Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-3899-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-3899-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting the global hydrological cycle: is it intensifying?
Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 5, GR 157 80 Zografou, Greece
Related authors
Demetris Koutsoyiannis and Nikos Mamassis
Hydrol. Earth Syst. Sci., 25, 2419–2444, https://doi.org/10.5194/hess-25-2419-2021, https://doi.org/10.5194/hess-25-2419-2021, 2021
Short summary
Short summary
This paper is the result of new research of ancient and early modern sources about the developments of the concept of the hydrological cycle and of hydrology in general. It shows that the flooding of the Nile was the first geophysical problem formulated in scientific terms in the cradle of natural philosophy and science in the 6th century BC. Aristotle was able to find the correct solution to the problem, which he tested through what it appears to be the first scientific expedition in history.
Romanos Ioannidis, Theano Iliopoulou, Christina Iliopoulou, Loukas Katikas, Angeliki Petsou, Maria-Eleni Merakou, Maria-Eirini Asimomiti, Nikolaos Pelekanos, Giannis Koudouris, Panayiotis Dimitriadis, Christina Plati, Eleni I. Vlahogianni, Konstantinos Kepaptsoglou, Nikos Mamassis, and Demetris Koutsoyannis
Adv. Geosci., 49, 215–224, https://doi.org/10.5194/adgeo-49-215-2019, https://doi.org/10.5194/adgeo-49-215-2019, 2019
Short summary
Short summary
In this paper we investigate the application of a solar-powered bus route to a small-scale transportation system, as such of a university campus. We investigate three different scenarios: (1) solar panels installed on the roof of bus stop shelters, (2) solar panels installed at unused open space in the university, and (3) solar roads, i.e. roads constructed by photovoltaic (PV) materials. We conclude that scenario (2) presents the lowest capital cost in relation to energy generation.
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019, https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Short summary
We investigate the seasonal memory properties of a large sample of European rivers in terms of high and low flows. We compute seasonal correlations between peak and low flows and average flows in the previous seasons and explore the links with various physiographic and hydro-climatic catchment descriptors. Our findings suggest that there is a traceable physical basis for river memory which in turn can be employed to reduce uncertainty and improve probabilistic predictions of floods and droughts.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Elli Klousakou, Maria Chalakatevaki, Panayiotis Dimitriadis, Theano Iliopoulou, Romanos Ioannidis, Georgios Karakatsanis, Andreas Efstratiadis, Nikos Mamasis, Romina Tomani, Efthimis Chardavellas, and Demetris Koutsoyiannis
Adv. Geosci., 45, 193–199, https://doi.org/10.5194/adgeo-45-193-2018, https://doi.org/10.5194/adgeo-45-193-2018, 2018
Giannis Koudouris, Panayiotis Dimitriadis, Theano Iliopoulou, Nikos Mamassis, and Demetris Koutsoyiannis
Adv. Geosci., 45, 139–145, https://doi.org/10.5194/adgeo-45-139-2018, https://doi.org/10.5194/adgeo-45-139-2018, 2018
Short summary
Short summary
The aim of this work is to investigate the stochastic nature and time evolution of the solar radiation process for daily and hourly scale, with the ultimate goal of creating a new cyclostationary stochastic model capable of reproducing the dependence structure and the marginal distribution of hourly solar radiation via the clearness index KT.
Demetris Koutsoyiannis, Günter Blöschl, András Bárdossy, Christophe Cudennec, Denis Hughes, Alberto Montanari, Insa Neuweiler, and Hubert Savenije
Hydrol. Earth Syst. Sci., 20, 1081–1084, https://doi.org/10.5194/hess-20-1081-2016, https://doi.org/10.5194/hess-20-1081-2016, 2016
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis
Nat. Hazards Earth Syst. Sci., 14, 1417–1428, https://doi.org/10.5194/nhess-14-1417-2014, https://doi.org/10.5194/nhess-14-1417-2014, 2014
F. Lombardo, E. Volpi, D. Koutsoyiannis, and S. M. Papalexiou
Hydrol. Earth Syst. Sci., 18, 243–255, https://doi.org/10.5194/hess-18-243-2014, https://doi.org/10.5194/hess-18-243-2014, 2014
Demetris Koutsoyiannis and Nikos Mamassis
Hydrol. Earth Syst. Sci., 25, 2419–2444, https://doi.org/10.5194/hess-25-2419-2021, https://doi.org/10.5194/hess-25-2419-2021, 2021
Short summary
Short summary
This paper is the result of new research of ancient and early modern sources about the developments of the concept of the hydrological cycle and of hydrology in general. It shows that the flooding of the Nile was the first geophysical problem formulated in scientific terms in the cradle of natural philosophy and science in the 6th century BC. Aristotle was able to find the correct solution to the problem, which he tested through what it appears to be the first scientific expedition in history.
