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Abstract. Spatial downscaling of rainfall fields is a challeng-
ing mathematical problem for which many different types of
methods have been proposed. One popular solution consists
of redistributing rainfall amounts over smaller and smaller
scales by means of a discrete multiplicative random cascade
(DMRCs). This works well for slowly varying homogeneous
rainfall fields but often fails in the presence of intermittency
(i.e., large amounts of zero rainfall values). The most com-
mon workaround in this case is to use two separate cascade
models, namely one for the occurrence and another for the
intensity. In this paper, a new and simpler approach based on
the notion of equal-volume areas (EVAs) is proposed. Unlike
classical cascades where rainfall amounts are redistributed
over grid cells of equal size, the EVA cascade splits grid cells
into areas of different sizes, with each of them containing ex-
actly half of the original amount of water. The relative areas
of the subgrid cells are determined by drawing random val-
ues from a logit-normal cascade generator model with scale
and intensity-dependent standard deviation (SD). The pro-
cess ends when the amount of water in each subgrid cell is
smaller than a fixed-bucket capacity, at which point the out-
put of the cascade can be resampled over a regular Carte-
sian mesh. The present paper describes the implementation
of the EVA cascade model and gives some first results for
100 selected events in the Netherlands. Performance is as-
sessed by comparing the outputs of the EVA model to bilin-
ear interpolation and to a classical DMRC model based on
fixed grid cell sizes. Results show that, on average, the EVA
cascade outperforms the classical method, producing fields
with more realistic distributions, small-scale extremes and
spatial structures. Improvements are mostly credited to the
higher robustness of the EVA model in the presence of inter-
mittency and to the lower variance of its generator. However,

both approaches have their advantages and weaknesses. For
example, while the classical cascade tends to overestimate
small-scale variability and extremes, the EVA model tends to
produce fields that are slightly too smooth and block shaped
compared to the observations. The complementary nature of
the two approaches, and the fact that they produce errors of
opposite signs, opens up new possibilities for quality control
and bias corrections of downscaled fields.

1 Introduction

Stochastic rainfall downscaling algorithms are statistical
methods designed to enhance the resolution of coarse-
scale rainfall observations for use in hydrological modeling,
weather prediction or flood-risk analyses. Their simplicity
and low computational cost mean that large ensembles of
possible realizations for a single input field can be generated.
This leads to a better representation of measurement errors
and model uncertainties compared to physical downscaling
and a more realistic representation of small-scale variability.
However, the statistical nature of the approach means that
one needs to find a good balance between model complexity
and performance (e.g., the realism of the distributions and
spatial patterns that can be reproduced).

Popular statistical downscaling methods for global and re-
gional climate models include various forms of transfer func-
tions and quantile matching (Li et al., 2010; Teutschbein
and Seibert, 2012; Langousis et al., 2016), machine learn-
ing (Jha et al., 2015; He et al., 2016), and a multitude of
hybrid physical–statistical and autoregressive models (e.g.,
Lisniak et al., 2013; Bechler et al., 2015; Xu et al., 2015).
Another important family revolves around the notion of

Published by Copernicus Publications on behalf of the European Geosciences Union.



3700 M. Schleiss: A new random cascade model for downscaling intermittent rainfall fields

self-similarity, generalized scale invariance and multiplica-
tive random cascades (e.g., Lovejoy and Mandelbrot, 1985;
Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993;
Menabde et al., 1997; Schertzer and Lovejoy, 2011). The
main appeal of these techniques is that they require a very
small number of model parameters, many of which can be
inferred directly from the coarse-scale data. Also, the frame-
work itself is very flexible, as it can apply to all kinds of rain-
fall inputs from time series to spatial and space–time fields
(e.g., Deidda, 2000; Menabde and Sivapalan, 2000; Kang and
Ramirez, 2010; Raut et al., 2018).

One long-standing and still-unresolved issue of random
multiplicative cascade models applied to rainfall concerns
the question of how to properly deal with zero rainfall val-
ues. Zeros are fundamentally incompatible with the notion
of self-similarity and multiplicative random cascades (Gupta
and Waymire, 1993). They must be artificially introduced
into the cascade, for example, by setting a hard threshold
on the minimum detectable intensity (e.g., Pathirana et al.,
2003) or by modifying the cascade model in such a way
that grid cells below a given intensity only have a finite,
predetermined probability to survive at each cascade level
(Gires et al., 2013). Another workaround consists of applying
two separate cascade models for the occurrence and intensity
(e.g., Over and Gupta, 1996; Olsson, 1998; Paulson and Bax-
ter, 2007; Schmitt, 2014; Lombardo et al., 2017). However,
this requires many additional model parameters to be esti-
mated from the data, which can be challenging numerically
and can increase the risk of overfitting. Regardless of how
they are handled, zero rainfall values are likely to negatively
impact the scaling properties of rainfall, making it difficult to
retrieve reliable model parameters in the first place (Kedem
and Chiu, 1987; Schmitt et al., 1998; Veneziano et al., 2006;
de Montera et al., 2009; Gires et al., 2012; Veneziano and
Lepore, 2012; Mascaro et al., 2013).

Given the numerous challenges mentioned above, there is
a strong incentive to design new simple multiplicative cas-
cade models capable of handling rainfall fields with high lev-
els of intermittency. Particular attention is given to parsimo-
nious models, with a maximum of three parameters, whose
values can be inferred directly from the coarse-scale data.
One promising avenue explored in this paper revolves around
the notion of equal-volume areas (EVAs), a natural extension
of the interamount times (IATs) concept introduced in the
context of time-series analysis by Schleiss and Smith (2016).
The theoretical foundation for this work is motivated by re-
cent studies by Schleiss (2017) and ten Veldhuis and Schleiss
(2017), who showed that intermittent rainfall and flow time
series scale better when sampled adaptively rather than with
a fixed frequency. The hope is that by switching to an adap-
tive sampling strategy, the mathematical challenges associ-
ated with the presence of zero rainfall values can be allevi-
ated, thus leading to more robust cascades and more realistic
rainfall fields after downscaling. The present study describes
the implementation of this idea to the case of 2D rainfall

fields and discusses its advantages and limitations with re-
spect to traditional random cascades based on intensity.

The rest of this paper is structured as follows: Sect. 2 in-
troduces the new EVA model, including the splitting rule,
cascade generator and parameter estimation. In Sect. 3, the
potential of the new cascade is demonstrated by applying it to
radar rainfall snapshots collected over the Netherlands. First,
the parameterization problem is discussed. Then, the perfor-
mance is evaluated by means of controlled simulation experi-
ments during which 100 high-resolution rainfall fields are ag-
gregated to coarser scales and subsequently downscaled back
to their original resolution. Results are compared to two al-
ternative downscaling techniques (i.e., bilinear interpolation
with local intensity rescaling and a classical random cascade
based on intensity). The advantages and limitations of the
model and possible extensions are discussed in Sect. 5, and
the conclusions are given in Sect. 6.

2 Methods

2.1 A brief introduction to discrete multiplicative
random cascades

Discrete multiplicative random cascades (DMRCs) are sta-
tistical downscaling techniques designed to enhance the res-
olution of a coarse-scale rainfall field to a desired fine-scale
target resolution. For spatial cascades, this is done by suc-
cessively splitting the dimensions of coarse-scale grid cells
by two (or four, depending on the type of cascade) accord-
ing to a predefined branching rule. For example, one large
16× 16 grid cell might be divided into two subgrid cells of
8 km× 16 km at the first level of the cascade which, in turn,
will be divided into four grid cells of 8 km× 8 km at the next
level. The splitting process is repeated iteratively until the
desired target resolution lx × ly is reached. During a split,
each of the generated subgrid cells receives a random frac-
tion of the total rainfall amount in the parent grid. Redistri-
bution takes place according to some multiplicative weights,
namely W1 ≥ 0 and W2 ≥ 0, drawn from a probability dis-
tribution 0 called the cascade generator. In microcanonical
models, the sum of the weights associated with each split is
forced to one, thus ensuring that the total rainfall amount in
each grid cell is preserved. In contrast, in canonical cascades,
only the average rainfall intensity over a large number of
grid cells needs to be preserved. This has some advantages in
terms of modeling but generally results in lower performance
than microcanonical cascades (e.g., Hingray and Ben Haha,
2005). For the sake of completeness, it should also be men-
tioned that other types of cascades have been proposed to
downscale rainfall, such as those based on continuous in-
scale multifractal cascades (Lovejoy and Schertzer, 2010a,
b). However, these are outside the scope of this paper which
focuses on discrete microcanonical random cascades.
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As pointed out by Rupp et al. (2009), differences in per-
formances between cascade models primarily relate to which
probability distribution is chosen for 0 and how rainfall
amounts are reassigned to subgrid cells during the splits.
In the simplest possible setup, the probability distribution
of the generator remains the same across the entire cas-
cade. However, rainfall fields downscaled with such an ap-
proach often exhibit unrealistically high small-scale vari-
ability and extremes. Consequently, many authors recom-
mend using cascade generators whose distribution depends
on the spatiotemporal dimensions of the grid cells that are
being split or on the average rainfall intensity within them
(Rupp et al., 2009; Licznar et al., 2011). In this paper, this is
achieved by conditioning the variance of the generator on the
spatial scale and the rainfall intensity.

