Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 24, issue 9
Hydrol. Earth Syst. Sci., 24, 4389–4411, 2020
https://doi.org/10.5194/hess-24-4389-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Linking landscape organisation and hydrological functioning:...

Hydrol. Earth Syst. Sci., 24, 4389–4411, 2020
https://doi.org/10.5194/hess-24-4389-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Sep 2020

Research article | 09 Sep 2020

Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements

Uwe Ehret et al.

Viewed

Total article views: 1,131 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
796 320 15 1,131 24 30
  • HTML: 796
  • PDF: 320
  • XML: 15
  • Total: 1,131
  • BibTeX: 24
  • EndNote: 30
Views and downloads (calculated since 28 Feb 2020)
Cumulative views and downloads (calculated since 28 Feb 2020)

Viewed (geographical distribution)

Total article views: 912 (including HTML, PDF, and XML) Thereof 912 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 02 Dec 2020
Publications Copernicus
Download
Short summary
In this paper we propose adaptive clustering as a new method for reducing the computational efforts of distributed modelling. It consists of identifying similar-acting model elements during the runtime, clustering them, running the model for just a few representatives per cluster, and mapping their results to the remaining model elements in the cluster. With the example of a hydrological model, we show that this saves considerable computation time, while largely maintaining the output quality.
In this paper we propose adaptive clustering as a new method for reducing the computational...
Citation