Romanos Ioannidis, Theano Iliopoulou, Christina Iliopoulou, Loukas Katikas, Angeliki Petsou, Maria-Eleni Merakou, Maria-Eirini Asimomiti, Nikolaos Pelekanos, Giannis Koudouris, Panayiotis Dimitriadis, Christina Plati, Eleni I. Vlahogianni, Konstantinos Kepaptsoglou, Nikos Mamassis, and Demetris Koutsoyannis
Adv. Geosci., 49, 215–224, https://doi.org/10.5194/adgeo-49-215-2019, https://doi.org/10.5194/adgeo-49-215-2019, 2019
Short summary
Short summary
In this paper we investigate the application of a solar-powered bus route to a small-scale transportation system, as such of a university campus. We investigate three different scenarios: (1) solar panels installed on the roof of bus stop shelters, (2) solar panels installed at unused open space in the university, and (3) solar roads, i.e. roads constructed by photovoltaic (PV) materials. We conclude that scenario (2) presents the lowest capital cost in relation to energy generation.
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019, https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Short summary
We investigate the seasonal memory properties of a large sample of European rivers in terms of high and low flows. We compute seasonal correlations between peak and low flows and average flows in the previous seasons and explore the links with various physiographic and hydro-climatic catchment descriptors. Our findings suggest that there is a traceable physical basis for river memory which in turn can be employed to reduce uncertainty and improve probabilistic predictions of floods and droughts.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Elli Klousakou, Maria Chalakatevaki, Panayiotis Dimitriadis, Theano Iliopoulou, Romanos Ioannidis, Georgios Karakatsanis, Andreas Efstratiadis, Nikos Mamasis, Romina Tomani, Efthimis Chardavellas, and Demetris Koutsoyiannis
Adv. Geosci., 45, 193–199, https://doi.org/10.5194/adgeo-45-193-2018, https://doi.org/10.5194/adgeo-45-193-2018, 2018
Giannis Koudouris, Panayiotis Dimitriadis, Theano Iliopoulou, Nikos Mamassis, and Demetris Koutsoyiannis
Adv. Geosci., 45, 139–145, https://doi.org/10.5194/adgeo-45-139-2018, https://doi.org/10.5194/adgeo-45-139-2018, 2018
Short summary
Short summary
The aim of this work is to investigate the stochastic nature and time evolution of the solar radiation process for daily and hourly scale, with the ultimate goal of creating a new cyclostationary stochastic model capable of reproducing the dependence structure and the marginal distribution of hourly solar radiation via the clearness index KT.
Demetris Koutsoyiannis, Günter Blöschl, András Bárdossy, Christophe Cudennec, Denis Hughes, Alberto Montanari, Insa Neuweiler, and Hubert Savenije
Hydrol. Earth Syst. Sci., 20, 1081–1084, https://doi.org/10.5194/hess-20-1081-2016, https://doi.org/10.5194/hess-20-1081-2016, 2016
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis
Nat. Hazards Earth Syst. Sci., 14, 1417–1428, https://doi.org/10.5194/nhess-14-1417-2014, https://doi.org/10.5194/nhess-14-1417-2014, 2014
F. Lombardo, E. Volpi, D. Koutsoyiannis, and S. M. Papalexiou
Hydrol. Earth Syst. Sci., 18, 243–255, https://doi.org/10.5194/hess-18-243-2014, https://doi.org/10.5194/hess-18-243-2014, 2014
Related subject area
Subject: Global hydrology | Techniques and Approaches: Stochastic approaches
Detection and attribution of flood trends in Mediterranean basins
Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland
How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations
Investigation of hydrological time series using copulas for detecting catchment characteristics and anthropogenic impacts
Towards observation-based gridded runoff estimates for Europe
Historical land-use-induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps
Detection of global runoff changes: results from observations and CMIP5 experiments
Rainfall statistics changes in Sicily
Spatial variability and its scale dependency of observed and modeled soil moisture over different climate regions
How extreme is extreme? An assessment of daily rainfall distribution tails
Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling
Climate model bias correction and the role of timescales
Streamflow trends in Europe: evidence from a dataset of near-natural catchments
Yves Tramblay, Louise Mimeau, Luc Neppel, Freddy Vinet, and Eric Sauquet
Hydrol. Earth Syst. Sci., 23, 4419–4431, https://doi.org/10.5194/hess-23-4419-2019, https://doi.org/10.5194/hess-23-4419-2019, 2019
Short summary
Short summary
In the present study the flood trends have been assessed for a large sample of 171 basins located in southern France, which has a Mediterranean climate. Results show that, despite the increase in rainfall intensity previously observed in this area, there is no general increase in flood magnitude. Instead, a reduction in the annual number of floods is found, linked to a decrease in soil moisture caused by the increase in temperature observed in recent decades.
Raghavendra B. Jana, Ali Ershadi, and Matthew F. McCabe
Hydrol. Earth Syst. Sci., 20, 3987–4004, https://doi.org/10.5194/hess-20-3987-2016, https://doi.org/10.5194/hess-20-3987-2016, 2016
Short summary
Short summary
Interactions between soil moisture and terrestrial evaporation affect responses between land surface and the atmosphere across scales. We present an analysis of the link between soil moisture and evaporation estimates from three distinct models. The relationships were examined over nearly 2 years of observation data. Results show that while direct correlations of raw data were mostly not useful, the root-zone soil moisture and the modelled evaporation estimates reflect similar distributions.
