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Abstract. In this paper we propose adaptive clustering as a
new method for reducing the computational efforts of dis-
tributed modelling. It consists of identifying similar-acting
model elements during runtime, clustering them, running the
model for just a few representatives per cluster, and mapping
their results to the remaining model elements in the cluster.
Key requirements for the application of adaptive clustering
are the existence of (i) many model elements with (ii) compa-
rable structural and functional properties and (iii) only weak
interaction (e.g. hill slopes, subcatchments, or surface grid
elements in hydrological and land surface models). The clus-
tering of model elements must not only consider their time-
invariant structural and functional properties but also their
current state and forcing, as all these aspects influence their
current functioning. Joining model elements into clusters is
therefore a continuous task during model execution rather
than a one-time exercise that can be done beforehand. Adap-
tive clustering takes this into account by continuously check-
ing the clustering and re-clustering when necessary.

We explain the steps of adaptive clustering and provide a
proof of concept at the example of a distributed, conceptual
hydrological model fit to the Attert basin in Luxembourg.
The clustering is done based on normalised and binned trans-
formations of model element states and fluxes. Analysing
a 5-year time series of these transformed states and fluxes
revealed that many model elements act very similarly, and
the degree of similarity varies strongly with time, indicat-
ing the potential for adaptive clustering to save computa-
tion time. Compared to a standard, full-resolution model run

used as a virtual reality “truth”, adaptive clustering indeed
reduced computation time by 75 %, while modelling qual-
ity, expressed as the Nash–Sutcliffe efficiency of subcatch-
ment runoff, declined from 1 to 0.84. Based on this proof-
of-concept application, we believe that adaptive clustering is
a promising tool for reducing the computation time of dis-
tributed models. Being adaptive, it integrates and enhances
existing methods of static grouping of model elements, such
as lumping or grouped response units (GRUs). It is compat-
ible with existing dynamical methods such as adaptive time
stepping or adaptive gridding and, unlike the latter, does not
require adjacency of the model elements to be joined.

As a welcome side effect, adaptive clustering can be used
for system analysis; in our case, analysing the space–time
patterns of clustered model elements confirmed that the hy-
drological functioning of the Attert catchment is mainly con-
trolled by the spatial patterns of geology and precipitation.

1 Introduction

Hydrological systems are often characterised by consider-
able spatial heterogeneity of relevant properties, such as to-
pography or soils (Schulz et al., 2006), and considerable
temporal variability due to time-changing boundary condi-
tions, such as precipitation or radiation, and time-changing
system properties, such as vegetation cover (Zehe and Siva-
palan, 2009). If we are mainly interested in the aggregated
characteristics and dynamics of such systems, such as the
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mean wetness, mean travel times, or discharge at a catch-
ment outlet, a spatially lumped representation in a model
will suffice. Models designed for such coarse spatial reso-
lutions, such as the topography-based hydrological model
(TOPMODEL; Beven and Kirkby, 1979) or the HBV hydrol-
ogy model (Bergström, 1976), are easy to set up and compu-
tationally highly efficient but necessarily conceptualise pro-
cess patterns and redistribution processes and the underly-
ing controls by means of effective dynamical laws, effective
states, effective parameters, and effective fluxes.

Often, however, we want to analyse and predict hydro-
logical systems in higher spatial detail, which requires spa-
tially distributed models. In distributed models, spatial vari-
ability of hydrological systems is captured by dividing the
model domain into subdomains, which are assumed to be in-
ternally homogeneous with respect to their main structural
and functional properties. Such model elements have been
referred to as hydrological response units (HRUs; Flügel,
1995; Kouwen et al., 1993), representative elementary ar-
eas (REAs; Wood et al., 1988), or representative elemen-
tary watersheds (REWs; Reggiani et al., 1998). Beyond in-
corporating the spatial variability of the hydrological system,
distributed models offer additional advantages; they incorpo-
rate distributed forcing, they can be parameterized and vali-
dated by distributed observations, and they permit more fun-
damental process representations (Kouwen et al., 1993). Dis-
tributed, physically based models, such as MIKE SHE (Ab-
bott et al., 1986), HYDRUS (Šimunek et al., 1999), or CAT-
FLOW (Zehe et al., 2001), therefore have the desirable qual-
ity of providing physically meaningful, distributed answers
based on distributed internal dynamics.

The major drawback of distributed models is their large
demand for high-resolution data for the model set-up and op-
eration and a CPU demand that rapidly grows with system
resolution. The question about the optimal balance of spa-
tial resolution and computational burden has therefore been
a long-standing issue (not only) in the hydrological sciences
(Melsen et al., 2016; Liu et al., 2016; Dehotin and Braud,
2008; Booij, 2003; Gharari et al., 2020). In this context, a
range of methods has been proposed to address the compu-
tational problem; it can either be crushed by massive parallel
computing (Kollet, 2010) or reduced by avoiding redundant
computations. Redundancy occurs if several model elements
act similarly. In such a case, knowing the behaviour of one is
a good proxy for the behaviour of the others. In this context,
and throughout the remainder of this text, we define the sim-
ilarity among two model elements as follows: “two model
elements act similarly if they share similar structural and
functional properties, are in a similar state, and are exposed
to similar forcing, such that they produce similar responses
based on similar internal fluxes and state changes” (see also
Zehe et al., 2014). Similarity – and its counterpart, redun-
dancy – among model elements can be considered as a time-
invariant (static) or time-variant (dynamic) phenomenon, and
methods for redundancy reduction have been proposed on

the basis of either of these views. Grouped response units
(GRUs; Kouwen et al., 1993), for example, rely on the static
similarity paradigm. GRUs are groups of HRUs close enough
to be subjected to uniform forcing and negligible differences
in routing. All HRUs in a GRU are then treated as a single
computational unit. This reduces computational effort con-
siderably, but it comes at the cost of losing spatial detail and
spatial positioning. Time-variant (or adaptive) methods do
not rely on a single, time-invariant grouping. Instead, groups
of model elements are dynamically established and adjusted
during model runtime by identifying and exploiting patterns
of similarity in either time or space. Adaptive time stepping
(Minkoff and Kridler, 2006) exploits patterns of similarity in
time, and adaptive gridding (Pettway et al., 2010; Berger and
Oliger, 1984) exploits patterns of similarity in space; combi-
nations of both approaches are possible (Miller et al., 2006).
Due to their generality, adaptive methods have been used to
improve distributed modelling of a large variety of systems
such as the universe (Teyssier, 2002), the atmosphere (Ba-
con et al., 2000; Aydogdu et al., 2019), oceans (Pain et al.,
2005), and groundwater systems (Miller et al., 2006). While
adaptive methods are highly useful, they all require direct ad-
jacency – in either time or space – for the model elements to
be joined. However, similarity, in both nature and models, is
not necessarily restricted to contiguous regions. For example,
there may be many noncontiguous south-facing forested hill-
slopes with shallow soils in a watershed, in an intermediate
wetness state, which will act very similarly on a particular
sunny day.

In this context, we suggest a new adaptive method for the
clustering of model elements, which is not limited to con-
tiguous regions. It is motivated by the suggestions of Melsen
et al. (2016) “to further investigate and substantially improve
the representation of spatial and temporal variability in large-
domain hydrological models” and contributes to solving the
computational challenges of hydrological modelling, as for-
mulated by Clark et al. (2017). It comprises several steps,
namely clustering of model elements, choice of cluster rep-
resentatives, mapping of results from representatives to re-
cipients, and continuous evaluation of the clustering to de-
cide when re-clustering is needed. We demonstrate adap-
tive clustering with the example of a distributed, concep-
tual hydrological model of the Attert basin in Luxembourg.
Besides evaluating adaptive clustering in terms of computa-
tional gains and related losses in modelling quality, we also
discuss how the normalised and binned representations of
model states and fluxes that we used for clustering contribute
to hydrological system analysis by revealing space–time pat-
terns of similarity in the catchment.

