexpected increase in precipitation intensity
with temperature – a result of mixing of precipitation types?, Atmos. Res.,
119, 56–61, https://doi.org/10.1016/j.atmosres.2011.05.012, 2013.
Bryndal, T.: Local flash floods in Central Europe: a case study of Poland,
Norsk Geogr. Tidsskr., 69, 288–298,
https://doi.org/10.1080/00291951.2015.1072242, 2015.
Dąbkowski, S. L., Górska, K., Górski, J., and Szeląg, B.:
Introductory results of examining precipitation sewage in one Kielce
channels, Gaz Woda i Technika Sanitarna, 34, 20–24, 2010.
Dayan, U., Nissen, K., and Ulbrich, U.: Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean, Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, 2015.
DWA-A 118E: Hydraulic Dimensioning and Verification of Drain and Sewer
Systems, DWA German Association for Water, Wastewater and Waste, Hennef,
Germany, 2006.
Federico, S., Avolio, E., Pasqualoni, L., and Bellecci, C.: Atmospheric patterns for heavy rain events in Calabria, Nat. Hazards Earth Syst. Sci., 8, 1173–1186, https://doi.org/10.5194/nhess-8-1173-2008, 2008.
Frame, T., Harrison, G., Hewson, T., and Roberts, N.: Meteorological risk:
extra-tropical cyclones, tropical cyclones and convective storms, in:
Science for disaster risk management 2017: Knowing better and losing less,
Publications Office of the European Union, Luxembourg, 246–256,
https://doi.org/10.2788/688605, 2017.
Fu, G. and Kapelan, Z.: Flood analysis of urban drainage systems:
probabilistic dependence structure of rainfall characteristics and fuzzy
model parameters, J. Hydroinform., 15, 687–699,
https://doi.org/10.2166/hydro.2012.160, 2013.
Fu, G., Butler, D., Khu, S. T., and Sun, S.: Imprecise probabilistic
evaluation of sewer flooding in urban drainage systems using random set
theory, Water Resour. Res., 47, 1–13,
https://doi.org/10.1029/2009WR008944, 2014.
Gamerith, V., Bertrand-Krajewski, J. L., Mourad, M., and Rauch, W.:
Implications of long-term stormwater quality modelling for design of
combined sewer infrastructure, Urban Water J., 8, 155–166, 2011.
Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P.: Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951–964, https://doi.org/10.5194/hess-14-951-2010, 2010.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičova, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnowa, S., Koutroulis, A., Marchi, L,, Matreata, S., Medina, V., Preciso, E., Sempere-Tores, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.:
A compilation of
data on European flash floods, J. Hydrol., 367, 70–78,
https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009.
Grum, M. and Aalderink, R. H.: Uncertainty in return period analysis of
combined sewer overflow effects using embedded Monte Carlo simulations,
Water Sci. Technol. 39, 233–240,
https://doi.org/10.1016/S0273-1223(99)00063-3, 1999.
Heyer, T. and Stamm, J.: Levee reliability analysis using logistic regression models – abilities, limitations and practical considerations, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 7, 77–87, https://doi.org/10.1080/17499518.2013.790734, 2013.
Iman, R. L. and Conover, W. J.: A distribution-free approach to inducing
rank correlation among input variables, Commun. Stat. Simulat., 11,
311–334, https://doi.org/10.1080/03610918208812265, 1982.
Ingelmo, F., Molina, M. J., de Paz, J. M., and Visconti, F.: Soil saturated
hydraulic conductivity assessment from expert evaluation of field
characteristics using an ordered logistic regression model, Soil Till. Res.,
115–116, 27–38, https://doi.org/10.1016/j.still.2011.06.004, 2011.
Kane Jr., R. J., Chelius, C. R., and Fritsch, J. M.: Precipitation
Characteristics of Mesoscale Convective Weather Systems, J. Clim. Appl.
Meteorol., 26, 1345–1357, available at:
https://www.jstor.org/stable/26183088?seq=1 (last access: 10 February 2020), 1987.
Kupczyk, E. and Suligowski, R.: Statistical description of the rainfall
structure as the input to hydrological models, in: Prediction of the design
storms and floods, edited by: Soczyńska, U., University of Warsaw
Publisher, Warsaw, Poland, 191–212, 1997.