2.2 Description of the EVA cascade model

Let R1−RN (in mmh−1) denote a coarse-scale rainfall in-
tensity field over a regular Cartesian mesh composed of in-
dividual grid cells of Lxi ×Lyi (in km2), where Lxi and Lyi
(in km) denote the horizontal and vertical dimensions, re-
spectively, andN is the total number of grid cells in the field.
Let Ai = Lxi ·Lyi denote the areas (in km2) of the individ-
ual grid cells. The relation between intensity Ri (in mmh−1),
area Ai (in km2), volume Vi (in millions of liters), and tem-
poral aggregation timescale 1t (in h) is given as follows:

Ri =
Vi

Ai ·1t
. (1)

In a classical cascade model, grid cells of area Ai are di-
vided in two subgrid cells of equal areas, namely A(i,1) =
A(i,2) =

Ai
2 . The rainfall volumes V(i,1) and V(i,2) of the

subgrid cells are determined by multiplying Vi by random
weights W1 ≥ 0 and W2 = 1−W1 drawn from the cascade
generator model 0 as follows:

Classical cascade:
(
Ai
Vi

)
→{(

A(i,1) =
Ai
2

V(i,1) =W1 ·Vi

)
;

(
A(i,2) =

Ai
2

V(i,2) =W2 ·Vi

)}
.

(2)

The random quantities in this case are the rainfall volumes
Vi (or, equivalently, the rainfall intensities) at each level, and
the area of the grid cells plays the role of the scale λ. This
is the most natural choice for downscaling applications and
will be referred to as the classical approach in this paper. The
main drawback of the classical approach is that the condi-
tional probability distribution function of Vi , given Ai > 0,
has a mixed distribution with atom at zero as follows:

P[Vi = 0 | Ai > 0]> 0, (3)

where P denotes the probability. Moreover, the probability
that Vi equals zero, knowing Ai > 0, increases as the area

tends to zero. To reproduce such behavior, the classical cas-
cade generator model 0 must include a mechanism through
which (some) of the weights can be set to zero during the
splitting process (usually at the expense of additional model
parameters). This is far from trivial as one needs to make
sure that the cascade does not remove all rainy areas during
the downscaling and does not introduce zeros immediately
next to grid cells with very high rainfall intensities (Olsson,
1998).

The main contribution of this paper is to show that many
of the issues associated with zero rainfall values can be
avoided by adopting a slightly different representation of
rainfall based on the notion of equal-volume areas. In the
EVA framework, the scale λ is given by the total rainfall vol-
ume Vi = Ai ·Ri ·1t > 0 contained in a grid cell, and the
random quantities that are being downscaled are the areas Ai
needed to accumulate fixed volumes of water. At each split,
the total volume of water Vi in a grid cell is divided by two
and equally redistributed over two subgrid cells of different
areas. The areas A(i,1) and A(i,2) of the two subgrid cells are
determined by drawing random weightsW1 andW2 = 1−W1
from a cascade generator 0EVA with a predetermined prob-
ability distribution. A small diagram illustrating this process
is provided in Fig. 1.

EVA cascade:
(
Ai
Vi

)
→{(

A(i,1) =W1 ·Ai

V(i,1) =
Vi
2

)
;

(
A(i,2) =W2 ·Ai

V(i,2) =
Vi
2

)}
.

(4)

Note that by convention, splits always occur perpendicu-
lar to the longest grid cell dimension; that is, splitting occurs
horizontally if Lx ≤ Ly and vertically otherwise. Splitting is
applied iteratively until the total rainfall volume in a grid cell
is lower than a fixed-bucket capacity εV > 0, which denotes
the smallest rainfall volume that can be detected at the target
resolution. The latter can be prescribed by end-user require-
ments or imposed to match known instrumental limitations,
such as the capacity of a tipping-bucket rain gauge or the
sensitivity of a weather radar. The smaller the bucket capac-
ity, the larger the number of cascade levels and subgrid cells.
Note that the rule above does not apply to grid cells for which
Vi = 0, as the latter do not contain any water and do not need
to be split. These grid cells are kept “as is” until the end of
the cascade. The main advantage of the EVA approach over
the classical cascade is that the areas needed to accumulate
a positive rainfall volume Vi > 0 can never be zero, as fol-
lows:

P[Ai = 0 | Vi > 0] = 0. (5)

Finally, note that, by construction, the EVA cascade de-
scribed above implements an adaptive spatial sampling of
the coarse-scale rainfall field, which is very similar to that of
a quadtree (Shankar and Hutchinson, 1990). The cascade de-
composes a regular 2D rainfall field into grid cells of variable
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Figure 1. Schematic of the branching rules for the classical and
equal-volume area (EVA) random cascades. The area is denoted
by A and the rainfall volume by V . The random weights are
W1−W6.

sizes, with fewer and larger grid cells in areas of low rainfall
intensity and more numerous and smaller grid cells in areas
of large rainfall intensities. The redistribution rule ensures
each of the generated subgrid cells contains a strictly posi-
tive rainfall amount, regardless of its size or at which level of
the cascade it was produced. Zeros are not coded explicitly
into the field, making it unnecessary to model their distribu-
tion and structure. The downside of the approach is that the
output of the cascade consists of grid cells of variable sizes.
From a practical point of view, it may therefore be neces-
sary to resample the output of the EVA cascade onto a reg-
ular Cartesian mesh with a fixed spatial resolution, at which
point the zero rainfall values will become apparent. This pro-
cess, also known as “regridding”, is commonly encountered
in geophysical image mapping, and various computationally
efficient solutions have been proposed for it. Here, we con-
sider the simple case of regridding an irregular rectilinear
grid to a regular Cartesian mesh composed of square pix-

els of lx × ly in size centered around (xi ,yi). The total rain-
fall amount V (xi,yi) in a target pixel centered around (xi ,yi)
is given by the sum of all rainfall amounts in the irregular
source field times the ratio of overlapping areas with the tar-
get pixel, as follows:

V (xi,yi)=

m∑
j=1

λijVi, (6)

where 0≤ λij ≤ 1 denotes the fractional area overlap of the
target grid cell i with the source cell j , and m ∈ N is the to-
tal number of grid cells generated by the cascade. Fractional
overlaps for rectangular grid cells are easy to calculate, mak-
ing this step very efficient. In the end, all resampled rainfall
amounts V (xi,yi) below the minimum detectable threshold
εV > 0 are set to zero, similar to how they would appear in
real measurements. Note that this threshold is not imposed
on the cascade output itself (which does not contain any ze-
ros) but only on the resampled quantities. Because of this,
the frequency of zero rainfall values and their location in the
domain will depend on the spatial scale at which the field is
displayed. The latter can be changed at any time, depending
on user requirements, without having to run another random
cascade. In fact, an irregular grid combined with a final re-
sampling step for visualization constitutes a very natural way
of modeling a scale-dependent process like rainfall.