The remainder of the paper is structured as follows:
in Sect. 2, we first describe the general, application-
independent steps of adaptive clustering. This is the key
methodological contribution of the paper. We then introduce
the simple hydrological model (SHM) and its set-up for the
Attert basin in Luxembourg. The model constitutes the test
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environment for the proof of concept for adaptive clustering.
We then describe how adaptive clustering is implemented in
the SHM Attert model, and finally, describe our approach and
metrics used for evaluating adaptive clustering and measur-
ing hydrological similarity. In Sect. 3, we present and discuss
results from distributed modelling, with and without adap-
tive clustering, and compare them to a range of benchmark
models in terms of computational efficiency and modelling
quality. In the same section, we show the results of the hy-
drological similarity analysis. These results are relevant in
relation to adaptive clustering as the time-varying degree of
similarity among model elements directly controls adaptive
clustering. In addition, they are also useful for hydrological
systems analysis. In Sect. 4, we summarise the results, draw
conclusions, discuss limitations of adaptive clustering, and
suggest further research.

2 Data and methods

2.1 Adaptive clustering

As explained in the introduction, the main goal of adap-
tive clustering is to reduce the computational efforts of
distributed and high-resolution modelling. The main idea
is to avoid redundant computations by clustering similar-
acting model elements and then inferring the dynamics of
all elements in a cluster from just a few representatives.
Key requirements for the successful application of adap-
tive clustering are the existence of (i) many model elements
with (ii) comparable structural and functional properties and
(iii) only weak interaction. If there are only few model ele-
ments, there will be nothing to cluster; if they are not struc-
turally and functionally similar, it will be impossible to as-
sign results from representatives to the remaining cluster
members (recipients); and if there is strong interaction, ig-
noring it – which is inevitable in adaptive clustering – will
cause large modelling errors. It is important to keep in mind
that even if two model elements are identical with respect
to all time-invariant (structural) properties, they can still act
differently when starting from different initial conditions or
when exposed to different boundary conditions. Therefore,
while similarities among model elements can have a strong
time-invariant component, and static clustering can be bene-
ficial, the full potential of clustering will be exploited if it is
treated as time variant (Loritz et al., 2018). This is the core
idea of adaptive clustering. Its main steps are illustrated in
Fig. 1, and we will explain the method along steps (a) to (j)
in the plot, as follows.

– Step (a): start the model from a fully distributed (non-
clustered) initial state. Each model element – depicted
by a circle – is in a particular initial state – indicated by
the value in the circle. Model elements typically possess
several state variables and, hence, an array of state val-

ues, but, for simplicity, only a single one is shown in the
plot.

– Step (b): based on the similarity in their states, combine
the model elements in clusters. In the plot, the clusters
are depicted by bold circles and labelled “A” to “C”.
The clustering involves two important choices, namely
the choice of a suitable clustering algorithm and values
of its hyper-parameters and the choice of a state variable
by which the clustering is done. In the following, we
will refer to this variable as the “clustering control vari-
able”. The clusters, determined with states at the current
time step, will – see step (h) – be used for all further
modelling time steps until further notice. For these time
steps, we refer to clusters determined in the past as the
“inherited clusters”.

– Step (c): select, from each cluster, a subset of model
elements. These serve as cluster representatives. In the
plot, the representatives are indicated by blue circles.
The number of representatives per cluster controls the
performance of adaptive clustering; a large number will
guarantee high modelling quality but small computa-
tional gains and vice versa.

– Step (d): execute the model for the next time step but
only for the representatives. From running the model,
the representatives obtain updated values for each of
their state variables. In the plot, the updated states are
indicated in red.

– Step (e): the representatives “donate” their updated
states (and fluxes) to all recipients in their cluster by
using a suitable mapping technique. In the plot, this is
indicated by arrows. Note that, due to the mapping, con-
servation laws are potentially violated. This is a draw-
back of adaptive clustering and requires further atten-
tion.

– Step (f): based on the updated states of the clustering
control variable, combine the representatives into a new
set of clusters. In the plot, the new clusters are depicted
by bold circles labelled “I” and “II” in red. These clus-
ters may differ from the inherited clusters. When the
model is executed in step (d), each representative is
driven by its particular forcing, which potentially leads
– even within a cluster – to a divergence of states. Clus-
ters may therefore break apart, unite, or exchange ele-
ments as the states of the model elements evolve over
time. Inherited clusters may therefore, at some point,
become invalid and must be replaced by an up-to-date
version.

– Step (g): compare the new clusters to the inherited
clusters. Please note that the new clustering occurs in
step (f), and the cluster comparison is done only for the
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Figure 1. Main steps of adaptive clustering. A detailed explanation is given in the text.

representatives. This is much more efficient than consid-
ering all model elements. Comparing clusters involves
identifying matching clusters and then measuring their
degree of agreement. In the plot, this is illustrated by a
table where each column represents one of the inherited

clusters, and each row represents one of the new clus-
ters. Matching clusters are indicated by cells with a blue
background (“A” and “I”, “B” and “II”, and “C” has no
match). The larger the number of representative model
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Figure 2. Map of the Attert basin up to the Useldange gauge. Black labels are the simple hydrological model (SHM) subcatchment IDs, and
blue labels are SHM river element IDs. Yellow and blue labels are rain and river gauge IDs, respectively. The yellow lines indicate the area
of influence of each rain gauge as determined by the nearest-neighbour method. Further information about the gauges and the SHM model is
given in Sects. A1–A3 of the Appendix.

elements in matching clusters, the higher the agreement
of the new and the inherited clusters.

– Step (h): decide if the agreement of the new and the in-
herited clusters is sufficiently high. If the answer is affir-
mative, the inherited clusters are still valid, and steps (d)
to (h) are repeated for the next time step. If the answer
is a negation, the inherited clusters are replaced. Obvi-
ously, the new clusters can be used as a replacement, but
they only contain the representatives. Recipients can be
assigned to the new clusters based on their current state.
The problem is, however, that their states were trans-
ferred from the representatives, and depending on the
mapping method, they may be more or less averaged
smoothed states. If these values are used for clustering,
there is a risk that recipients are always clustered in the
same manner, limiting the model’s ability to adapt to
changing conditions and to represent heterogeneous sit-
uations. This risk can be reduced by operating the model
in full resolution for some time, as explained in steps (i)
and (j), allowing the recipient model elements to evolve
towards their particular state.

– Step (i): from the current time step, jump back in time.
In the plot, this is indicated by a curved arrow extending
back over two time steps.

– Step (j): set the model to a fully distributed (non-
clustered) mode. In the plot, this is indicated by all
model elements arranged in a row, without surrounding
clusters. Starting from the state of the model elements at
the jumped-to time, execute the model in full resolution
until the current time step is reached again. Generally,
the length of the jump back is a trade-off between en-
abling the recipient model elements to evolve towards
their particular states – free from cluster constraints and
additional computational expenses. Based on the new
states of all model elements, continue with step (b).

2.2 Study area and hydrological model

The Attert basin, our test site, is located in the central west-
ern part of the Grand Duchy of Luxembourg, and partially
in eastern Belgium, with a total catchment area of 288 km2

up to the Useldange gauge (Fig. 2). The landscape shows
topographical, geological, and pedological diversity, with a
small area underlain by sandstones in the south and north-
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east, a wide area of sandy marls in the centre, and an ele-
vated region underlain by schist in the north, which is part
of the Ardennes massif. The schist region reaches elevations
up to 539 m above sea level (a.s.l.) and contains deeply in-
cised river valleys. The Attert basin is situated in the temper-
ate oceanic climate zone, and snow-related processes play a
negligible role. Precipitation is mainly associated with west-
erly synoptic flow regimes and reaches annual amounts of
about 850 mm (Pfister et al., 2000, 2005).