Langer, I. and Reimer, E.: Separation of convective and stratiform precipitation for a precipitation analysis of the local model of the German Weather Service, Adv. Geosci., 10, 159–165, https://doi.org/10.5194/adgeo-10-159-2007, 2007.
Lazri, M., Hameg, S., Ameur, S., Brucker, J. M., Ouallouche, F., and Mohia, Y.: Behavior analysis of convective and stratiform rain using Markovian approach over Mediterranean region from meteorological radar data, Hydrol. Earth Syst. Sci. Discuss., 9, 6225–6250, https://doi.org/10.5194/hessd-9-6225-2012, 2012.
Licznar, P., De Michele, C., and Adamowski, W.: Precipitation variability within an urban monitoring network via microcanonical cascade generators, Hydrol. Earth Syst. Sci., 19, 485–506, https://doi.org/10.5194/hess-19-485-2015, 2015.
Llasat, M. C.: An objective classification of rainfall events on the basis
of their convective features, Application to rainfall intensity in the
North-East of Spain, Int. J. Climatol., 21, 1385–1400,
https://doi.org/10.1002/joc.692, 2001.
Łupikasza, E.: The climatology of air-mass and frontal extreme
precipitation. Study of meteorological data in Europe, Springer Atmospheric
Series, Springer International Publishing AG Switzerland,
https://doi.org/10.1007/978-3-319-31478-5, 2016.
Marchi, L., Borga, M., Preciso, E. and Gaume E.: Characterisation of
selected extreme flash floods in E,urope and implications for flood risk
management, J. Hydrol., 394, 118–133,
https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.
McFadden, D.: Conditional logit analysis of qualitative choice behavior, in:
Frontiers in Econometrics, edited by: Zarembka, P., Academic Press, New
York, USA, 105–142, 1973.
Millán, M. M., Estrela, M. J., and Miró, J.: Rainfall components:
Variability and spatial distribution in a mediterranean area (Valencia
Region), J. Climatol., 18, 2682–2705,
https://doi.org/10.1175/JCLI3426.1, 2005.
Müller-Thomy, H. and Haberlandt, U.: Temporal Rainfall Disaggregation
with a Cascade Model: From Single-Station Disaggregation to Spatial
Rainfall, J. Hydrol. Eng., 20, 04015026,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195, 2015.
Niedźwiedź, T.: Catalogue of synoptic situations in the upper
Vistula river basin (1873–2018), Computer file available at: Department of
Climatology, Faculty of Earth Sciences, University of Silesia,
Będzińska 60, 41-200 Sosnowiec, Poland, available at:
http://klimat.wnoz.us.edu.pl (last access: 10 February 2020), 2019.
Niedźwiedź, T., Twardosz, R., and Walanus, A.: Long-therm variability
of precipitation series in east central Europe in relation to circulation
patterns, Theor. Appl. Climatol., 98, 337–350,
https://doi.org/10.1007/s00704-009-0122-0, 2009.
ÖWAV: ÖWAV-Regelblatt 19: Richtlinien für die Bemessung and
Gestaltung von Regenentlastungen in Mischwasserkanaelen, Oesterreichischer
Wasser- und Abfallwirtschaftsverband, Vienna, Austria, 2003.
Paquet, E., Gailhard, J., and Garcon, R.: Evolution of GRADEX method:
improvement by atmospheric circulation classification and hydrological
modelling, Houille Blanche, 5, 80–90,
https://doi.org/10.1051/lhb:2006091, 2006.
Price, R.: Hydroinformatics and urban drainage: an agenda for the beginning
of the 21st century, J. Hydroinform., 2, 133–147,
https://doi.org/10.2166/hydro.2000.0011, 2000.
Rigo, T. and Llasat, M. C.: A methodology for the classification of convective structures using meteorological radar: Application to heavy rainfall events on the Mediterranean coast of the Iberian Peninsula, Nat. Hazards Earth Syst. Sci., 4, 59–68, https://doi.org/10.5194/nhess-4-59-2004, 2004.
Romanowicz, R. J. and Beven, K. J.: Comments on generalized likelihood
uncertainty estimation, Reliab. Eng. Syst. Safe., 91, 1315–1321,
https://doi.org/10.1016/j.ress.2005.11.030, 2006.