Xiaoyong Sophie Zhang, Gnanathikkam E. Amirthanathan, Mohammed A. Bari, Richard M. Laugesen, Daehyok Shin, David M. Kent, Andrew M. MacDonald, Margot E. Turner, and Narendra K. Tuteja
Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, https://doi.org/10.5194/hess-20-3947-2016, 2016
Short summary
Short summary
The hydrologic reference stations website (www.bom.gov.au/water/hrs/), developed by the Australia Bureau of Meteorology, is a one-stop portal to access long-term and high-quality streamflow information for 222 stations across Australia. This study investigated the streamflow variability and inferred trends in water availability for those stations. The results present a systematic analysis of recent hydrological changes in Australian rivers, which will aid water management decision making.
Takayuki Sugimoto, András Bárdossy, Geoffrey G. S. Pegram, and Johannes Cullmann
Hydrol. Earth Syst. Sci., 20, 2705–2720, https://doi.org/10.5194/hess-20-2705-2016, https://doi.org/10.5194/hess-20-2705-2016, 2016
Short summary
Short summary
This paper is aims to detect the climate change impacts on the hydrological regime from the long-term discharge records. A new method for stochastic analysis using copulas, which has the advantage of scrutinizing the data independent of marginal, is suggested in this paper. Two measures are used in the copula domain: one focuses on the asymmetric characteristic of data and the other compares the distances between the copulas. These are calculated for 100 years of daily discharges and the results are discussed.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 19, 2859–2879, https://doi.org/10.5194/hess-19-2859-2015, https://doi.org/10.5194/hess-19-2859-2015, 2015
Short summary
Short summary
Water storages and fluxes on land are key variables in the Earth system. To provide context for local investigations and to understand phenomena that emerge at large spatial scales, information on continental freshwater dynamics is needed. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid, which combines the advantages of in situ observations with the power of machine learning regression. The resulting runoff estimates compare well with observations.
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Hydrol. Earth Syst. Sci., 18, 3571–3590, https://doi.org/10.5194/hess-18-3571-2014, https://doi.org/10.5194/hess-18-3571-2014, 2014
R. Alkama, L. Marchand, A. Ribes, and B. Decharme
Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, https://doi.org/10.5194/hess-17-2967-2013, 2013
E. Arnone, D. Pumo, F. Viola, L. V. Noto, and G. La Loggia
Hydrol. Earth Syst. Sci., 17, 2449–2458, https://doi.org/10.5194/hess-17-2449-2013, https://doi.org/10.5194/hess-17-2449-2013, 2013
B. Li and M. Rodell
Hydrol. Earth Syst. Sci., 17, 1177–1188, https://doi.org/10.5194/hess-17-1177-2013, https://doi.org/10.5194/hess-17-1177-2013, 2013
S. M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos
Hydrol. Earth Syst. Sci., 17, 851–862, https://doi.org/10.5194/hess-17-851-2013, https://doi.org/10.5194/hess-17-851-2013, 2013
A. K. Gain, W. W. Immerzeel, F. C. Sperna Weiland, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 15, 1537–1545, https://doi.org/10.5194/hess-15-1537-2011, https://doi.org/10.5194/hess-15-1537-2011, 2011
J. O. Haerter, S. Hagemann, C. Moseley, and C. Piani
Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, https://doi.org/10.5194/hess-15-1065-2011, 2011
K. Stahl, H. Hisdal, J. Hannaford, L. M. Tallaksen, H. A. J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jódar
Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, https://doi.org/10.5194/hess-14-2367-2010, 2010
Cited articles
Acker, J. G. and Leptoukh, G.: Online analysis enhances use of NASA earth
science data, Eos Trans. AGU, 88, 14 and 17, 2007.
Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Chiu, L., Xie, P. P.,
Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., Gu, G., and
NOAA CDR Program: Global Precipitation Climatology Project (GPCP) Climate
Data Record (CDR), Version 2.3 (Monthly), National Centers for Environmental
Information, https://doi.org/10.7289/V56971M6, 2016.
Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Bolvin, D., Nelkin, E.,
and NOAA CDR Program: Global Precipitation Climatology Project (GPCP)
Climate Data Record (CDR), Version 1.3 (Daily), NOAA National Centers for
Environmental Information, https://doi.org/10.7289/V5RX998Z, 2017.
Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis,
A., and Mamassis, N.: A comparison of local and aggregated climate model
outputs with observed data, Hydrolog. Sci. J., 55,
1094–1110, https://doi.org/10.1080/02626667.2010.513518, 2010.
Anderson, J. W., DeRemer, C. W., and Hall, R. S.: Water use and management in an
arid region: Fort Collins, Colorado, and vicinity, Information series
(Colorado Water Resources Research Institute); no 26, available at:
https://mountainscholar.org/bitstream/handle/10217/3085/is_26.pdf?sequence=_1
(last access: February 2020), 1977.
Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., Seibert, J., Hakala, K., Bock, A., Wagener, T., Farmer, W. H., Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S., and Over, T.:
Accelerating advances in continental domain hydrologic modelling, Water
Resour. Res., 51, 10078–10091, https://doi.org/10.1002/2015WR017498, 2015.
Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and
groundwater depletion: a review, Environ. Res. Lett., 14,
063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019.
Blöschl, G. and Montanari, A: Climate change impacts – throwing the
dice?, Hydrol. Process., 24, 374–381, 2010.
Bridgman, P. W.: The Way Things Are, Harvard University Press, 1966.
Burgess, M. G., Ritchie, J., Shapland, J., and Pielke Jr., R.: IPCC baseline
scenarios over-project CO2 emissions and economic growth, SocArXiv, https://doi.org/10.31235/osf.io/ahsxw, 2020.
Chao, B. F., Wu, Y. H., and Li, Y. S.: Impact of artificial reservoir water
impoundment on global sea level, Science, 320, 212–214, 2008.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R.,
Brovkin, V., Ciais, P., Fensholt, R., and Tømmervik, H.: China and India
lead in greening of the world through land-use management, Nature
Sustainability, 2, 122–129, 2019.
Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux,
J.-F., and Safarov, E. S.: Long-term Caspian Sea level change, Geophys. Res.
Lett., 44, 6993–7001, https://doi.org/10.1002/2017GL073958, 2017.
Christy, J. R., Norris, W. B., Spencer, R. W., and Hnilo, J. J.: Tropospheric
temperature change since 1979 from tropical radiosonde and satellite
measurements, J. Geophys. Res., 112, D06102,
https://doi.org/10.1029/2005JD006881, 2007.
Church, T. M.: An underground route for the water cycle, Nature, 380,
579–580, 1996.
Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS), available at:
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: January
2020), 2017.
Creed, I. F., Hwang, T., Lutz, B., and Way, D.: Climate warming causes
intensification of the hydrological cycle, resulting in changes to the
vernal and autumnal windows in a northern temperate forest, Hydrol. Process., 29, 3519–3534,
https://doi.org/10.1002/hyp.10450, 2015.
Cretaux, J. F., Kostianoy, A., Bergé-Nguyen, M., and Kouraev A.:
Present-Day Water Balance of the Aral Sea Seen from Satellite, in: Remote Sensing of the Asian Seas, edited by: Barale
V. and Gade M., https://doi.org/10.1007/978-3-319-94067-0_29, Springer, Cham, Switzerland,
2019.
Dai, A.: Historical and future changes in streamflow and continental runoff:
A review, chap. 2 in: Terrestrial Water Cycle
and Climate Change: Natural and Human-Induced Impacts, edited by: Tang, Q.
and Oki, T., AGU, John Wiley & Sons, Geophys. Monogr.,
221, 17–37, 2016.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J.
Hydrometeorol., 3, 660–687, 2002.
De Luca, D. L., Petroselli, A., and Galasso, L.: Modelling climate changes with
stationary models: Is it possible or is it a paradox?, in: Numerical Computations: Theory and Algorithms, NUMTA 2019,
Lecture Notes in Computer Science, edited by: Sergeyev Y. and
Kvasov, D., Springer, Cham, Switzerland, 11974, 2020.
Déry, S. J., Hernández-Henríquez, M. A., Burford, J. E., and Wood,
E. F.: Observational evidence of an intensifying hydrological cycle in
northern Canada, Geophys. Res. Lett., 36, L13402, https://doi.org/10.1029/2009GL038852, 2009.
Dingman, S. L.: Physical Hydrology, Prentice Hall, Englewood Cliffs, New
Jersey, 1994.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.:
More extreme precipitation in the world's dry and wet regions, Nat.
Clim. Change, 6, 508–513, https://doi.org/10.1038/NCLIMATE2941, 2016.
Eicker, A., Forootan, E., Springer, A., Longuevergne, L., and Kusche, J.:
Does GRACE see the terrestrial water cycle “intensifying”?, J. Geophys.
Res.-Atmos., 121, 733–745, https://doi.org/10.1002/2015JD023808, 2016.
Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring, Earth Syst. Sci. Data, 7, 137–142, https://doi.org/10.5194/essd-7-137-2015, 2015.
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., and
Chappell, J.: Refining the eustatic sea-level curve since the Last Glacial
Maximum using far- and intermediate-field sites, Earth Planet. Sc.
Lett., 163, 327–342, https://doi.org/10.1016/S0012-821X(98)00198-8, 1998.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr,
J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., and Ligtenberg, S. R.: A
reconciled estimate of glacier contributions to sea level rise: 2003 to
2009, Science, 340, 852–857, 2013.
Gaybullaev, B., Chen, S., and Gaybullaev, D.: Changes in water volume of the
Aral Sea after 1960, Appl. Water Sci., 2, 285–291, https://doi.org/10.1007/s13201-012-0048-z, 2012.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Gloor, M., Brienen, R. J. W., Galbraith, D., Feldpausch, T. R., Schöngart,
J., Guyot, J.-L., Espinoza, J. C., Lloyd, J., and Phillips, O. L.:
Intensification of the Amazon hydrological cycle over the last two decades,
Geophys. Res. Lett., 40, 1729–1733, https://doi.org/10.1002/grl.50377, 2013.