We selected the Attert basin for several reasons: a large
body of existing hydrological knowledge (Pfister et al., 2009;
Juilleret et al., 2012), including modelling studies (Fenicia et
al., 2014, 2016), access to a comprehensive data set compiled
in the Catchments as Organised Systems (CAOS) project
(Zehe et al., 2014), and our own prior modelling studies
in the Colpach, a subbasin of the Attert, that revealed pro-
nounced and time-variable similarities in model element be-
haviour (Loritz et al., 2018).

Instead of using one of the existing hydrological models
for the Attert basin, we decided to set up a new one. This was
mainly to ensure full code control, which greatly facilitates
the prototyping and testing of adaptive clustering. We chose
a simple conceptual, yet distributed, model architecture tai-
lored to the structure and hydrological function of the Attert
basin. It is closely related to established hydrological models,
such as HBV (Bergström, 1976), and due to its simplicity,
we named it the simple hydrological model (SHM). Its gen-
eral structure and process inventory is explained in detail in
Sect. A1. The set-up of SHM for the Attert basin is described
in Sect. A2, and its multi-criteria calibration and validation
– based on 5 years of hourly data – in Sect. A3. Overall, the
model achieves an acceptable performance (Nash–Sutcliffe
efficiency of 0.73 for validation), making it a suitable test
bed for exploring adaptive clustering.

2.3 Implementation of adaptive clustering in SHM
Attert

In this section, we explain how adaptive clustering is imple-
mented in the SHM Attert model. We do so along the lines of
the general steps (a) to (j) of adaptive clustering, as described
in Sect. 2.1 and Fig. 1.

For the clustering of model elements – SHM subcatch-
ments in our study – in step (b), we apply a straightforward
yet effective approach based on binning. First, all model
states of all subcatchments are normalised to [0, 1] values.
The state variable- and subcatchment-specific minima and
maxima required for normalisation were obtained from run-
ning the model – in full resolution – for the entire 5 years of
available data. The [0, 1] value range is then subdivided into
64 bins of uniform width. Choosing the number of bins was
guided by the objective of balancing the resolution (many
bins) and sufficiently populated bins (few bins). All sub-
catchments with normalised values of the clustering con-
trol variable that fall into the same bin are assigned to the

same cluster. Each non-empty bin therefore defines a cluster.
The possible number of clusters is limited to a minimum of
one and a maximum of 64, and the number of clusters at a
given point in time expresses the degree of similarity among
the subcatchments at that time. We selected subcatchment
runoff (qcat,out; see Fig. A1 and Table A1) as a single clus-
tering control variable for three reasons. First, for catchment
hydrologists, runoff is the main variable of interest; second,
subcatchment runoff is influenced by all subcatchment states
and fluxes, hence the similarity in two subcatchments with
respect to their runoff is a reasonable single value indicator
of overall similarity; thirdly, we used only a single control
variable to keep things simple.

For each cluster, representatives are selected, step (c), by
a random selection controlled by three parameters (see Ta-
ble 1). Perc_reps defines the total number of representatives,
expressed as percentage of the total number of subcatch-
ments in the model. Applied to each cluster, it provides a first
estimate about how many representatives should be picked
from it. We found that, besides controlling the total number
of representatives, it is also useful to set a limit to the min-
imum and maximum number of representatives per cluster.
This is controlled by the parameters of min_reps_per_clus
and max_reps_per_clus.

Mapping states and fluxes from cluster representatives to
recipients, step (d), applies the normalised values already
used for clustering. Recipients are forced to assume the rep-
resentative’s normalised state (or flux), and these normalised
states (or fluxes) are then reconverted by each recipient’s
minimum–maximum range to dimensionful values. If there
is more than one representative in a cluster, a single best one
is selected as the representative closest to the median value
of the clustering control variable of all representatives. The
results of that single best representative are then mapped to
all recipients. This method clearly leaves room for improve-
ment, but we considered it good enough for a first proof of
the concept.

Comparing inherited clusters with current clusters,
step (g), involves two steps, namely identifying matching
clusters and then measuring the degree of agreement be-
tween them. Note that, with respect to the first step, it is
not possible to simply define matching clusters as those with
the same bin number. For example, assume that the inher-
ited clusters are determined, and afterwards, uniform rainfall
falls in the catchment, uniformly shifting all subcatchment
states to a higher, “wetter” bin. Clustering the subcatchments
with the new states will yield clusters identical to the inher-
ited ones, but the cluster labels will have changed. We used
the well-known Hungarian method (Kuhn, 1955; Munkres,
1957) which matches clusters by maximising the agreement
of their content instead of comparing their labels. When the
cluster matches are established (compare the table in Fig. 1),
the degree of similarity between the clusterings is measured
by the number of elements in matching clusters divided by
the total number of elements (in Fig. 1, this is the number of
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Table 1. Parameters of adaptive clustering and their values for SHM Attert.

Name Description Value
chosen

num_bins The value range of a variable is divided into num_bins bins of uniform width 64∗

perc_reps Ratio of subcatchments used as representatives and total number of subcatchments 10
min_reps_per_clus Minimum number of representatives per cluster 1
max_reps_per_clus Maximum number of representatives per cluster 8
sim_crit Replace inherited clustering if its similarity to the current clustering is < sim_crit 55
sim_uncrit If re-clustering is required, go back in time until the similarity between the inherited and the current clustering is ≥ sim_uncrit 75

∗ For normalised variables with the value range [0, 1], this means bin edges [0, 0.0156, 0.0313, . . . , 0.9688, 0.9844, 1].

elements in the blue cells divided by the total number of el-
ements in the table). Clustering similarity is hence expressed
by a number between zero (clusterings are incomparable) and
one (clusterings are identical).

The inherited clusters are replaced, step (h), if the cluster-
ing similarity falls below an acceptance limit set by sim_crit
(Table 1). The jump back in time, step (i), is controlled by
the parameter sim_uncrit, which, like sim_crit, is a similarity
threshold, i.e. the jump goes back to the last time at which
this threshold was still exceeded. Depending on the prevail-
ing hydrometeorological situation, the jump can be shorter or
longer, but it will never extend beyond the time at which the
inherited clusters were established.

All parameters controlling adaptive clustering are sum-
marised in Table 1. For the SHM Attert application, we de-
termined their values by manual, iterative trial and error, with
the objective of maximising computational savings while
minimising quality loss.

2.4 Experimental design and evaluation criteria

The existence of a time-variant similarity among model ele-
ments is a precondition for a useful application of adaptive
clustering (see the related discussion in Sect. 2.1). We there-
fore precede the analysis of adaptive clustering performance
with an analysis of space–time patterns of similarity among
SHM Attert subcatchments. The approach and related met-
rics are explained in Sect. 2.4.1. In Sect. 2.4.2, we describe
SHM Attert model variants used as benchmarks for adaptive
clustering, and we introduce the evaluation criteria for mea-
suring both computational effort and simulation quality of
the competing models.

2.4.1 Entropy as a measure of hydrological similarity

How can one measure the similarity among subcatchments
and its variation with time? Subcatchments differ in size, and
many of their states and fluxes are size dependent. There-
fore, instead of directly comparing their values, we use the
[0, 1] normalised and binned time series of states and fluxes
of all subcatchments, as described in Sect. 2.3, step (b).
At each point in time, the occupations of the 64 bins to-
gether form a histogram, which can be normalised to a dis-
crete probability distribution by dividing the bin populations

with the total number of subcatchments. The overall degree
of similarity among subcatchments can then be measured –
in the same manner for any state or flux of interest – by
Shannon information entropy in the universal unit of “bit”
(Eq. 1). We adopted this approach from Loritz et al. (2018);
a more detailed introduction to the concepts, measures, and
applications of information theory is given in Neuper and
Ehret (2019), Singh (2013), and Cover and Thomas (1991)
as follows:

H(X)=−
∑
x∈X

p(x)log2p(x). (1)

As a basis for the similarity analysis, we operated the SHM
Attert model in full resolution (no clustering) for the entire
5-year period of available data and then converted all sub-
catchment states and fluxes to normalised and binned values.
Spatial maps of these states are then used to analyse the spa-
tial patterns of similarity and the time series of entropy to
analyse temporal patterns. For each state and flux, we also
calculated the time-averaged entropy as a measure of overall
mean variability.