2.3 Splitting rule

The way grid cells are split at each level plays a crucial role
in determining the spatial structure of the downscaled field.
Independent of the used cascade generator, for any weight
0<W < 1, there are only two possibilities for splitting a grid
cell. In the case of vertical splits, the left subgrid cell can
be assigned the area W ·Ai (corresponding to an intensity
of Ri/(2W ·Ai)) or, conversely, the complementary value
(1−W) ·Ai . The splitting rule is a set of instructions for de-
termining which side is assigned the lowest area or, equiv-
alently, the highest rainfall intensity. To preserve the over-
all spatial structure and coherency of the rainfall field dur-
ing downscaling, knowledge about the rainfall intensity in
the surrounding grid cells is required. This is achieved by
performing inverse distance interpolation of the coarse-scale
rainfall intensity field on the left or right sides (for horizontal
splits) or top or bottom (for vertical splits) of each grid cell.
At each split, the side with the highest interpolated rainfall
value is assigned the largest intensity (i.e., the smallest area).
An example of this principle is shown in Fig. 2 for a sin-
gle grid cell (in bold at the center of the figure) with area A
surrounded by seven grid cells with different areas and in-
tensities. Note that the splitting rule, as defined above, only
takes into account the rainfall values in surrounding grid cells
without influencing the cascade weights themselves. Its only
purpose is to ensure that, as we go through the cascade, water
is redistributed in a way that is spatially coherent with respect

Hydrol. Earth Syst. Sci., 24, 3699–3723, 2020 https://doi.org/10.5194/hess-24-3699-2020



M. Schleiss: A new random cascade model for downscaling intermittent rainfall fields 3703

Figure 2. Illustration of the splitting rule for a single grid cell (in
bold at the center of the figure), with area A surrounded by seven
grid cells with different areas and intensities. Grid cells are always
split perpendicularly to their longest dimension (i.e., vertically in
this case). The inverse-distance interpolated rainfall rates R̂IDW on
the left and right sides of the grid cell (or equivalently, at the top
and bottom for horizontal splits) are used to determine which side
receives the highest rainfall intensity during the split (i.e., the left
side in this case). The weights W1 and W2 = 1−W1 are drawn at
random from a fixed distribution model.

to the coarse-scale observations and all previously generated
grid cells during the cascade. This is particularly important
in the first stages of the cascade, when rainfall amounts can
be redistributed very unevenly. The choice of the interpola-
tion scheme is not critical as long as it provides a relatively
smooth estimate of the rainfall distribution over the domain.
In this study, inverse-distance weighting was used. To limit
the computational time associated with interpolation, only
the 100 nearest surrounding grid cells were used. Note that,
since the spatial distribution of the rainfall intensity over the
domain changes after each split, the interpolated values need
to be updated regularly to take into account the newly gener-
ated fine-scale rainfall patterns. Without this update, down-
scaled fields would rapidly lose their spatial coherency. In
theory, the interpolated rainfall values should be recalculated
after each split. This is especially important at the beginning
of the cascade when grid cells are still large. To save time
at later stages, it is also acceptable, in practice, to update the
interpolated values only once in a while, for example after
a fixed number of splits or at the end of each new cascade
level. Results show that this strategy can save precious time
when the number of subgrid cells becomes large while only
marginally affecting the small-scale structure of the down-
scaled fields.

2.4 The cascade generator

The probability distribution of the cascade generator is a cru-
cial component of any discrete multiplicative random cas-
cade (Over and Gupta, 1994; Ossiander and Waymire, 2000).
Without any explicit physical law governing the redistri-
bution of precipitation over scales, choosing an appropri-
ate generator model can be a rather subjective task. Conse-
quently, a wide range of possible distributions has been pro-
posed so far, from uniform (Olsson, 1998) and log normal
(Over and Gupta, 1996; Xu et al., 2015) to beta (Ahrens,
2003; Molnar and Burlando, 2005; Paulson and Baxter,
2007) and log Lévy (Gupta and Waymire, 1990; Menabde
and Sivapalan, 2000; Pathirana et al., 2003; Schertzer and
Lovejoy, 2011). Beyond the ability of the generator to repro-
duce observed scale invariance in data, other important fac-
tors to consider are simplicity and ease of interpretation. One
distribution that satisfies all these criteria and will be used in
this study is the following logit-normal distribution:

ln
(

W

1−W

)
∼N(µ,σ 2), (7)

where µ ∈ R and σ ≥ 0 represent the mean and SD of an un-
derlying Gaussian random variable. Further simplifications
can be made by assuming that the cascade weights are sym-
metrically distributed around 0.5, which forces µ to be zero.

The logit-normal generator model is not necessarily opti-
mal for all types of events and all spatiotemporal scales, but it
is a fair enough approximation of empirical cascade weights
to be useful in practice. Moreover, the distribution is contin-
uous, supported over the open unit interval (0,1) and easy to
simulate through its analytical link with the Gaussian distri-
bution. The most important advantage of all, however, lies in
the ease of interpretation of the parameter σ , which measures
the spread of the underlying Gaussian and therefore directly
relates to the subgrid variability (i.e., the intermittency) of
the rainfall process within a given grid cell. Figure 3 illus-
trates this point by showing the density function of a logit-
normal cascade generator W with µ= 0 for four different
values of σ . It can be seen that for small values of σ , the dis-
tribution tends to a delta function centered around 0.5. This
corresponds to a case with low spatial variability and results
in grid cells splitting up very evenly. On the other hand, as
σ →∞, the density of W progressively moves away from
0.5 and tends to 0 almost everywhere, except for two small
symmetric intervals near 0 and 1 (without ever reaching these
limits). This corresponds to high spatial variability and high
intermittency and means that grid cells split up very unevenly
during the cascade.

Since µ= 0 is fixed, the only parameter needed to de-
fine the full distribution of the cascade generator is σ . Pre-
vious research on discrete multiplicative random cascades
has shown that the empirical distribution of W usually de-
pends on both the intensity and spatial scale (e.g., Over and
Gupta, 1994; Olsson, 1998; Marani, 2005; Rupp et al., 2009;
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Figure 3. Theoretical distribution of the logit-normal cascade weights W in Eq. (7) for µ= 0 and different values of SD σ .

De Luca, 2014). The analyses conducted within this study
confirm these previous findings, showing that within the EVA
framework, on average, the spread of the cascade weights in-
creases with area A and decreases with intensity R = V

A·1t
.

Based on these empirical observations, a simple power law
model for expressing the SD σ of the cascade generatorW is
proposed as follows:

σ(A,R)= a ·R−b ·Ac, (8)

where A (in km2) denotes the area of the grid cell to be
split, R (in mmh−1) is the intensity (for a given area A
and temporal resolution1t), and a > 0, b > 0, 0< c < b are
three model coefficients.

2.5 Convergence

Because the amount of water is halved at each split of the
cascade, according to Eq. (8), the fate of individual grid cells
in the EVA cascade will be determined by how quickly their
area decreases with respect to their intensity. In fact, if we
impose b > c and let the cascade run for a long enough time,
only two possible outcomes can result, namely either σ → 0
or σ →∞.

In the first case (σ → 0), grid cells of area Ai are split
in two almost equal areas A(i,1) ≈ A(i,2) ≈

Ai
2 . The cascade

generator for the two subgrid cells after the split will there-

fore have SD as follows:

σ(A(i,1),R(i,1))= σ(A(i,2),R(i,2))

= 2−c · σ(Ai,Ri) < σ(Ai,Ri).
(9)

Therefore, grid cells at subsequent cascade levels will
tend to split more and more evenly, eventually converging
to a fixed rainfall intensity. In the second case (i.e., σ →∞),
grid cells split up very unevenly. Without a loss of generality,
we can assume that the first subgrid cell in this case will have
area A(i,1) ≈ Ai , while the second will have area A(i,2) ≈ 0.
The SD of the cascade generator for the first subgrid cell is
then given by the following:

σ(A(i,1),R(i,1))≈ σ

(
Ai,

Ri

2

)
= 2b · σ(Ai,Ri) > σ(Ai,Ri),

(10)

while the SD of the second subgrid cell will be
σ(A(i,2),R(i,2))≈ 0. At the next cascade level, the first sub-
grid cell will therefore split up very unevenly while the sec-
ond subgrid cell will have a higher intensity and split up
rather evenly (similar to the first case where σ → 0). The fi-
nal result of this process is a bounded cascade in which some
grid cells have areas converging to a fixed value (or, equiva-
lently, intensity converging to zero) while all other grid cells
have rainfall rates converging to a strictly positive value. Fig-
ure 4 illustrates this process, showing how the area of some
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Figure 4. Example of an EVA cascade for an 8 km× 8 km input field with the size of 128 km× 128 km. In this example, the cascade was
stopped after a fixed number of levels equal to six. The output was then resampled over a regular 1 km× 1 km Cartesian grid. All rainfall
rates below 0.1 mmh−1 (after resampling) are assumed to be undetectable and are therefore displayed in white. Note how some grid cells
converge to a fixed area during the cascade while others converge to a fixed intensity.