Hallam, A.: Pre-Quaternary sea-level changes, Annu. Rev. Earth Pl. Sc.,
12, 205–243, https://doi.org/10.1146/annurev.ea.12.050184.001225, 1984.
Hanna, E., Pattyn, F., Navarro, F., Favier, V., Goelzer, H., van den Broeke,
M. R., Vizcaino, M., Whitehouse, P. L., Ritz, C., Bulthuis, K., and Smith, B.
Mass balance of the ice sheets and glaciers – Progress since AR5 and
challenges, Earth-Sci. Rev., 201, 102976, https://doi.org/10.1016/j.earscirev.2019.102976, 2020.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF
Newsletter, 147, 5–6, 2016.
Hubanks, P., Platnick, S., King, M., and Ridway, B.: MODIS Atmosphere L3
Gridded Product Algorithm Theoretical Basis Document (ATBD) & Users Guide
(Collection 006, Version 4.1, 22 September 2015), available at:
http://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/MODIS_Collection6_ AtmosphereL3_GriddedProduct_ATBDandUsersGuide_v4.1_ Sep22_ 2015.pdf (last access: February 2020),
2015.
Huffman, G. J., Adler, R. F., Morrissey, M., Bolvin, D. T., Curtis, S., Joyce,
R., McGavock, B., and Susskind, J.: Global precipitation at one-degree daily
resolution from multi-satellite observations, J. Hydrometeorol., 2, 36–50,
2001.
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Hurst, H. E.: Long term storage capacities of reservoirs, T. Am. Soc. Civil Eng., 116, 776–808,
1951.
Iliopoulou, T. and Koutsoyiannis, D: Projecting the future of rainfall
extremes: better classic than trendy, J. Hydrol., 558,
125005, https://doi.org/10.1016/j.jhydrol.2020.125005, 2020.
IMBIE (Shepherd, A., Ivins, E., Rignot, E., et al.): Mass balance of the
Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222
10.1038/s41586-018-0179-y, 2018.
IMBIE (Shepherd, A., Ivins, E., Rignot, E., et al.): Mass balance of the
Greenland Ice Sheet from 1992 to 2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, UK and New
York, NY, 1535 pp., available at: http://www.climatechange2013.org/report/
(last access: 14 February 2020), 2013.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc.,
77, 437–472, 1996.
Khedun, C. P. and Singh, V. P.: Water balance, chap. 3 in:
Handbook of Applied Hydrology, edited by: Singh, V. P., 2nd Edn., 3.1–3.11, McGraw-Hill, New
York, 2017.
Kleidon, A.: Interactive comment on “Revisiting global hydrological cycle:
Is it intensifying?” by Demetris Koutsoyiannis, Hydrol. Earth Syst. Sci.
Discuss., https://doi.org/10.5194/hess-2020-120-RC2, 2020.
Kleidon, A. and Renner, M.: A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change, Earth Syst. Dynam., 4, 455–465, https://doi.org/10.5194/esd-4-455-2013, 2013.
Kleidon, A., Kravitz, B., and Renner, M.: The hydrological sensitivity to
global warming and solar geoengineering derived from thermodynamic
constraints, Geophys. Res. Lett., 42, 138–144, https://doi.org/10.1002/2014GL062589,
2015.
Kolmogorov, A. N.: Wiener spirals and some other interesting curves in a
Hilbert space, Dokl. Akad. Nauk SSSR, 26, 115–118, (English edition:
Kolmogorov, A. N., 1991, Selected Works of A. N. Kolmogorov – Volume 1,
Mathematics and Mechanics, edited by: Tikhomirov, V. M., Kluwer, Dordrecht, The
Netherlands, 324–326), 1940.
Koutsoyiannis, D.: HESS Opinions “A random walk on water”, Hydrol. Earth Syst. Sci., 14, 585–601, https://doi.org/10.5194/hess-14-585-2010, 2010.
Koutsoyiannis, D.: Hurst-Kolmogorov dynamics and uncertainty, J.
Am. Water Resour. As., 47, 481–495, https://doi.org/10.1111/j.1752-1688.2011.00543.x, 2011.
Koutsoyiannis, D.: Clausius-Clapeyron equation and saturation vapour
pressure: simple theory reconciled with practice, Eur. J.
Phys., 33, 295–305, https://doi.org/10.1088/0143-0807/33/2/295, 2012.
Koutsoyiannis, D.: Hydrology and change, Hydrolog. Sci. J., 58, 1177–1197, https://doi.org/10.1080/02626667.2013.804626, 2013.
Koutsoyiannis, D.: Reconciling hydrology with engineering, Hydrol.
Res., 45, 2–22, https://doi.org/10.2166/nh.2013.092, 2014a.
Koutsoyiannis, D:. Entropy: from thermodynamics to hydrology, Entropy, 16, 1287–1314, https://doi.org/10.3390/e16031287, 2014b.