It is an interesting property of Shannon entropy that, for a
discrete distribution with a given number of bins, there ex-
ists an upper and a lower bound; if all elements fall into a
single bin, the entropy of the distribution will take its mini-
mum value, namely zero. If the elements are uniformly dis-
tributed over the bins, entropy will take its maximum value
of H = log2(n), where n is the number of bins. As we use
the same 64 bins for all variables, the same lower bound
of zero and the same upper bound of 6 bit applies to all of
them, which facilitates comparison. In terms of similarity,
entropies close to zero indicate a high degree of similarity
among model elements; entropies close to six indicate a low
degree of similarity.

2.4.2 Evaluation criteria and benchmark models for
adaptive clustering

With respect to adaptive clustering, two aspects are impor-
tant, namely computational savings and related losses of
modelling quality. The savings we measure by overall model
runtime, as it measures the entire modelling effort, i.e. the ef-
fort for operating the actual hydrological model and the effort
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Table 2. Subcatchments of SHM Attert, grouped into 24 time-invariant clusters by agreement in attributes geology, land use, and meteoro-
logical forcing. The clusters are used in the “static optimal” benchmark model. Subcatchment locations are shown in Fig. 2. The possible
number of unique combinations of geology, land use, and rain gauge is 3× 5× 3= 45. The cluster sizes range from 1 to 28, and the average
number of elements in a cluster is 7.2.

Geology Land Rain No. of Subcatchment IDs
classa use gaugec cluster

classb members

1 1 ROD 13 6, 7, 8, 10, 14, 15, 40, 127, 131, 133, 134, 135, 137
1 1 RCL 1 124
1 2 ROD 7 21, 36, 91, 142, 144, 152, 153
1 2 RCL 1 123
1 3 ROD 13 9, 27, 30, 33, 41, 52, 126, 128, 129, 136, 143, 154, 155
1 3 RCL 1 122
1 4 ROD 5 24, 28, 31, 130, 132
2 1 ROD 22 19, 22, 26, 47, 71, 74, 82, 88, 94, 95, 96, 97, 98, 106, 108, 110, 116, 118, 157, 161, 168, 169
2 1 RCL 28 29, 34, 38, 44, 48, 51, 53, 62, 64, 67, 70, 79, 83, 84, 85, 90, 92, 99, 111, 117, 119, 138, 139, 146, 147, 150, 158, 164
2 1 USL 15 32, 72, 73, 76, 86, 102, 103, 104, 105, 112, 113, 115, 121, 140, 151
2 2 ROD 19 35, 42, 45, 54, 56, 58, 59, 65, 68, 69, 75, 78, 80, 81, 89, 93, 101, 145, 148
2 2 RCL 6 16, 43, 46, 60, 61, 100
2 2 USL 6 39, 49, 50, 57, 87, 141
2 3 ROD 2 149, 167
2 4 ROD 7 37, 77, 107, 109, 156, 160, 162
2 4 RCL 5 25, 55, 63, 120, 159
2 5 ROD 2 66, 163
3 1 RCL 6 2, 4, 11, 12, 23, 125
3 2 ROD 1 114
3 2 RCL 1 20
3 3 ROD 1 166
3 3 RCL 5 1, 3, 5, 13, 18
3 4 RCL 4 17, 165, 170, 171
3 4 USL 2 172, 173

a 1: Schist, 2: marl, and 3: sandstone. b 1: Meadow, 2: agriculture, 3: coniferous forest, 4: broad-leaf forest, and 5: sealed area. c ROD – Roodt, RCL – Reichlange, and USL – Useldange (see Table A2).

for the adaptive clustering overhead. In order to make run-
times comparable, we performed all model runs on the same
machine and with no additional processes active. We verified
the reproducibility of the results by repeating the runs many
times. The observed spread was less than 1 % of total runtime
and therefore considered negligible. Modelling quality we
measure by the Nash–Sutcliffe efficiency (NSE) of subcatch-
ment runoff qcat,out, as subcatchment runoff is a comprehen-
sive single value indicator of overall subcatchment state, and
NSE is the best-known quality measure in hydrology. We cal-
culate NSE in a distributed manner, i.e. separately for each
subcatchment runoff, and then take its mean, weighted by
the area of each subcatchment. Unlike directly calculating
the NSE of discharge at the basin outlet, this avoids poten-
tial compensations of under- and overestimations in partic-
ular subcatchments when aggregating their discharge in the
river network.

As for similarity analysis, we use the results of a fully
distributed model run for the entire 5-year time series of
available data as a virtual reality benchmark. This “refer-
ence” run was created by operating SHM Attert in a standard
mode, i.e. without any adaptive clustering functionality im-
plemented. In addition to the reference run, we established
further benchmark cases; for the “static” benchmark, we im-
plemented the adaptive clustering functionality into SHM At-

tert but set its parameters so that, throughout the entire model
run, each subcatchment was treated separately, and any clus-
tering was suppressed. This means that adaptive clustering
was in action, causing its computational overhead, but never-
theless, the model was operated in the same fully distributed
manner as the reference run. We also established a static opti-
mal benchmark based on an offline, prior, similarity analysis
of the subcatchments; all subcatchments with identical struc-
tural properties – except size – and identical forcing were
joined into a set of time-invariant clusters (see Table 2). As
we set up the SHM Attert model in a straightforward manner,
with subcatchment parameters varying only between differ-
ent geology and land use classes and subcatchment forcings
varying only between rain gauges, the 173 subcatchments
could be grouped into only 24 time-invariant, yet optimal,
clusters. “Optimal” here means that there is no within-cluster
variability – except size, which vanishes due to the [0, 1] nor-
malisation – and any single subcatchment picked from a clus-
ter is a perfect representative of all others. This is, of course,
a simplified and idealised case due to the simplified set-up of
the model. Adding further structural properties and forcing,
in a higher resolution, will result in more clusters. Neverthe-
less, we used the static optimal benchmark to evaluate the
merits of advance knowledge about time-invariant subcatch-
ment similarity. Its model set-up and operation was equal to
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the static case, but this time the 24 static optimal clusters
were used instead of treating each subcatchment as a single
cluster.

3 Results and discussion

We first show the results from analysing the subcatchment
similarity, as it is a precondition for adaptive clustering, and
then results from comparing models runs with adaptive clus-
tering to benchmark cases. We also discuss if, and to what
degree, space–time patterns of similarity apparent in the fully
distributed reference model run are preserved by adaptive
clustering.

3.1 Results for hydrological similarity

We discuss hydrological similarity with respect to three as-
pects, namely time-variant behaviour, time-averaged values,
and spatial patterns. For the first aspect, time series of Shan-
non entropy for selected variables of the fully distributed ref-
erence model run are shown in Fig. 3a. For better visibility,
the plot is restricted to 1 year. High entropies indicate little
similarity among subcatchments; low entropies indicate high
similarity. It is apparent that, for all variables, entropies re-
main well below the benchmark maximum entropy (shown
as a red line), and often they are close to zero. This indicates
that many of the subcatchments act similarly, leading to re-
dundancies in modelling which can potentially be reduced
by adaptive clustering. Also, entropies vary with time. While
the variability differs among variables (e.g. high for interflow
storage si and low for base flow storage sb), it is present for
all of them, which emphasises that clustering should be done
in a time-variant manner. The entropy of the clustering con-
trol variable, qcat,out, shows a high correlation with discharge
magnitude, as shown in Fig. 3b. In times of rising and high
discharge, entropies are high, which is likely due to (i) the
interplay of spatially distributed precipitation and catchment
states and (ii) the onset of fast runoff components, which may
differ among subcatchments. As through times of recession,
precipitation is zero for all subcatchments, fast runoff com-
ponents are dormant, and low-flow situations are accompa-
nied by low entropies, indicating a high degree of similarity
among subcatchments. All of these observations agree with
the findings of Loritz et al. (2018).