small grid cells become “stuck” during the cascade while all
the others end up splitting more and more evenly. However,
note that since the weights are drawn at random, the process
only converges in a probabilistic sense, that is, on average,
over a large number of cascade levels and splits. The con-

dition b > c in Eq. (8) is used to ensure convergence by pre-
venting any uncontrolled increases in rainfall intensities from
one level to another in the cascade. Indeed, the generator is
built in such a way that whenever the intensity in a grid cell
increases, the SD of the generator decreases. This forces sub-
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Figure 5. Empirical breakdown coefficients for a 4× 4 grid cell within the EVA framework (both for vertical and horizontal splits). The
empirical weights W1 and W2, which split the rainfall volume in half, are determined by linear interpolation.

sequent splits to be more even and reduces the probability of
seeing any further increases in intensity at the next levels.
This also means that the largest changes in rainfall intensi-
ties tend to occur at the earlier stages of the cascade when
the variance of the generator is still large. The magnitude
of the random fluctuations then progressively decreases (at
a rate that depends on the values of a, b and c), and inten-
sities quickly converge to a fixed value. This can be seen as
a strength as it means that the cascade is very stable and can
be stopped after a small number of iterations (i.e., as soon as
the output has stabilized). However, it can also be a disadvan-
tage as fast convergence means that the EVA cascade is more
likely to underestimate small-scale variability (especially for
large downscaling ratios).

2.6 Sample estimation of the cascade generator model

An important advantage of the microcanonical model is that
the distribution of the cascade weights can be studied di-
rectly from the data through the calculation of empirical
breakdown coefficients (Cârsteanu and Foufoula-Georgiou,
2016; Licznar et al., 2015). The latter are estimated by suc-
cessively aggregating grid cells in the input field to larger
spatial scales and by studying how the rainfall volumes in
aggregated grid cells split up as a function of area and rain-
fall intensity. For example, an input field of a 1 km× 1 km

resolution can be aggregated to blocks, with the sizes of
1 km× 2 km, 2 km× 1 km, 2 km× 2 km, and 4 km× 2 km
etc., each of which can be split in two equal subareas to an-
alyze the redistribution of rainfall volumes inside them. For
the EVA framework, the procedure is similar, except that we
are interested in determining the subarea needed to accumu-
late half of the rainfall amount in the parent grid cell. The
main drawback compared to the classical approach is that,
due to the fixed grid spacing, the subareas cannot be deter-
mined exactly but must be approximated by linear interpola-
tion, similar to the procedure described in Eq. (4) of Schleiss
(2017). Figure 5 shows an example of this for a single grid
cell of 8× 8 for both horizontal and vertical splits. For the
vertical split, the two subgrid cells are 4.32× 8 and 3.68× 8.
The first dimension (i.e., 4.32) is obtained by interpolating
the rainfall amount contained in the smaller grid cell of 4× 8
(containing slightly less than half the amount) and the one
immediately above at a size of 5× 8 (which contains more
than half). The additional interpolation step means that the
empirical breakdown coefficients of small grid cells will be
affected by larger sampling uncertainties compared to large
grid cells. In theory, one could calculate the local spatial au-
tocorrelation structure of the rainfall field to estimate the un-
certainty due to linear interpolation. However, the quantifica-
tion of this uncertainty and its incorporation into the estima-
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tion process goes beyond the scope of this paper and will be
ignored here.

In the classical cascade model, no linear interpolation is
needed. However, some of the rainfall volumes in the subgrid
cells may be zero (i.e., one size receives all the rain). Such
splits are fundamentally incompatible with the logit-normal
model prescribed in Eq. (7). To avoid numerical issues when
evaluating ln(W), one can set the weights to a small positive
value close to zero or simply ignore the problematic splits
(which is the approach adopted in this paper). Because some
splits are ignored during parameter estimation, the cascade
generator model for the classical cascade model and highly
intermittent rainfall fields is likely to be biased.

Once the empirical breakdown coefficients have been de-
termined from the sample, the last step consists of estimating
the three model parameters a, b and c in Eq. (8). To do this,
the empirical breakdown coefficients are grouped in classes
according to the total area A and rainfall intensity R of the
parent grid cell that generated them. For the area A, the spac-
ing between classes is imposed by the spatial resolution of
the input field. For the intensity, the number of classes that
can be formed depends on how many empirical breakdown
coefficients are available at a given spatial scale. In this pa-
per, 30 regularly spaced intensity classes were used for each
value of A. Moreover, each class of (A, R) needed to con-
tain at least 50 empirical breakdown coefficients in order to
estimate the SD σ(A,R) of the underlying logit-normal dis-
tribution. In the end, once σ(A,R) has been estimated for all
values of A and R, the coefficients a, b and c of the power
law model in Eq. (8) can be estimated through nonlinear least
square fitting (implemented in the nls() function in R).

2.7 Benchmarks

While the EVA downscaling technique is the main fo-
cus of this paper, two additional spatial downscaling tech-
niques were considered for comparison purposes. The first
is bilinear interpolation, implemented in the function “in-
terp.surface()” of the R package “fields” (Douglas Nychka
et al., 2017). Bilinear interpolation is a deterministic non-
parametric downscaling method. It makes no assumption
about the structure and distribution of the data, making it very
robust. However, because it is an interpolation technique, it
tends to generate fields that are too smooth compared to the
observations. Note that, strictly speaking, bilinear interpo-
lation is not a disaggregation technique because it does not
conserve the total rainfall amount in each coarse-scale grid
cell. However, the interpolated values can always be rescaled
so that the average rainfall intensity over the whole domain
is preserved, similar to a canonical cascade. This technicality
is not crucial here since bilinear interpolation is not the main
focus of the paper and is only used as a rough baseline against
which the added value of the random cascade models can be
assessed. Also note that other interpolation techniques, such
as kriging, were explored. But the downscaled fields were

still too smooth and no clear improvement in performance
was observed compared to bilinear interpolation.

The second benchmark is a classical microcanonical dis-
crete multiplicative random cascade based on rainfall inten-
sity as described in Eq. (2). To ensure fair comparisons, the
classical cascade model is set up to be a perfect replicate of
the new EVA model. It uses the same logit-generator model,
the same splitting rules and the same power law model as in
Eq. (8), albeit with different a, b, and c coefficients. Note that
the classical cascade is run without performing any separa-
tion between the occurrence and intensity process. Dry and
rainy regions are delineated at the end by imposing a fixed
threshold on the minimum detectable rainfall volume at the
target resolution, similar to what is done in the EVA cascade.
This may not be state of the art, but it ensures a fair compar-
ison and makes it easier to outline the strengths and limita-
tions of both approaches.

To assess performance, synthetic experiments on high-
resolution radar rainfall fields were performed. During these
experiments, 100 different 5 min radar rainfall snapshots
from the operational Dutch national C-band radar composite
over an area of 128 km× 128 km near Rotterdam were aggre-
gated from their original spatial resolution of 1 km× 1 km to
square blocks of 2 km× 2 km, 4 km× 4 km and 8 km× 8 km
(see Fig. 6 for events 1–4). Then, the fields were down-
scaled back to their initial resolution of 1 km× 1 km. For
each event, 100 different realizations of the random cascades
were generated to have an estimate of the ensemble spread.
The threshold used to distinguish dry from rainy grid cells
at the target resolution was set to 0.1 mmh−1 (correspond-
ing to a bucket capacity of εV = 8333L for each grid cell
of 1 km× 1 km× 5 min) to match the minimum measurable
rainfall intensity in the Dutch radar product. Performance
is assessed both visually and quantitatively using a set of
standard statistical metrics (e.g., bias, root mean square er-
ror, quantiles, coefficient of determination and variograms).
Among the 100 radar snapshots used for performance evalua-
tion, the first 4 were selected for in-depth analyses (see Fig. 6
and Table 1 for more details). Two of them (i.e., events 2
and 4) are characterized by widespread, predominantly strat-
iform and homogeneous rain with low rainfall intensities and
low spatial variability. The other two are heavy convective
storms with high rainfall intensities, spatial variability and
a mixture of both stratiform and convective rainfall.