Koutsoyiannis, D.: Rebuttal to review comments on “Revisiting global
hydrological cycle: Is it intensifying?” (Interactive comment on
“Revisiting global hydrological cycle: Is it intensifying?” by Demetris
Koutsoyiannis), Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-120-AC1, 2020a.
Koutsoyiannis, D.: Appendix to Rebuttal to review comments on “Revisiting
global hydrological cycle: Is it intensifying?” (Interactive comment on
“Revisiting global hydrological cycle: Is it intensifying?” by Demetris
Koutsoyiannis), Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-120-AC2, 2020b.
Koutsoyiannis, D. and Montanari, A.: Statistical analysis of hydroclimatic
time series: Uncertainty and insights, Water Resour. Res., 43,
W05429, https://doi.org/10.1029/2006WR005592, 2007.
Koutsoyiannis, D. and Montanari, A.: Negligent killing of scientific
concepts: the stationarity case, Hydrolog. Sci. J., 60,
1174–1183, https://doi.org/10.1080/02626667.2014.959959, 2015.
Koutsoyiannis, D. and Papalexiou, S. M.: Extreme rainfall: Global
perspective, chap. 74 in: Handbook of Applied Hydrology, edited by: Singh, V. P.,
2nd Edn., 74.1–74.16, McGraw-Hill, New York, 2017.
Koutsoyiannis, D., Christofides, A., Efstratiadis, A., Anagnostopoulos, G. G.,
and Mamassis, N.: Scientific dialogue on climate: is it giving black eyes or
opening closed eyes? Reply to “A black eye for the Hydrological Sciences
Journal” by D. Huard, Hydrolog. Sci. J., 56, 1334–1339,
https://doi.org/10.1080/02626667.2011.610759, 2011.
Koutsoyiannis, D., Efstratiadis, A., Mamassis, N., and Christofides, A.: On
the credibility of climate predictions, Hydrolog. Sci. J., 53, 671–684, https://doi.org/10.1623/hysj.53.4.671, 2008.
Koutsoyiannis, D., Montanari, A., Lins, H. F., and Cohn, T. A.: Climate,
hydrology and freshwater: towards an interactive incorporation of
hydrological experience into climate research – DISCUSSION of “The
implications of projected climate change for freshwater resources and their
management”, Hydrolog. Sci. J., 54, 394–405, https://doi.org/10.1623/hysj.54.2.394, 2009.
Kundzewicz, Z. W.: Interactive comment on “Revisiting global hydrological
cycle: Is it intensifying?” by Demetris Koutsoyiannis, Hydrol. Earth Syst.
Sci. Discuss., https://doi.org/10.5194/hess-2020-120-RC1, 2020.
Kundzewicz, Z. W. and Stakhiv, E. Z.: Are climate models “ready for prime
time” in water resources management applications, or is more research
needed?, Hydrolog. Sci. J., 55, 1085–1089, https://doi.org/10.1080/02626667.2010.513211, 2010.
Kundzewicz, Z. W., Rosbjerg, D., Simonovic, S. P., and Takeuch, K.: Extreme
hydrological events: Precipitation, Floods and droughts, Proceedings of the
Yokohama Symposium, July 1993, IAHS Publ. no. 213, available at: http://hydrologie.org/redbooks/a213/iahs_213_0001.pdf (last access: February 2020), 1993.
Llovel, W., Willis, J., Landerer, F., and Fukumori, I.: Deep-ocean
contribution to sea level and energy budget not detectable over the past
decade, Nat. Clim. Change 4, 1031–1035, https://doi.org/10.1038/nclimate2387, 2014.
Lvovitch, M. I.: World water balance (general report), in: World water
balance: Proceedings of the Reading Symposium, IASH-UNESCO-WMO, 1970, Vol.
II Publ., 93, 401–415, available at: http://hydrologie.org/redbooks/a092/093019.pdf (last access: February 2020),
1970.
Madakumbura, G. D., Kim, H., Utsumi, N., Shiogama, H., Fischer, E. M., Seland,
Ø., Scinocca, J. F., Mitchell, D. M., Hirabayashi, Y., and Oki, T.:
Event-to-event intensification of the hydrologic cycle from 1.5 ∘C to a 2 ∘C warmer world, Sci. Rep., 9,
3483, https://doi.org/10.1038/s41598-019-39936-2, 2019.
Mamassis, N., Efstratiadis, A., Dimitriadis, P., Iliopoulou, T., Ioannidis,
R., and Koutsoyiannis, D.: Water and Energy, in: Handbook of Water Resources
Management: Discourses, Concepts and Examples, edited by: Bogardi, J. J.,
Wasantha Nandalal, K. D., van Nooyen, R. R. P., and Bhadurim, A., Springer, Cham,
Switzerland, 2020.
Markonis, Y. and Koutsoyiannis, D.: Climatic variability over time scales
spanning nine orders of magnitude: Connecting Milankovitch cycles with
Hurst–Kolmogorov dynamics, Surv. Geophys., 34, 181–207, https://doi.org/10.1007/s10712-012-9208-9, 2013.