Time-averaged entropies for all SHM state and flux vari-
ables are shown in Table 3. Like in Fig. 3, the values differ
quite substantially among the variables, with precipitation, p,
showing the lowest entropy of only 0.1 bit, and base-flow-
related variables, sb and qb,out, showing the highest entropy
of 2.88 bit. The low value of precipitation entropy can be ex-
plained by two effects. First, during the frequent times of no
rain, precipitation entropy is also zero as all stations show
the same value, and second, even if it rains, at most three
different bins of the distribution can be occupied as precipi-

Table 3. Mean entropy of all normalised and binned SHM Attert
states and fluxes of the reference run, for the period 1 Novem-
ber 2011 00:00 CET–31 October 2016 23:00 CET. Please note that,
hereafter, all times are given in Central European Time (CET). The
states and fluxes are explained in Table A1.

State Entropy H
or flux (bit)

uniform 6∗

p 0.10
et 0.76
su 2.38
qu,out 0.18
qi,in 0.18
si 1.23
qi,out 1.23
qb,in 0.18
sb 2.88
qb,out 2.88
qcat,out 1.84

∗ Entropy of the benchmark
uniform distribution.

tation is measured by only three stations. This limits precip-
itation entropy to a possible maximum of log2(3)= 1.58 bit.
The high values for base flow can be explained by the pro-
nounced, geology-induced differences of the base flow be-
haviour across the catchment (compare the values of kb in
Table A3), and the fact that, due to the slow-changing nature
of base flow, these differences prevail for a long time, keep-
ing entropies high throughout the year (see Fig. 3a). Inter-
estingly, the entropies of several variables are identical (qi,in,
qb,in, and qu,out; si and qi,out; and sb and qb,out). This is not a
coincidence but a consequence of how they are related. qi,in
and qb,in are percentages of qu,out, and runoff from both the
interflow and the base flow reservoir are linear functions of
the respective storages (see Fig. A1 and Table A1). All of
these relations are entropy-preserving transformations, i.e.
the entropies of all variables involved are necessarily equal.

Figure 4 shows the spatial patterns of normalised and
binned values of the clustering control variable qcat,out for
selected points in time. Plots in the left column (Fig.4 a–e)
are based on the reference run, and we will focus on these in
the following section. We selected the times so as to cover
a wide range of different hydrological situations (compare
the black vertical lines in Fig. 3). Figure 4a and b are both
in spring and related to the same rainfall runoff event, the
last in a sequence of three, with Fig. 4a showing the val-
ues just before the onset of precipitation and Fig. 4b at the
time of peak runoff. Comparing the plots, it is obvious that
the general magnitude of runoff has increased, as indicated
by the colours shifting from red (low values) to yellow (in-
termediate values). Additionally, we see that the spatial pat-
tern of similarity also shifted from a geology-dominated pat-
tern, reflecting the geology-based parameterisation of sub-
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Figure 3. (a) Time series of Shannon entropy of distributions of normalised and binned subcatchment states and fluxes. Distributions are
based on the fully distributed reference model run. P – precipitation, su – unsaturated zone storage, si – interflow, sb – base flow storage, and
qout – subcatchment runoff (see Fig. A1 and Table A1). The term “uniform” indicates the benchmark maximum entropy of 6 bit for a 64 bin
distribution. Black vertical lines indicate times for which spatial maps are shown in Fig. 4. (b) Discharge time series at the catchment outlet
at the Useldange gauge. Observed – observations, reference – results from the fully distributed reference model run, and adap-c – from an
adaptive clustering run with optimised parameters, as shown in Table 1.

catchments, to a pattern reflecting the joint influence of both
geology and the spatial distribution of rainfall (see geologi-
cal map and rain gauge areas of influence in Fig. 2). Inter-
estingly, while the grouping of the subcatchments into clus-
ters obviously changed, the overall number of clusters only
increased by two, from 12 to 14, indicating that the overall
degree of similarity among subcatchments remained largely
constant. The next plot, Fig. 4c, shows a very different situ-
ation at the end of a long summer drought; most subcatch-
ments show very low runoff, and only the sandstone areas,
where groundwater flow dominates, maintain runoff above
their absolute minimum. Overall, the entire catchment is in a
very homogeneous state, and subcatchments group into only
three clusters. This state of high similarity comes to a sudden
end with the onset of precipitation (Fig. 4d), which increases
the diversity of subcatchment runoff to 18 clusters and leads
to the development of a spatial pattern that is mainly influ-
enced by rainfall spatial distribution and only to a lesser de-
gree by geology. The sandstone area is not as clearly sepa-
rated from the other geologies as usual. Finally, after a pe-
riod of extended rainfall (Fig. 4e), a spatial pattern similar to
the initial one in Fig. 4a has re-established, but overall runoff

magnitudes are still lower; this is a heritage of the long dry
summer.

Altogether, the analysis of time-variant behaviour, time av-
erages, and spatial patterns of similarity reveals several im-
portant points: (i) for most variables, there is pronounced hy-
drological similarity among subcatchments, (ii) similarity is
time variant, and (iii) the spatial patterns of similarity and
their variation with time are in accordance with hydrological
reasoning, which increases our confidence in the idea that
expressing similarity among subcatchments by entropies is
reasonable. In the next section, we discuss to what degree,
and at which price, adaptive clustering can capitalise on this.

3.2 Results for adaptive clustering

As explained in Sect. 2.4.2, we evaluate adaptive clustering
for both computational effort and associated quality losses
against several benchmarks. Figure 5 shows the results as a
2D plot. The black square indicates the reference run, which
corresponds to the standard case of running a model run in
full resolution and without any adaptive clustering function-
ality. It took 816 s and, as the reference run is our virtual real-
ity “truth”, the model shows perfect simulation quality, indi-
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Figure 4. Spatial maps of normalised and binned values of the clustering control variable, qcat,out, for all subcatchments and for selected
points in time as marked by the black vertical lines in Fig. 3. Colours indicate the values, which correspond to the bin numbers, ranging from
1 (lowest normalised state – red) to 64 (highest normalised state – blue). Values in (a–e) are from the fully distributed reference run, and
values in (f–j) are from an adaptive clustering run with optimised parameters, as shown in Table 1.
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Figure 5. Performance of model runs with respect to effort, measured by execution time, and quality, measured by the mean Nash–Sutcliffe
efficiency of subcatchment runoff qcat,out. Reference – full resolution, with no adaptive clustering overhead; static – full resolution, with
adaptive clustering overhead; static optimal – time-invariant optimal clustering, with clusters shown in Table 2; adap-c variations – adaptive
clustering, with various parameter settings; and adap-c optimal – optimal adaptive clustering, with parameters shown in Table 1.

cated by an NSE of 1. When adaptive clustering functionality
is integrated into the model, but from the choice of its param-
eters a fully distributed run is enforced (the static benchmark
case), the model still shows perfect simulation quality, but the
overhead of adaptive clustering increases computation times
by 707 s to a total of 1523 s (black triangle in Fig. 5). This
is almost double compared to the reference case, and is a
computational extra cost which clustering needs to overcom-
pensate for in order for it to be worth the effort. This is in-
deed the case, even for the simple static optimal benchmark
case (red triangle in Fig. 5). Representing 173 subcatchments
with 24 representatives (one per cluster; see Table 2) reduced
computation time to 233 s, despite the overhead, at no loss of
modelling quality. How does time-variable, adaptive cluster-
ing compare to that? The blue dots in Fig. 5 depict results for
selected parameter choices of adaptive clustering (we tested
many but only show the Pareto-optimal results) and reveal
a general pattern of trade-off between effort and modelling
quality. The higher the computational effort, the higher the
modelling quality and vice versa. The red dot indicates the
– in our eyes – optimal trade-off based on the optimised pa-
rameter set shown in Table 1. The related computation time
is 207 s, and NSE is 0.84. This means that, compared to the
reference case, computation time is reduced by 75 % at the
price of worsening NSE by 0.16. The effect of adaptive clus-
tering on the quality of discharge simulations at the catch-
ment outlet is shown in Fig. 3b. The differences between the
reference and the “adap-c” optimal adaptive clustering run
are visible, but they are generally much lower than the differ-

ences between the reference simulation and the observed dis-
charge. This is encouraging. But, when comparing the “adap-
c optimal” run to the static optimal benchmark, we may ask
whether the small reductions in computation time, at the cost
of a decrease in modelling quality, make adaptive clustering
worth the effort. For the given model, our answer will likely
be a negation. However, as discussed in Sect. 2.4.2, SHM
Attert is extremely well suited for static clustering due to its
simple set-up, and for most distributed models, it will not be
possible to group model elements into an equally small num-
ber of time-invariant, yet optimal, clusters. In such cases, the
relative gains of adaptive clustering will potentially be more
pronounced.