Rupp, D. E., Keim, R. F., Ossiander, M., Brugnach, M., and Selker, J.: Time
scale and intensity dependency in multiplicative cascades for temporal
rainfall disaggregation, Water Resour. Res., 45, W07409,
https://doi.org/10.1029/2008WR007321, 2009.
Smith, J. A.: Precipitation, in: Handbook of Hydrology, edited by: Maidment,
D. R., McGraw-Hill Education, New York, USA, 1993.
Suligowski, R.: Temporal and spatial structure of precipitation in Poland.
An attempt to regionalization, Prace Instytutu Geografii, Kielce, 12,
1–112, 2004.
Sumner, G.: Precipitation: process and analysis, John Wiley & Sons,
Chichester, UK, 1988.
Szeląg, B., Górski, J., Bąk, Ł., and Górska, K.: Modelling of stormwater quantity and quality on the example of urbanize
d catchment in Kielce, Ecol. Chem. Eng. A, 20, 1305–1316, https://doi.org/10.2428/ecea.2013.20(11)118, 2013.
Szeląg, B., Kiczko, A., and Dąbek, L.: Sensitivity and uncertainty
analysis of hydrodynamic model (SWMM) for storm water runoff forecating in
an urban basin – A case study, Ochr. Sr., 38, 15–22, 2016.
Szeląg, B., Kiczko, A., Studziński, J., and Dąbek, L.:
Hydrodynamic and probabilistic modelling of storm overflow discharges, J.
Hydroinform., 20, 1100–1110, https://doi.org/10.2166/hydro.2018.005,
2018.
Thorndahl, S.: Stochastic long term modelling of a drainage system with
estimation of return period uncertainty, Water Sci. Technol., 59,
2331–2339, https://doi.org/10.2166/wst.2009.305, 2009.
Thorndahl, S. and Willems, P.: Probabilistic modelling of overflow,
surcharge and flooding in urban drainage using the first-order reliability
method and parameterization of local rain series, Water Res., 42,
455–466, https://doi.org/10.1016/j.watres.2007.07.038, 2008.
Twardosz, R. and Niedźwiedź, T.: Influence of synoptic situations on
the precipitation in Kraków (Poland), Int. J. Climatol., 21, 467–481,
https://doi.org/10.1002/joc.620, 2001.
Twardosz, R., Niedźwiedź, T., and Łupikasza, E.: The influence of
atmospheric circulation on the type of precipitation (Kraków, southern
Poland), Theor. Appl. Climatol., 104, 233–250,
https://doi.org/10.1007/s00704-010-0340-5, 2011.
US EPA: Combined Sewer Overflows. Guidance for Nine Minimum Controls, U.S.
Environmental Protection Agency 832-B-95-003, Office of Wastewater
Management, Washington, D.C., USA, 1995.
Vandenberghe, S., Verhoest, N. E. C., Buyse, E., and De Baets, B.: A stochastic design rainfall generator based on copulas and mass curves, Hydrol. Earth Syst. Sci., 14, 2429–2442, https://doi.org/10.5194/hess-14-2429-2010, 2010.
Vernieuwe, H., Vandenberghe, S., De Baets, B., and Verhoest, N. E. C.: A continuous rainfall model based on vine copulas, Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, 2015.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., El
Kenawy, A. M., and Angulo-Martínez, M.: Daily atmospheric circulation
events and extreme precipitation risk in Northeast Spain: the role of the
North Atlantic Oscillation, Western Mediterranean Oscillation, and
Mediterranean Oscillation, J. Geophys. Res.-Atmos., 114, D08106,
https://doi.org/10.1029/2008JD011492, 2009.
Wu, F. C. and Tsang, Y. P.: Second-order Monte Carlo uncertainty/variability
analysis using correlated model parameters: application to salmonid embryo
survival risk assessment, Ecol. Model., 177, 393–414,
https://doi.org/10.1016/j.ecolmodel.2004.02.016, 2004.
Zabel, T., Milne, I., and Mckay, G.: Approaches adopted by the European Union
and selected Member States for the control of urban pollution, Urban Water,
3, 23–32, https://doi.org/10.1016/S1462-0758(01)00019-X, 2001.