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H.: Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent, The Cryosphere, 9, 2399–2404, https://doi.org/10.5194/tc-9-2399-2015, 2015.
Montanari, A. and Koutsoyiannis, D.: Modeling and mitigating natural
hazards: Stationarity is immortal!, Water Resour. Res., 50,
9748–9756, https://doi.org/10.1002/2014WR016092, 2014.
Nace, R. L.: Water of the World, Natural History, Vol. LXXIII, No. 1, 1964.
Nace, R. L.: Are we running out of water?), US Geological Survey, No. 536,
1967.
Nace, R. L.: Groundwater: perspectives and prospects, Water Well J., 23,
28–29, 1969.
Nace, R. L.: World hydrology: status and prospects, in: World Water Balance,
Proceedings of the Reading Symposium, IASH-UNESCO-WMO, 1970. Vol. I, Publ.,
92, 1–10, available at: http://hydrologie.org/redbooks/a092/092004.pdf
(last access: February 2020), 1970.
O'Connell, P. E., Koutsoyiannis, D. Lins, H. F., Markonis, Y., Montanari, A.,
and Cohn, T. A.: The scientific legacy of Harold Edwin Hurst (1880–1978),
Hydrolog. Sci. J., 61, 1571–1590, https://doi.org/10.1080/02626667.2015.1125998, 2016.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources,
Science, 313, 1068–1072, 2006.
Paik, S., Min, S.-K., Zhang, X., Donat, M. G., King, A. D., and Sun, Q.:
Determining the anthropogenic greenhouse gas contribution to the observed
intensification of extreme precipitation, Geophys. Res. Lett., 47,
e2019GL086875, https://doi.org/10.1029/2019GL086875, 2020.
Pielke Sr., R. A., Mahmood, R., and McAlpine, C.: Land's complex role in
climate change, Physics Today, 69, 40–46, https://doi.org/10.1063/PT.3.3364, 2016.
Platnick, S., et al.: MODIS Atmosphere L3 Monthly Product, NASA MODIS
Adaptive Processing System, Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MOD08_M3.006, 2015.
Robinson, D. A., Estilow, T. W., and NOAA CDR Program: NOAA Climate Data
Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1.
NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5N014G9,
2012.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Seidel, S. D. and Yang, D.: The lightness of water vapor helps to stabilize
tropical climate, Sci. Adv., 6, eaba1951, https://doi.org/10.1126/sciadv.aba1951,
2020.
Shiklomanov, I. A. and Sokolov, A. A.: Methodological basis of world water
balance investigation and computation, IAHS publication, 148, 77–92,
available at: http://hydrologie.org/redbooks/a148/iahs_148_ 0077.pdf (last access: February 2020), 1985.
Smith, C. A., Compo, G. P., and Hooper, D. K.: Web-based Reanalysis
Intercomparison Tools (WRIT) for analysis and comparison of reanalyses and
other datasets, B. Am. Meteorol. Soc., 95, 1671–1678,
https://doi.org/10.1175/BAMS-D-13-00192.1, 2014.
Spencer, R. W. and Christy, J. R.: Precise monitoring of global temperature
trends from satellites. Science, 247, 1558–1562, 1990.
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532, 2010.
Su, L., Miao, C., Kong, D., Duan, Q., Lei, X., Hou, Q., and Li, H.:
Long-term trends in global river flow and the causal relationships between
river flow and ocean signals, J. Hydrol., 563, 818–833, https://doi.org/10.1016/j.jhydrol.2018.06.058, 2018.
Sun, F., Roderick, M. L., and Farquhar, G. D.: Changes in the variability of
global land precipitation, Geophys. Res. Lett., 39, L19402,
https://doi.org/10.1029/2012GL053369, 2012.
Syed, T. H., Famiglietti, J. S., and Chambers, D. P.: GRACE-based estimates of
terrestrial freshwater discharge from basin to continental scales, J. Hydrometeorol., 10, 22–40, 2009.
Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in
column-integrated atmospheric water vapor, Clim. Dynam., 24, 741–758,
https://doi.org/10.1007/s00382-005-0017-4, 2005.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy budget,
B. Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Tsaknias, D., Bouziotas, D., and Koutsoyiannis, D.: Statistical comparison
of observed temperature and rainfall extremes with climate model outputs in
the Mediterranean region, ResearchGate, https://doi.org/10.13140/RG.2.2.11993.93281,
2016.
Tyralis, H. and, Koutsoyiannis, D.: On the prediction of persistent
processes using the output of deterministic models, Hydrolog. Sci.
J., 62, 2083–2102, https://doi.org/10.1080/02626667.2017.1361535, 2017.
van der Meer, D. G., van den Berg van Saparoea, A. P. H., van Hinsbergen,
D. J. J., van de Weg, R. M. B., Godderis, Y., Le Hir, G., and Donnadieu, Y.:
Reconstructing first-order changes in sea level during the Phanerozoic and
Neoproterozoic using strontium isotopes, Gondwana Res., 44, 22–34, https://doi.org/10.1016/j.gr.2016.11.002, 2017.