Figure 6 is based on the adap-c optimal model run and
gives some insights into the behaviour of adaptive cluster-
ing. The blue line in Fig. 6a shows, for each time step, the
agreement between the inherited and the current clustering
(see step (g) in Sect. 2.1 and 2.3). The related thresholds for
starting and ending jumps back in time are indicated by hor-
izontal lines, where sim_crit is indicated by the lower line
and sim_uncrit by the upper line (see Table 1). Each time
the clustering agreement falls below sim_crit, a jump back in
time is triggered (red circle in the plot). It goes back to the
closest time when the agreement was still above sim_uncrit
(red dot in the plot). From this point in time, the model is
operated in full distribution (no clusters) until the time of the
jump back is reached again. Figure 6 reveals that the occur-
rence and the length of jump back periods vary with the hy-
drological situation. During times of rapidly changing catch-
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ment conditions, such as in April, frequent but short jump
backs appear, indicating that the inherited clusters are only
valid for short periods of time. For periods of low flow, such
as in August, no jump backs occur at all; apparently, the clus-
ters determined in mid-June remain valid until the rainfall
events at the beginning of September terminate the long pe-
riod of synchronised drying of all subcatchments. This indi-
cates that updating of the clusters is controlled by changes in
the hydrometeorological situation. For the entire 5-year sim-
ulation period, 165 re-clusterings occur overall, i.e. an aver-
age of one every 11 d.

Adaptive clustering increases modelling efficiency by re-
stricting computations to the representatives, but it also
comes at a computational cost. This is illustrated by the blue
line in Fig. 6b, which shows the number of subcatchments for
which hydrological processes were calculated at each time
step. Normally, this number corresponds to the number of
cluster representatives set by parameter perc_reps (see Ta-
ble 1). For the jump back periods it is different. They are vis-
ited twice, i.e. once when the model is in normal, clustered
forward mode, and once, in full resolution, when the model
is in jump back mode. As a consequence, the total number
of subcatchments processed during these times is high. It can
even exceed the total number of subcatchments of the model
(173, as indicated by the red line). Overall, however, the sav-
ings prevail; for the entire 5-year simulation period, on aver-
age 34 of 173 subcatchments were processed per time step,
which means a reduction of 80 % compared to the reference
model run.

Adaptive clustering restricts the execution of hydrological
processes to a few representative subcatchments. While this
seems sufficient for preserving the time-variant behaviour of
all subcatchments – as indicated by the high NSE values
of the adaptive clustering model runs and the good agree-
ment of the discharge hydrographs in Fig. 3b – the question
remains whether spatial patterns of similarity are also pre-
served. To address this question, spatial maps of subcatch-
ment discharge from the optimised adaptive clustering run
are plotted in the right column of Fig. 4. The dates of each
plot are identical to those of the reference run in the left col-
umn. Comparing the associated maps shows that they largely
agree. Furthermore, the main characteristics of subcatchment
similarity seem to be preserved by adaptive clustering; geol-
ogy is the main control and precipitation a secondary con-
trol, and the degree of similarity varies over time. But, there
are also differences. For example, comparing Fig. 4b and g
reveals a smaller influence of the rainfall pattern in the adap-
tive clustering case; for Fig. 4d and i the opposite is the case.
Generally, the overall degree of similarity is larger for the
adaptive clustering case, i.e. the number of clusters is always
smaller than for the reference case. This is a consequence of
mapping states from a few representatives to many recipients
in a cluster, which involves averaging and, hence, an artificial
increase in similarity among subcatchments.

To summarise, we have tested many variants of adap-
tive clustering against several benchmark models in terms of
computational effort and modelling quality. For the best vari-
ant, the computation time was reduced by 75 %, compared to
the full-resolution reference model run, and modelling qual-
ity, expressed by NSE, decreased by 0.16. Compared to the
static optimal benchmark, which uses time-invariant clusters,
computational savings were much smaller, as the SHM Attert
model, due to its simplicity, lends itself well to time-invariant
clustering. Analysing the time-variant behaviour of adaptive
clustering revealed that re-clustering is linked to changes in
the hydrometeorological situation. Analysing spatial patterns
of subcatchment similarity from model runs with and with-
out adaptive clustering revealed that adaptive clustering pre-
serves their main characteristics but shows a tendency to ex-
aggerate similarity.

4 Summary and conclusions

In this paper, we proposed and described adaptive clustering
as a new way to reduce computational efforts of distributed
modelling, while largely maintaining modelling quality. This
is done by identifying, in a time-variant manner, similar-
acting model elements, clustering them, and inferring the dy-
namics of all model elements from just a few representatives
per cluster.

We started from the observation that hydrological systems
generally exhibit spatial variability in their properties, and
that this variability is non-negligible if distributed dynam-
ics are of interest, which then requires distributed modelling.
We further hypothesised that, despite this variability, there is
also similarity, i.e. many model elements exist with similar
properties, which will exhibit similar internal dynamics and
produce similar output when in similar initial states and when
exposed to similar forcing. Similarity among model elements
is hence not a static but rather a time-variable property de-
pendant on the interplay of these factors, and this similarity
is also not necessarily limited to contiguous model elements.

Based on these premises, we developed adaptive clustering
and provided a proof of concept with the example of a dis-
tributed, conceptual hydrological model – SHM – fitted to the
Attert basin in Luxembourg. Adaptive clustering comprises
several steps, namely clustering of model elements, choos-
ing cluster representatives, mapping of results from repre-
sentatives to recipients, and comparing clusterings over time
to decide when re-clustering is required. We explained these
steps, in general, and their implementation in the SHM At-
tert model, in particular. We used normalised and binned
transformations of model states for both clustering and for
measuring overall similarity among model elements by the
Shannon information entropy. Analysing time series of the
entropy of model states and fluxes revealed that (i) for most
variables, there is pronounced hydrological similarity among
subcatchments, (ii) similarity is time variant, and (iii) the spa-
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Figure 6. (a) Time series of agreement between inherited and current clusters, based on the adap-c optimal model run. Black vertical lines
indicate times of special interest (see Figs. 3 and 4), black horizontal lines indicate the agreement thresholds given by parameters sim_crit
and sim_uncrit (see Table 1). A red circle indicates when a jump back in time was triggered. The jump goes back to the next red dot to the
left of each circle. (b) Number of subcatchments per time step for which hydrological processes were calculated. The red horizontal line
indicates the total number of subcatchments (173) in the SHM Attert model.

tial patterns of similarity and their variation with time are in
accordance with hydrological reasoning. We then evaluated
adaptive clustering with respect to both computational gains
and losses of modelling quality against several benchmark
models. Compared to a standard, full-resolution model run
used as a virtual reality truth, computation time could be re-
duced by 75 %, when a decrease in Nash–Sutcliffe efficiency
by 0.16 was accepted. Re-clustering of model elements was
linked to changes in the hydrometeorological situation and
was, on average, carried out once every 11 d.

