Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-515-2020
https://doi.org/10.5194/hess-24-515-2020
Research article
 | 
04 Feb 2020
Research article |  | 04 Feb 2020

Impact of revegetation of the Loess Plateau of China on the regional growing season water balance

Jun Ge, Andrew J. Pitman, Weidong Guo, Beilei Zan, and Congbin Fu

Related authors

Dynamic identification of snow phenology in the Northern Hemisphere
Le Wang, Xin Miao, Xinyun Hu, Yizhuo Li, Bo Qiu, Jun Ge, and Weidong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3431,https://doi.org/10.5194/egusphere-2024-3431, 2024
Short summary
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021,https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Do land models miss key soil hydrological processes controlling soil moisture memory?
Mohammad A. Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
Hydrol. Earth Syst. Sci., 29, 547–566, https://doi.org/10.5194/hess-29-547-2025,https://doi.org/10.5194/hess-29-547-2025, 2025
Short summary
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025,https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025,https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Downscaling the probability of heavy rainfall over the Nordic countries
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025,https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Modelling convective cell life cycles with a copula-based approach
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025,https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary

Cited articles

Bargues Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., and Ilstedt, U.: The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso, Water Resour. Res., 50, 3342–3354, https://doi.org/10.1002/2013WR015197, 2014. 
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008. 
Bright, R. M., Zhao, K. G., Jackson, R. B., and Cherubini, F.: Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities, Global Change Biol., 21, 3246–3266, https://doi.org/10.1111/gcb.12951, 2015. 
Download
Short summary
We investigate the impact of revegetation on the hydrology of the Loess Plateau based on high-resolution simulations using the Weather Research and Forecasting (WRF) model. We find that past revegetation has caused decreased runoff and soil moisture with increased evapotranspiration as well as little response from rainfall. WRF suggests that further revegetation could aggravate this water imbalance. We caution that further revegetation might be unsustainable in this region.
Share