Velicogna, I. and Wahr, J.: Time-variable gravity observations of ice sheet
mass balance: Precision and limitations of the GRACE satellite data,
Geophys. Res. Lett., 40, 3055–3063, 2013.
Velicogna, I., Sutterley, T. C., and Van Den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137,
2014.
Vonder Haar, T. H., Bytheway J. L., and Forsythe, J. M.: Weather and climate
analyses using improved global water vapor observations, Geophys. Res.
Lett., 39, L16802, https://doi.org/10.1029/2012GL052094, 2012.
Wada, Y.: Modeling Groundwater Depletion at Regional and Global Scales:
Present State and Future Prospects, Surv. Geophys., 37, 419–451, https://doi.org/10.1007/s10712-015-9347-x, 2016.
Wada, Y., Lo, M. H., Yeh, P. J. F., Reager, J. T., Famiglietti, J. S., Wu, R. J.
and Tseng, Y. H.: Fate of water pumped from underground and contributions to
sea-level rise, Nat. Clim. Change, 6, 777–780, https://doi.org/10.1038/nclimate3001, 2016.
Wan, Z.:
Collection-6 MODIS Land Surface Temperature Products, Users' Guide, ERI,
University of California, Santa Barbara, available at: https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf (last access: February 2020),
2013.
Wan, Z., Hook, S., and Hulley, G.: MOD11C3 MODIS/Terra Land Surface
Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006, distributed by
NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD11C3.006, 2015.
Wang, H. and Sun, F.: On the Stationarity of Annual Precipitation over
China (1959–2018), J. Hydrometeorol., 21, 881–890, https://doi.org/10.1175/JHM-D-19-0195.1, 2020.
Wang, J.-W., Wang, K., Pielke Sr., R. A., Lin, J. C., and Matsui T.: Towards a
robust test on North America warming trend and precipitable water content
increase, Geophys. Res. Lett., 35, L18804, https://doi.org/10.1029/2008GL034564, 2008.
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018.
Wild, M., Grieser, J., and Schär, C.: Combined surface solar brightening and increasing
greenhouse effect support recent intensification of the global land-based
hydrological cycle, Geophys. Res. Lett., 35, L17706, https://doi.org/10.1029/2008GL034842, 2008.
Wu, P., Christidis, N., and Stott, P.: Anthropogenic impact on Earth's
hydrological cycle, Nat. Clim. Change, 3, 807–810, https://doi.org/10.1038/nclimate1932, 2013.
Wuebbles, D. J., Easterling, D. R., Hayhoe, K., Knutson, T., Kopp, R. E.,
Kossin, J. P., Kunkel, K. E., LeGrande, A. N., Mears, C., Sweet, W. V., Taylor,
P. C., Vose, R. S., and Wehner, M. F.: Our globally changing climate, in:
Climate Science Special Report: Fourth
National Climate Assessment, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart,
B. C., and Maycock T. K., Vol. I, U.S. Global Change Research Program,
Washington, DC, USA, 35–72, https://doi.org/10.7930/J08S4N35, 2017.
Xie, P.: CPC unified gauge-based analysis of global daily precipitation,
24th Conference on Hydrology, available at: https://ams.confex.com/ams/90annual/techprogram/paper_163676.htm (last access: February 2020), 2010.
Zekster, I. and Loaiciga, H. A.: Groundwater fluxes in the global hydrologic
cycle: Past, present and future, J. Hydrol., 144, 405–427, 1993.
Zektser, I. S. and Dzhamalov, R. G.: Ground water discharge to the world's
oceans, Nature Resources, 17, 18–20, 1981.
Zektzer, I. S., Ivanov, V. A., and Meskheteli, A. V.: The problem of direct
groundwater discharge to the seas, J. Hydrol., 20, 1–36, 1973.
Zhou, Y. Q., Sawyer, A. H., David, C. H., and Famiglietti, J. S.: Fresh
submarine groundwater discharge to the near-global coast, Geophys.
Res. Lett., 46, 5855–5863, https://doi.org/10.1029/2019GL082749, 2019.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., and Cao, C.: Greening of the
Earth and its drivers, Nat. Clim. Change, 6, 791–795, 2016.
Ziegler, A. D., Sheffield, J., Maurer, E. P., Nijssen, B., Wood, E. F., and
Lettenmaier, D. P.: Detection of intensification in global- and
continental-scale hydrological cycles: Temporal scale of evaluation, J. Climate,
16, 535–547, https://doi.org/10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2, 2003.
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C.:
Mass gains of the Antarctic ice sheet exceed losses, J. Glaciol.,
61, 1019–1036, 2015.
Download
Please read the editorial note first before accessing the article.
- Article
(16327 KB) - Full-text XML
Short summary
We overview and retrieve a great amount of global hydroclimatic data sets. We improve the quantification of the global hydrological cycle, its variability and its uncertainties through the surge of newly available data sets. We test (but do not confirm) established climatological hypotheses, according to which the hydrological cycle should be intensifying due to global warming. We outline a stochastic view of hydroclimate, which provides a reliable means of dealing with its variability.
We overview and retrieve a great amount of global hydroclimatic data sets. We improve the...