Our tests and analyses were conducted in the virtual reality
of a fully distributed model run, due to a lack of equally com-
prehensive observations. However, due to the good overall
agreement of the model with the available multivariate obser-
vations, we are confident that our main conclusion, namely
that adaptive clustering is a promising tool for accelerat-
ing distributed modelling of hydrological and other dynam-
ical systems, also holds with respect to real-world systems.
Additionally, adaptive clustering yields spatial and temporal
patterns of similarity among model elements, which can be
used for hydrological systems analysis. Adaptive clustering
integrates and enhances existing methods of time-invariant
grouping of model elements, such as lumping or grouped re-
sponse units (GRUs), and it can be applied together with ex-

isting methods of exploiting time-variable similarity, such as
adaptive gridding or adaptive time stepping. A limitation of
the method lies in the potential violation of conservation laws
when mapping results from cluster representatives to recipi-
ents.

What is ahead? For this study we selected subcatchment
runoff as the single variable for both clustering control and
model evaluation. This was mainly based on hydrological
reasoning, and clearly other and/or additional variables for
clustering control should be tested, and the effect of adap-
tive clustering on all model states and fluxes should be eval-
uated. Also, so far, cluster representatives were simply cho-
sen by random selection. We expect better performances by
a targeted selection of model elements, e.g. those close to
the cluster centre. At last we have tested adaptive cluster-
ing with the example of a relatively simple conceptual hy-
drological model with limited internal variability. The per-
formance of adaptive clustering in more advanced models
such as MIKE SHE (Abbott et al., 1986), HydroGeoSphere
(HGS; Brunner and Simmons, 2011; Davison et al., 2018),
the Noah-MP land surface model (LSM; Niu et al., 2011), or
the community land model (CLM; Lawrence et al., 2019) –
where computation times are indeed a challenge – remains
to be demonstrated. On the one hand, the potential savings
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by adaptive clustering will increase with the level of pro-
cess detail in a model. On the other hand, its implementa-
tion will become more difficult. For example, existing code
may be structured in a way that is unfavourable for integrat-
ing the adaptive clustering functionality; it can be a chal-
lenge to combine massive parallel processing with adaptive
clustering, and it will be difficult to integrate it into models
where many processes act simultaneously under a hierarchy
of model elements. However, the same could be said about
adaptive gridding and adaptive time stepping; nevertheless,
they have been implemented very successfully in many ad-
vanced earth science models.
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Appendix A: The SHM model

A1 SHM model structure

SHM is a distributed hydrological model, i.e. a catchment is
divided into subcatchments which are typically a few square
kilometres in size. The water stocks and fluxes in each sub-
catchment are represented in a conceptualised manner by
a set of linked linear reservoirs (see Fig. A1). The choice
of the type, number, and linkage of reservoirs is based on
the insights about the hydrological functioning of the At-
tert basin and suitable conceptualisations reported by Feni-
cia et al. (2014, 2016). The model structural elements and all
related equations are shown in Fig. A1 and Table A1. The
first reservoir represents the unsaturated zone. Precipitation
falling onto a subcatchment is divided into direct runoff and
soil moisture replenishment as a nonlinear function of current
soil moisture (the HBV beta store concept). Evapotranspira-
tion draws water from the unsaturated zone storage. Direct
runoff is split by a constant factor and replenishes two linear
reservoirs, with one representing interflow and the other rep-
resenting base flow. Runoff from the interflow and base flow
reservoirs is added and then enters the river system. The river
system is represented by a linear reservoir cascade, where
each element represents a river stretch of about 1 km. The
model is coded in MATLAB, the numerical scheme is non-
iterative forward in time, and the time stepping is hourly.

A2 SHM Attert – model set-up

Setting up the SHM model for a catchment starts with a
GIS-based delineation of subcatchments and river elements
using a digital elevation model. For the Attert basin, a 5 m
digital elevation model, based on LIDAR scans provided by
the Luxembourg Institute of Science and Technology (LIST),
was used. Each subcatchment was assigned a single land use,
based on the CORINE Land Cover map provided by the Eu-
ropean Environment Agency (EEA), and a single geology,
based on the Carte géologique détaillée 1 : 25000–1 : 50000
provided by the Geological Survey of Luxembourg. In the
catchment, altogether five different land use classes and three
geological classes occurred. For an overview of geology and
land use classes assigned to each subcatchment, please see
Table 2.

In the Attert basin, the hydrological function is strongly
controlled by geology (Fenicia et al., 2016). Therefore, all
soil-related model parameters (β, su,max, perc, ki, and kb)
were kept equal for all subcatchments sharing the same ge-
ology. The parameter values were determined by calibration
(see Sect. A3). Similarly, all parameters related to evapotran-
spiration (kc and kθ ) were kept equal among all subcatch-
ments sharing the same land use class. These were – without
calibration – directly inferred from the land use (see Eq. (A4)
in Table A1). As we set all river elements to be approximately

1 km kilometre in length, we could assign, to all 147 of them,
the same value for kr, which we determined by calibration.

Running the SHM model requires the observed time series
of precipitation, air temperature, air relative humidity, wind
velocity, and global radiation. For precipitation, data from
three stations were available. While this is clearly not enough
to represent the full spatial variability of precipitation, it nev-
ertheless represents some of it. Each subcatchment was as-
signed precipitation from a single station using a nearest-
neighbour approach (see Fig. 2 and Table 2). As the remain-
ing hydrometeorological variables typically exhibit less spa-
tial variability than precipitation, we used observations from
only a single station each (see Table A2 and Fig. 2).

A3 SHM Attert – model calibration and validation

We applied a multi-criteria-calibration approach to ensure
good overall performance of SHM Attert, and not just with
respect to discharge at the catchment outlet. For calibration
we used data from the 4-year period of 1 November 2011
00:00 Central European Time (CET; note that, hereafter, all
times are given in CET); for validation we used the remaining
1-year period of 1 November 2015 00:00–31 October 2016
23:00. We started with a joint calibration of all subcatchment
parameters on the catchment scale, i.e. against observed dis-
charge at the catchment outlet of Useldange and against the
catchment-averaged observations of soil moisture and evap-
otranspiration. The unique set of available soil moisture data
(observations from 18 sensors in the schist, 11 in the marls,
and 19 in the sandstone region, all taken at 50 cm depth)
was taken during the CAOS project. There is no direct rep-
resentation of soil moisture in SHM; we therefore compared
normalised and catchment-averaged soil moisture observa-
tions against normalised and catchment-averaged storage in
the SHM unsaturated zone reservoir (su). While this did not
permit quantitative conclusions, it was nevertheless informa-
tive in terms of the timing of relative minima and maxima
and the overall shape of the time series. As direct observa-
tions of catchment-scale evapotranspiration rates were not
available, we used satellite-based estimates provided by EU-
METSAT (Trigo et al., 2011) instead and compared them
to the catchment-averaged evapotranspiration rates of SHM.
For each variable, we measured the model performance with
the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970). To
measure overall model performance in a single number, we
merged the three efficiencies for discharge, soil moisture, and
evapotranspiration into a single, multi-criteria objective func-
tion according to Eq. (A12). The weights assigned to each
component were subjectively chosen, mainly based on our
evaluation of the quality of the underlying observations. To
a lesser degree, the weights also reflect our evaluation of
the relative importance of each component for overall model
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evaluation.

NSEtotal = 0.5 ·NSEdischarge+ 0.3 ·NSEsoilmoisture

+ 0.2 ·NSEevapotranspiration. (A1)

After the first catchment uniform and multi-criteria estima-
tion of parameters, we refined the estimates of all soil-related
model parameters by calibrating them against three gauges,
with each gauge representative of a particular geology, i.e.
Colpach for schist, Wollefsbach for marls, and Platen for
sandstone. These parameters (see Table A3) were then as-
signed to all subcatchments sharing the same geology. After
a few iterations of the catchment-scale-specific and geology-
specific calibration, we determined the final distributed pa-
rameter sets, as shown in Table A3. The main differences
among geology-specific parameters appear for the retention
behaviour of the interflow and the base flow reservoir (ki
and kb, respectively), which reflects the geology-specific hy-
drological functioning of the Attert basin, as described by
Fenicia et al. (2016). In the schist, dynamics are governed by
a combination of two subsurface flow paths; in the marl, fast
responses governed by near-surface flow paths prevail, while
the sandstone areas are characterised by delayed responses
governed by groundwater flow.