3 Results

3.1 Parameterization

In the following, the cascade generator models for the
EVA and classical cascade models (for each of the 100
1 km× 1 km 5 min radar rainfall snapshots between 2008 and
2018) are derived. The procedure used to estimate the model
parameters a, b and c for each event is described in Sect. 2.6.
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Figure 6. Original 1 km× 1 km and upscaled (4 km× 4 km and 8 km× 8 km) 5 min radar rainfall snapshots for events 1 to 4.

For completeness, two different approaches are considered.
In the first, the values of a, b and c are estimated using
the coarse-scale data only, as one would do in practice. In
the second, the values of a, b and c are estimated using
the high-resolution data at the target scale of 1 km× 1 km

(which are unknown in practice). The latter represent the
best possible estimates that we can make of the “true” un-
derlying cascade generator parameters and will be used as
a reference for assessing the bias in coarser-resolution esti-
mates. Table 2 shows the obtained parameter estimates for
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Table 1. Summary statistics for the four example events, namely time; proportion of zero rainfall values p0; average rainfall intensity R+

(given occurrence); maximum rainfall intensity Rmax; variance σ 2
R+

of rainfall intensity (given occurrence); and spatial decorrelation range
of the rainfall intensity field (given occurrence).

Event Time (yyyy/mm/dd) p0 (%) R
+ (mmh−1) Rmax (mmh−1) σ 2 (mm2 h−2) Range (km)

1 2009-05-26 02:50 21.7 5.37 97.2 65.2 23.4
2 2015-11-09 16:55 18.0 0.77 3.7 0.35 73.3
3 2009-11-23 17:05 22.7 4.51 89.2 30.3 26.3
4 2009-12-08 02:40 32.1 0.65 4.1 0.24 33.8

Table 2. Model parameter estimates a, b and c for the first four events for input resolutions of 1 km× 1 km, 2 km× 2 km, 4 km× 4 km, and
8 km× 8 km.

1 km× 1 km 2 km× 2 km 4 km× 4 km 8 km× 8 km

a b c a b c a b c a b c

Event 1: EVA 0.17 0.02 0.23 0.22 0.09 0.21 0.37 0.22 0.12 0.19 0.00 0.17
Event 1: classical 0.19 0.01 0.26 0.21 0.05 0.26 0.59 0.11 0.08 0.64 0.00 0.05

Event 2: EVA 0.07 0.31 0.27 0.08 0.39 0.22 0.07 0.44 0.24 0.06 0.53 0.24
Event 2: classical 0.08 0.36 0.27 0.09 0.44 0.22 0.08 0.49 0.24 0.10 0.61 0.20

Event 3: EVA 0.40 0.43 0.16 0.58 0.48 0.08 0.66 0.40 0.04 0.49 0.34 0.08
Event 3: classical 0.59 0.56 0.16 0.86 0.52 0.06 1.17 0.46 0.00 1.16 0.40 0.00

Event 4: EVA 0.10 0.44 0.24 0.15 0.42 0.16 0.21 0.44 0.08 0.20 0.46 0.09
Event 4: classical 0.10 0.50 0.26 0.16 0.46 0.17 0.31 0.49 0.05 0.44 0.52 0.00

the first four events in the database and four different input
resolutions of 1 km× 1 km, 2 km× 2 km, 4 km× 4 km, and
8 km× 8 km. Retrieved model parameters are clearly sen-
sitive to the spatial resolution of the input data, exhibiting
different types of error patterns and biases as a function of
the selected event and chosen cascade model. Figure 7 gives
a more general overview of the problem, showing the es-
timated parameter values (denoted by â, b̂ and ĉ) for all
100 fields in the database for two different input resolutions
of 8 km× 8 km and 1 km× 1 km. The large scatter and low
coefficients of determination suggest that, in general, it is not
possible to reliably infer the cascade generator parameters
directly from coarse-scale data (both for the EVA and clas-
sical methods). Specifically, one can see that the a parame-
ter tends to be overestimated while the c parameter tends to
be underestimated. For b, there appears to be no systematic
bias. However, the low coefficients of determination of 0.36
and 0.43 suggest that coarse-scale estimates are affected by a
considerable sampling uncertainty. Also, the fact that ĉ is of-
ten zero when estimated from coarse-scale data is a statistical
artifact caused by the lack of spatial resolution. It wrongly
suggests that the size of a grid cell has no statistically sig-
nificant effect on the variance of the generator, which is ob-
viously not true as estimates of c obtained from the high-
resolution 1 km× 1 km input data are never zero. The reason
for this is the limited range of variation for A in the coarse-
scale input data, which makes it impossible to correctly esti-

mate the variance of the generator when A→ 0. In contrast,
the behavior of the generator when R→ 0 (i.e., the b pa-
rameter) is much easier to guess, as both low and large rain-
fall intensities remain possible even at coarser spatial scales.
Comparing the root mean square errors for the EVA and clas-
sical cascade models in Fig. 7, one can see that parameters
estimated via the EVA framework tend to be slightly more
robust to changes in the input resolution. Nevertheless, both
methods suffer from estimation biases and neither of them
is capable of perfectly recovering the “true” generator from
coarse-scale data, even for relatively modest downscaling ra-
tios (i.e., 64 in this case). Sampling effects obviously play an
important role in this but also the fact that rainfall fields are
not perfectly scale invariant. Therefore, the splitting and scal-
ing information retrieved from the coarse-scale fields may
not reflect what happens at smaller scales or specific areas
in the field, especially if the rainfall is highly heterogeneous
and intermittent. The conclusion is that in applications in-
volving downscaling ratios larger than approximately 64, it is
generally not possible to retrieve reliable cascade generator
parameters directly from coarse-scale data. However, good
results might still be possible with the help of climatologi-
cal generator models or, alternatively, by combining multiple
successive time steps together to increase sample size and
obtain less noisy sample estimates of σ(A,R).

Another important observation that can be made concerns
the variance of the generator for the EVA and classical mod-
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Figure 7. Estimated coarse-scale generator parameters a, b and c for an input resolution of 8 km× 8 km versus the fine-scale parameter
values derived using the 1 km× 1 km data for the 100 selected events.

els. Figure 8 shows the SD σ(A,R) of the empirical break-
down coefficients for all 100 radar snapshots as a function
of area A and rainfall intensity R. The left column shows
the results for the EVA cascade, while the classical model
is depicted on the right. One can see that empirical cas-
cade weights in the EVA model tend to have slightly lower
variance compared to the classical framework (0.409 versus
0.535), especially for larger values of A. This is the conse-
quence of the way grid cells are split in the EVA approach,
i.e., through integration of the rainfall amount rather than
splitting grid cells in two equal parts. Figure 9 illustrates this
point by showing the empirical breakdown coefficients W1
andW2 for a 16 km× 16 km subdomain belonging to event 1.
Since in this case most of the rainfall is concentrated in the
left part of the domain, splitting grid cells vertically results
in a very uneven redistribution of rainfall rates. In the classi-
cal cascade, the left part receives 96.3 % of the total rainfall
volume while the right part only receives 3.7 % (W1 = 0.963

and W2 = 0.037). The EVA model also produces an uneven
split, with half of the total rainfall amount being assigned to
an area 82.2 % the size of the parent grid cell to the right of
the domain while the other half is assigned to the remain-
ing 17.8 % (W1 = 0.822 andW2 = 0.178). Overall, however,
the EVA split is more balanced. The same conclusion ap-
plies to horizontal splits, with the EVA method producing
slightly more balanced weights (55.5 %–44.5 %) than the
classical framework (59.4 %–40.6 %). Of course, in reality,
many more grid cells must be taken into account when cal-
culating the variance of the generator around 0.5. But the key
point here is to understand that the generator of the EVA cas-
cade tends to have lower overall variance, making it easier
to estimate from a limited number of sample splits. Also,
the adaptive sampling strategy in the EVA model reduces
sensitivity to the input resolution, resulting in a slightly bet-
ter power law fit in Eq. (8; i.e., R2 of 0.66 for EVA versus
0.61 for the classical method). Nevertheless, improvements
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Figure 8. Standard deviation of empirical breakdown coefficients for the 100 radar snapshots in the database as a function of the rainfall
intensity R and area A of grid cells.

are not systematic and differences between the two methods
can be rather subtle. For very homogeneous rainfall fields,
for example, both approaches will essentially be identical,
and the classical way of splitting might even be better. But
for strongly variable and intermittent fields, the EVA model
is likely to provide a significant practical advantage over the
classical approach (see the next section).