The catchment-scale performance measures for both the
calibration and the validation period are shown in Table A4,
and Table A5 shows the performance at the gauges used for
geology-specific and catchment-wide calibration. The model
achieves a catchment-scale, multi-objective Nash–Sutcliffe
efficiency of 0.73 in the validation period; gauge- or criteria-
specific efficiencies range from 0.61 for the Wollefsbach
gauge to 0.77 for the Useldange gauge at the catchment
outlet. For a visual comparison of observed and simulated
discharge at Useldange in the year 2015, see Fig. 3b (lines
marked “observed” and “reference”).
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Table A1. SHM model equations and parameters.

Number Equationa Description

(A1) vol_p=p · a vol_p: precipitation volume (m3)
p: precipitation (m)
a: subcatchment area (m2)

(A2) 9 =
(

su
su,max

)β
9: runoff coefficient (–)
su: storage in unsaturated zone reservoir (m)
su,max: maximum storage in unsaturated zone reservoir (m)
β: shape coefficient (–)

(A3) qu,out =9 · vol_p qu,out: runoff from unsaturated zone reservoir (m3)

(A4) et= etref · kc · kθ et: evapotranspiration (m3)
etref: reference evapotranspiration (m3)b

kc: vegetation-correction factor (–)c

kθ : soil-moisture-correction factor (–)d

(A5) qi,in = qu,out · perc qi,in: inflow to interflow reservoir (m3)
perc: interflow–baseflow partitioning factor (–)

(A6) qb,in = qu,out · (1− perc) qb,in: inflow to baseflow reservoir (m3)

(A7) qi,out =
si
ki
· a qi,out: runoff from interflow reservoir (m3)

si: storage in interflow reservoir (m)
ki : interflow reservoir retention constant (–)

(A8) qb,out =
sb
kb
· a qb,out: runoff from baseflow reservoir (m3)

sb: storage in baseflow reservoir (m)
kb: baseflow reservoir retention constant (–)

(A9) qcat,out = qi,out+ qb,out qcat,out: runoff from subcatchment (m3)

(A10) sr = sr+
∑
i

qrve,in,i +
∑
j

qcat,out,j sr(t): storage in river element (m3)

qrve,in,i : inflow from connected river element i (m3)

qcat,out,j : inflow from connected subcatchment j (m3)

(A11) qrve,out =
sr
kr

qrve,out: runoff from river element (m3)

kr: river element retention constant (–)

a In all equations, time subscripts t and t − 1 are dropped for brevity. b Evapotranspiration from reference surface (short grass) according to
Penman (1956). Equations taken from DVWK (1996; Sect. 5.3.1). c Vegetation-correction factor as a function of land use and month of the year.
Taken from Dunger (2006; Appendix 11). Value range [0.65, 1.3]. d Adapted from Dunger (2006; Sect. 4.5.8.4; Fig. 37), with the assumptions
kθ = 0 for su ≤ 0, kθ = 1 for su ≥ 0.8 · su,max, and kθ = su/su,max for 0< kθ < 0.8 · su,max.
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Table A2. Time series data used for model calibration, validation, and operation. All data were available in 1 h resolution for the period of
1 November 2011 00:00–31 October 2016 23:00. All time references are given in Central European Time (CET).

ID Full name Data type and unit Catchment Source
area (km2)

ROD_p Roodt Precipitation (mm) – ASTAa

RCL_p Reichlange Precipitation (mm) – AGEb

USL_p Useldange Precipitation (mm) – ASTA
USL_ta Useldange Air temperature at 2 m (◦C) – ASTA
USL_rh Useldange Air relative humidity at 2 m (%) – ASTA
ROD_v Roodt Wind velocity at 3 m (m s−1) – LISTc

MER_rg Merl Global radiation (W m−2) – ASTA
COL_q Colpach Discharge (m3 s−1) 19.5 LIST
WOB_q Wollefsbach Discharge (m3 s−1) 4.5 LIST
PLA_q Platen Discharge (m3 s−1) 44.2 LIST
USL_q Useldange Discharge (m3 s−1) 245 LIST

a Administration des services techniques de l’agriculture, Luxembourg; b Administration de la gestion de l’eau,
Luxembourg; c Luxembourg Institute of Science and Technology.

Table A3. Parameters of the SHM Attert found by calibration in the period of 1 November 2011 00:00–31 October 2015 23:00. All time
references are given in CET. The parameters are described in Table A1.

Geology Target su,max β perc ki kb kr
gauge (m) (–) (–) (–) (–) (–)
ID

Schist COL_q 0.17 5 0.5 44 500 1.1
Marls WOB_q 0.17 3 0.7 20 3000 1.1
Sandstone PLA_q 0.17 2 0.05 100 20 000 1.1

Table A4. Catchment-scale performance measures (discharge – Nash–Sutcliffe efficiency at the Useldange gauge; soil moisture and evap-
otranspiration – Nash–Sutcliffe efficiency of catchment averages) of the SHM Attert in the 5-year calibration period (1 November 2011
00:00–31 October 2015 23:00) and 1-year validation period (1 November 2015 00:00–31 October 2016 23:00). All time references are given
in CET. The term “combination” refers to the joint objective function according to Eq. (A12).

Series Calibration Validation

Discharge 0.85 0.77
Soil moisture 0.80 0.66
Evapotranspiration 0.58 0.74
Combination 0.78 0.73

Table A5. Gauge-specific performance measures (Nash–Sutcliffe efficiency of discharge) of the SHM Attert in the calibration and validation
period. Gauge locations are shown in Fig. 2; catchment sizes in Table A2.

Geology Gauge ID Calibration Validation

Shist COL_q 0.78 0.65
Marls WOB_q 0.66 0.61
Sandstone PLA_q 0.79 0.74
Catchment USL_q 0.85 0.77
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Figure A1. Structural elements, parameters (green), state variables (black), and fluxes (red) of the SHM model.
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Code availability. The SHM Attert, including the adaptive clus-
tering functionality, and all code used to conduct the analyses in
this paper are publicly available at https://github.com/KIT-HYD/
SHM-Attert-Adaptive-Clustering (Ehret, 2020).

Data availability. The precipitation data of stations Roodt and
Useldange and the air temperature, relative humidity, and global
radiation data are publicly available from the Administration des
services techniques de l’agriculture (ASTA), Luxembourg, at http://
www.agrimeteo.lu/ (ASTA, 2020). The precipitation and discharge
data at Reichlange station are available upon request from the Ad-
ministration de la gestion de l’eau (AGE), Luxembourg, at https:
//www.inondations.lu/ (AGE, 2020). All other discharge data and
the wind velocity data are available upon request from Luxembourg
Institute of Science and Technology (LIST) at https://www.list.lu/
(LIST, 2020). The EUMETSAT-based LSA SAF evapotranspiration
products are publicly available from http://landsaf.ipma.pt (LSA
SAF, 2020). The soil moisture data are available upon request
from Theresa Blume (blume@gfz-potsdam.de) and Markus Weiler
(markus.weiler@hydrology.uni-freiburg.de). The digital elevation
model is available upon request from LIST. The 2012 Corine Land
Cover data are publicly available from the Copernicus sites of the
European Environment Agency EEA at http://land.copernicus.eu/
pan-european/corine-land-cover/clc-2012/view (EEA, 2020). The
geological maps are available upon request from the Service
géologique de l’Etat, Administration des ponts et chaussées, Lux-
embourg, at http://www.geologie.lu/geolwiki/index.php/Cartes_g%
C3%A9ologiques (Service géologique de l’Etat, 2020).
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