3.2 Visual assessment of downscaled fields

Figure 10 shows some examples of downscaled rainfall fields
obtained using the EVA and classical cascade models for the
first four events in the database. In all four cases, the down-
scaling ratio was 64. In other words, the original radar rain-
fall snapshots were first aggregated (i.e., block averaged) to
8 km× 8 km before being downscaled back to their origi-
nal resolution of 1 km× 1 km. The cascade generator models
needed to run the downscaling schemes were estimated di-
rectly from the coarse-scale 8 km× 8 km resolution data, as
one would do in practice.

Comparing the outputs of the EVA and the classical cas-
cade, one can see that the EVA cascade tends to produce
smoother fields with lower overall variance and peak intensi-
ties. Visually, the fields appear to be in better agreement with
the original radar snapshots, both in terms of distribution and

spatial structure (see Sect. 3.3 for more quantitative compar-
isons). Visually speaking, one of the biggest disadvantages
of the EVA cascade appears to be the fact that the result-
ing fields look slightly block shaped, with some of the initial
coarse-scale grid cells still visible. The block shape can be
attributed to biased parameter estimates a, b and c caused
by the limited range of spatial scales available for studying
the splitting behavior of grid cells. In particular, the previous
section has shown that the c parameter, which controls the
splitting of grid cells with respect to area, tends to be under-
estimated when derived from coarse-scale data, causing the
cascade to converge too quickly. The classical model does
not appear to produce these block-shaped patterns. On the
contrary, downscaled fields appear to be too variable com-
pared to the observations. Again, the discrepancies can be
attributed to biased cascade generator parameters. But in this
case, the main problem appears to be the strongly overesti-
mated a parameter which controls the overall variability of
the splits and compensates for the underestimated c param-
eter. As shown by these four examples, none of the down-
scaled methods appears to be able to perfectly reproduce the
small-scale properties of the underlying rainfall field. How-
ever, the fact that one method tends to underestimate the to-
tal variability while the other tends to overestimate it is in-
teresting. It highlights the complementary nature of the two
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Figure 9. Example of empirical breakdown coefficients W1 and W2 for a 16 km× 16 km grid cell in event 1 (convective). The splits corre-
sponding to the EVA model are shown on the left. The ones for the classical model are shown on the right.

approaches and, perhaps, could be exploited during further
postprocessing steps and/or quality control steps.

Before moving on to more quantitative assessments, there
is another important point that needs to be made here con-
cerning the individual performances of the two random cas-
cade models. The problem with Fig. 10 is that it only shows
the performance of the two cascade models for the subop-
timal cascade generators estimated from coarse-scale data.
While this might be representative of the actual performance
in real-life conditions, it is not really a fair comparison of the
two methods. Indeed, a large part of the differences between
EVA and the classical cascade in Fig. 10 can be attributed to
the biased cascade generator parameters and not the model
itself. Therefore, to compare the two methods on a truly
fair basis, one also needs to say something about the perfor-
mance under optimal conditions (i.e., unbiased parameter es-
timates). To do this, additional experiments were performed
in which the same four rainfall fields were downscaled with
the help of the best possible generator model derived from
the 1 km× 1 km data (see Fig. 11). When comparing Fig. 10
to Fig. 11, a big improvement in the performance of the clas-
sical cascade model can be observed. This shows that both
models are capable, in theory, of producing similarly good
results. However, since in practice the optimal cascade gen-

erator model is likely to be unknown and model parameters
must be estimated from coarse-scale data, the more robust
EVA cascade is the preferable method as it is more likely to
stay close to the optimal performance on average.

3.3 Quantitative assessment of downscaled fields

Next, the probability distribution functions of the downscaled
rainfall rates generated by the random cascades are assessed.
Figure 12 shows the quantiles of observed and downscaled
rainfall rates for the first four events and a downscaling ra-
tio of 64 (8 km× 8 km to 1 km× 1 km; 100 random realiza-
tions for each event). Each cascade model is represented by
two boxplots in which the first shows the quantiles of rainfall
rate obtained when the generator is derived from the coarse-
scale data while the second shows the results for when the
generator is derived using the 1 km× 1 km data. The second
generator is unknown in practice but provides further insight
into the sensitivity of the performance to parameterization is-
sues. It also gives a good idea of the best possible achievable
performance for each model. To provide further insight into
the performance of the cascade models, Fig. 12 also shows
the quantiles obtained when applying bilinear interpolation,
which is well known for producing fields that are too smooth
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Figure 10. Downscaled rainfall fields for events 1–4 and a downscaling factor of 64 (i.e., input resolution of 8 km× 8 km and target resolution
of 1 km× 1 km). The left column shows the original radar rainfall snapshots at 1 km× 1 km. The middle and right columns show the outputs
of the EVA and classical cascade models for the (biased) coarse-scale sample generator. Only the first of 100 different random realizations
for each field and cascade model is shown.

compared to the observations, thus strongly underestimating
small-scale extremes.

First, the rainfall rates generated by the classical random
cascade model are analyzed. The distributions appear to be
in relatively good agreement with the observations. However,
some important discrepancies remain, especially for the very

high quantiles. Performance is clearly sensitive to param-
eterization issues, which vary a lot depending on the type
of event and chosen generator model. Homogeneous, low-
intensity events such as event 2 are reproduced rather well.
But, in events 1 and 4, extremes are clearly overestimated. In
fact, in the majority of the 100 considered events, the classi-
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Figure 11. Downscaled rainfall fields for events 1–4 and a downscaling ratio of 64 (i.e., input resolution of 8 km× 8 km and target resolution
of 1 km× 1 km). Similar format to Fig. 10 except that the generator model was derived from the 1 km× 1 km data.

cal cascade overestimates rainfall extremes when the coarse-
scale generator is used. However, there are also a few inter-
esting exceptions to this rule. For example, in event 3, the
classical cascade underestimates the 99.9 % quantile com-
pared to the observations. The problem with event 3 is that
the rainfall field is highly heterogeneous, consisting of multi-
ple convective and stratiform areas of different sizes, shapes

and orientations. Therefore, big local differences in scal-
ing behavior exist within the field, making it hard to derive
a meaningful cascade generator model that applies to the en-
tire domain. This is highlighted by the fact that the coarse-
scale generator actually produces better results than the fine-
scale generator, which is highly unusual and points to serious
problems during parameter estimation.
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Figure 12. Observed versus downscaled rainfall rates for the first four events in the database and a downscaling ratio of 64 (i.e., input
resolution of 8 km× 8 km and target resolution of 1 km× 1 km). The boxplots denote the 1 %, 25 %, 50 %, 75 %, and 99 % quantiles of
rainfall rates (given occurrence). The crosses represent the 99.9 % quantiles among 100 different random realizations. The labels of 8× 8 km
and 1× 1 km denote the resolution of the input data used to estimate the sample cascade generator.

When looking at the results for the EVA model, there ap-
pears to be no obvious, substantial improvement in terms
of the model’s ability to reproduce higher rainfall rates and
small-scale extremes. The only clear advantage, compared
to the classical approach, is that the outcomes of the EVA
cascade are more consistent with each other (i.e., they have
a lower ensemble spread). However, the downscaled rainfall
distributions are clearly too narrow compared to the observa-
tions, meaning that the model underestimates higher rainfall
quantiles and small-scale extremes. Still, the underestima-
tion is much less severe than for bilinear interpolation. The
systematic underestimation of higher rain rates is a problem
but can be explained by the fact that the variance of empir-
ical EVA cascade weights for small values of A tends to be
underestimated due to the additional interpolation step (see
Sect. 2.6 for more details). Figure 13 provides more insight
into this by showing the empirical semivariance values of
rainfall intensities for distances of 1 km up to 8 km (i.e., the
subgrid variability generated during the downscaling). It con-
firms that the EVA cascade produces fields that are slightly
too smooth, while the classical cascade tends to overestimate
small-scale variability. Figure 14 makes a similar compari-
son in terms of the spatial structures of the rainfall occur-

rence fields (0/1 fields). Overall, the EVA model produces
small-scale structures that are closer to the observations than
the classical cascade and bilinear interpolation. However, im-
provements are not systematic, and occasionally, the classical
cascade will be better at reproducing some of the small-scale
features. In event 1 for example, the classical cascade appears
to be better at reproducing the spatial structure of the oc-
currence field, while the EVA cascade produces outputs that
are too smooth. Moreover, the ensemble spread for the EVA
model appears to be slightly lower than for the classical cas-
cade on average. This can be explained by the rapid conver-
gence of the EVA cascade model, as explained in Sect. 2.5,
and means that, for a fixed generator model, the EVA cas-
cade produces rainfall fields with almost identical distribu-
tions and spatial structures. Individual realizations may still
look different on a pixel-by-pixel basis, but their average sta-
tistical properties (e.g., histograms and variograms) will be
almost identical. This stability can be an advantage but also
means that, in order to produce truly representative ensem-
bles that capture a large enough range of possible scenarios,
it is better to run the EVA cascade several times with slightly
perturbed model parameters a, b and c rather than generating
a large number of fields with the same generator.
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Figure 13. Sample variograms of rainfall intensity (given occurrence) for events 1–4 and spatial displacements up to 8 km. The downscaling
factor is 64 (i.e., input resolution of 8 km× 8 km and target resolution of 1 km× 1 km). For each cascade model, 100 different realizations
were generated. The generator model was estimated from the coarse-scale data at an 8 km× 8 km resolution.

Figure 15 gives a broader overview of the performance
over the 100 selected events for a downscaling ratio of 64
and coarse-scale sample generator. It confirms what has been
pointed out before, namely that the classical cascade model
tends to overestimate high rainfall rates while the EVA model
tends to underestimate them. Nevertheless, the higher coef-
ficient of determination R2 between observations and down-
scaled rainfall rates and the better agreement in terms of re-
produced semivariance values show that the new EVA cas-
cade model tends to outperform the classical approach, both
in terms of the reproduced spatial correlation structure and
also in terms of its ability to reproduce consistent small-scale
extremes. In both cases, systematic biases remain, which
were attributed to difficulties in getting reliable generator es-
timates from coarse-scale data. Also, Fig. 15c–d show that
performance clearly decreases with intermittency (i.e., the
fraction of dry pixels in the 1 km× 1 km input data). This can
be explained by the fact that the number of samples available
for estimating the generator decreases with the fraction of
dry pixels but also because highly intermittent rainfall fields
tend to be more heterogeneous, making them more likely to
exhibit deviations from scale invariance than their homoge-
neous counterparts. Because it is more robust for sampling
uncertainty, the EVA model tends to produce more reliable
results in those difficult cases characterized by low sample
sizes and high heterogeneity. However, improvements are not

systematic and many issues remain. In particular, more de-
velopment is needed to overcome the drop in performance at
intermittency levels above 60 % and to mitigate the underes-
timation of small-scale rainfall extremes, which is a funda-
mental requirement in downscaling for hydrological applica-
tions (Molnar and Burlando, 2005).

Next, the performance of the cascade models as a func-
tion of the downscaling ratio is analyzed. Figure 16 shows
the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles of the coeffi-
cient of determination R2 between observed and downscaled
rainfall rates for three different downscaling factors (i.e., 4,
16 and 64). Figure 16a and b show the performance for the
coarse-scale sample generator, while Fig. 16c and d show
the best possible performance for the generator derived from
1 km× 1 km data (unknown in practice). The values corre-
sponding to Fig. 16a and b are given in Table 3. It shows
that, in practical applications where the generator must be
estimated from the coarse-scale data, the EVA model out-
performs the classical cascade across all three downscaling
ratios. As expected, differences between the two methods in-
crease as we move towards larger ratios. However, the EVA
model tends to remain much closer to the best theoretical
achievable performance compared to the classical cascade.
Again, the small differences between Fig. 16c and d confirm
that, in theory, both cascade models are capable of achiev-
ing a similarly good performance, provided that the optimum
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Figure 14. Sample variograms of rainfall occurrence for events 1–4 and spatial displacements up to 8 km. The downscaling factor is 64 (i.e.,
input resolution of an 8 km× 8 km and target resolution of 1 km× 1 km). For each cascade model, 100 different realizations were generated.
The generator model was estimated from the coarse-scale data at an 8 km× 8 km resolution.

generator model can be guessed from the data. Even so, the
EVA model still appears to have a slight edge over the classi-
cal approach, with median R2 values of 0.94, 0.83 and 0.54
against 0.93, 0.81 and 0.52 for the classical method, which
makes sense given that even the “best” generator model at
1 km× 1 km was inferred from a limited number of samples
and might therefore still be slightly biased. Unfortunately,
the relatively small domain size of 128 km× 128 km meant
that no reliable estimates of the generator could be obtained
for an input resolution of 16 km× 16 km or higher. However,
this is an issue related to the choice of the domain size in this
study rather than a theoretical limit on the maximum down-
scaling ratio. Additional experiments on larger domains (not
shown here) suggest that decent results can still be obtained
for downscaling ratios up to about 256, making the technique
applicable to satellite data or global numerical weather mod-
els with grid sizes up to 10 kilometers. However, the accuracy
of downscaled rainfall fields for scale ratios of 256 or higher
is likely to be low given that it is not always possible to re-
liably estimate the cascade generator from such coarse-scale
inputs.

4 Discussion

While this research mainly focused on the description of the
EVA cascade model, the underlying generator and its appli-
cation to a few selected case studies, there are numerous
complementary research lines that can be pursued. One of
them revolves around possible ways to overcome biases in
cascade generator parameters and correct for systematic er-
rors as a function of the intermittency and downscaling ratio.
Diagnostic tools for detecting potentially problematic cases
based on plausible ranges for each parameter need to be de-
veloped. Alternatively, one could apply both an EVA and
a classical cascade and compare the obtained results. If they
are wildly inconsistent, the EVA model is likely to be closer
to the radar observations. Another possibility would be to
design flexible climatological generator values that can be
adjusted depending on rainfall type and large-scale proper-
ties (e.g., intensity, intermittency and range), which is an ap-
proach that may be more flexible while limiting sampling
issues. Preliminary work performed within this study (not
shown) suggests that this may be promising for larger down-
scaling ratios as cascade parameters often tend to be cor-
related with each other or to large-scale rainfall properties
(Guntner et al., 2001; McIntyre et al., 2016). Also, differ-
ent cascade distribution models could be used with various
degrees of interpretation for the parameters. In this work, the
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Figure 15. Overall performance of the random cascade models for 100 high-resolution radar rainfall fields, coarse-scale sample generator
estimate and downscaling factor of 64 (i.e., input resolution of 8 km× 8 km and target resolution of 1 km× 1 km). Panels (a) and (b) show
the predicted versus observed 99.9 % quantile of rainfall intensity, (c) and (d) the coefficient of determination R2 between downscaled and
observed rainfall rates as a function of intermittency (i.e., the fraction of zero rainfall values in the domain), and (e) and (f) show the predicted
versus observed semivariance values for a 1 km spatial displacement. The EVA cascade is shown on the left and the classical cascade on the
right.

logit-normal model was chosen because it was the easiest and
most convenient while providing a reasonable fit to empirical
cascade weights. However, other more flexible distribution
models could be used (e.g., the beta distribution).

The second point that is worth discussing concerns the
complementary nature of the EVA framework compared to
the classical representation in terms of intensity over fixed
grid cell sizes. The main advantage of the EVA framework
lies in its adaptive sampling strategy. By flipping the problem

around and focusing on the areas for fixed amounts of water,
rather than the opposite, additional insight into the spatial
variability of rainfall within grid cells can be gained. Most
importantly, occurrence and intensity are not viewed sepa-
rately anymore but combined together into a single contin-
uous process. All quantities are strictly positive, which re-
duces model complexity, improves the scaling and lowers
sampling uncertainty. If rainfall fields were perfectly homo-
geneous and the sensors used to measure them had unlim-
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Figure 16. 10 %, 25 %, 50 %, 75 %, and 90 % quantiles of the coefficient of determination R2 between observed and downscaled rainfall
fields for the 100 selected rain events. The values corresponding to the coarse-scale generator are given in Table 3.

Table 3. 10 %, 25 %, 50 %, 75 %, and 90 % quantiles of the coefficient of determination R2 between observed and downscaled rain rates for
the EVA and classical method and three different downscaling factors (coarse-scale sample generator only).

2 km× 2 km 4 km× 4 km 8 km× 8 km

EVA Classical EVA Classical EVA Classical

10 % 0.86 0.76 0.58 0.09 0.27 0.00
25 % 0.90 0.86 0.67 0.44 0.41 0.00
50 % 0.94 0.92 0.79 0.70 0.58 0.31
75 % 0.95 0.95 0.85 0.80 0.68 0.53
90 % 0.97 0.96 0.89 0.86 0.75 0.69

ited precision, the two representations would be equivalent.
However, since rainfall fields can be highly variable in space
and time, and measurements are affected by sampling uncer-
tainties, one of the two representations is likely to be more
appropriate or useful in practice. A better understanding of
these cases and how to choose the best framework depending
on sampling resolution, intermittency and measurement ac-
curacy is key for improving our understanding of the space–
time variability of rainfall and its representation in models.

The third issue that needs to be mentioned relates to the as-
sumption that the cascade generator model is stationary and,
in particular, location invariant (i.e., that the same splitting

rules apply to all pixels independent of their location). This
may not necessarily be valid for highly heterogeneous fields,
as highlighted by the poor performance and inconsistent be-
havior of the cascade models during event 3. The key point
here is that there might be specific areas within a rainfall
field where the scaling properties are different from the rest
(e.g., stratiform versus convective areas). Similarly, the scal-
ing properties and spatial variability within individual rain-
fall cells might be very different from the average variability
observed over a large collection of rain cells. Also, elements
belonging to larger-scale structures might evolve together in
a more coherent and predictable way than expected based on
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their size and intensity. One possible solution for overcoming
this problem would be to define multiple local generators in-
stead of a single universal one. But this is a very challenging
problem that requires more research, including the ability to
automatically detect strong local variations in scaling prop-
erties to help pinpoint problematic regions and come up with
a better approach. Also, the use of multiple generators would
require additional model parameters, which is not necessar-
ily desirable and should only be considered when absolutely
necessary (e.g., to account for strong orographic effects).
On a more theoretical level, one should also point out that
even if the cascade generator is perfectly stationary, the final
disaggregated fields (or time series) obtained after applying
the cascade are likely to be nonstationary with location and
time-dependent autocorrelation structures (Lombardo et al.,
2012).

The fourth point of discussion concerns possible exten-
sions of the EVA model. Similar to classical multiplica-
tive random cascades, the EVA cascade can be applied to
downscale time series, spatial and space–time data. For time
series, the equivalent formalism is given by the notion of
equal-volume times, also known as interamount times (IATs;
Schleiss and Smith, 2016; Schleiss, 2017). Future work will
therefore be directed at exploiting the superior scaling prop-
erties of interamount times to downscale the time series of
intermittent rainfall and combining IATs with EVAs to de-
sign more general downscaling schemes for space–time data.
Another interesting and possible extension concerns the pos-
sibility of including spatial anisotropy into the downscaling
process. One way to do this is by using two different genera-
tor models, namely one for vertical and another for horizontal
splits. For example, an additional model parameter character-
izing the ratio between the SD of the generator for horizontal
and vertical split could be introduced. More generally, one
could also define a full set of different model parameters (aH,
bH and cH) and (aV, bV and cV) for each type of split. Grid
cells could also be rotated and realigned along the principal
direction of variability, allowing for splits along spatial di-
rections other than H and V. This could help in the case of
highly elongated rainfall cells.

One last point that is worth mentioning concerns the com-
putational complexity of the EVA model. One crucial dif-
ference between the EVA and the classical cascade is that
the classical cascade stops as soon as the target resolution
has been reached. The EVA cascade on the other hand tends
to run over more levels, producing many grid cells that are
smaller than the target resolution. The total number of cas-
cade levels and grid cells depends on (1) the initial rainfall
volumes contained in the coarse-scale grid cells and (2) the
bucket capacity prescribed by the user. This means that for
large rainfall fields (e.g., several hundreds of km) with high
rainfall intensities, the number of generated grid cells can be
of the order of several millions. As a result, both the run time
and memory usage will be larger than for a classical cascade.
However, there are various ways to limit the computational

burden. The easiest is to stop splitting grid cells once they are
about 3–4 times smaller than the target resolution, regardless
of how much water they contain. Similarly, grid cells that are
entirely contained within a target resolution pixel do not need
to be split up further (regardless of their size and amount)
as these additional splits would not be visible after the re-
sampling anyway. Similarly, there is no need to split up grid
cells once they have converged to a fixed rainfall intensity,
i.e., when σ(A,R)≈ 0, as this would only result in a higher
number of subgrid cells with identical intensities and would
not add any new information. The obvious downside to these
numerical tricks is a loss of flexibility as users need to decide
on a fixed target resolution before running the cascade.

5 Conclusions

A new multiplicative random cascade for downscaling inter-
mittent rainfall fields based on the concept of equal-volume
areas (EVAs) has been proposed. Downscaling experiments
on 100 high-resolution radar rainfall snapshots in the Nether-
lands have shown that, on average, the EVA cascade outper-
forms its competitors, both in terms of the reproduced rainfall
distributions and spatial structures. Improvements are mainly
attributed to the adaptive sampling strategy in the EVA for-
malism, which avoids zero rainfall values and leads to more
accurate and robust model estimates in the presence of in-
termittency. The new proposed logit-normal cascade gen-
erator model with scale- and intensity-dependent variance
ensures that every grid cell in the EVA cascade eventually
converges to a fixed intensity or a fixed area, putting the
new model in the category of bounded microcanonical cas-
cades. Despite the encouraging results, improvements are not
systematic and many challenges remain. The most impor-
tant is that the EVA cascade tends to underestimate small-
scale extremes, producing fields that are slightly too smooth
and block shaped compared to the observations. This is at-
tributed to biased model parameters and, more generally, to
the difficulty of retrieving the true cascade generator from
coarse-scale data. The fact that cascade weights in the EVA
framework must be estimated using linear interpolation is
also a clear weakness, causing σ(A,R) to be underestimated
when A→ 0 (i.e., small grid cells tend to split too evenly).
On the other hand, one also needs to be aware of the fact that
the classical cascade model based on fixed grid cells suffers
from the opposite problem as it strongly overestimates the
small-scale variability and magnitude of rainfall extremes.
The complementary nature of the two approaches, and the
fact that they tend to produce opposite errors, opens new
possibilities for quality control and bias corrections of down-
scaled fields.

Apart from introducing a new model, the present study
also clearly highlighted the outstanding challenges associ-
ated with downscaling intermittent rainfall fields. The most
important issue concerns the estimation of cascade genera-
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tor models from coarse-scale data. Sensitivity analyses per-
formed within the framework of this study clearly showed
that two of the cascade model parameters (i.e., a and c) tend
to be biased when estimated from coarse-scale data. How-
ever, the EVA model seems to be more robust for these sam-
pling issues. This is the single most important advantage
of the EVA model compared to the classical approach and
also the main factor responsible for the higher performance.
However, it is also worth mentioning that, in principle, good
performance remains possible for both cascade models for
downscaling ratios up to 128–256, provided that the optimal
cascade generator can be guessed from the data. While inter-
esting from a theoretical point of view, this last result may
be of limited usefulness in practice as the optimal genera-
tor is likely to be unknown. Also, for large domains of sev-
eral hundreds of kilometers and highly heterogeneous fields,
it might not always be possible to adequately describe the
complex redistribution of water across scales using a single
location-invariant cascade generator. Event 3 is a good ex-
ample of such a case, with both cascade models struggling to
reproduce realistic small-scale patterns. Obviously, one can
always improve the performance by introducing more model
parameters or tuning them to individual cases. Similarly, one
could easily increase the performance of the classical cascade
by performing a separation between dry and wet components
before disaggregation. There is little doubt that such a state-
of-the-art model with six to seven parameters would outper-
form the simple EVA cascade proposed in this paper. At the
same time, such comparisons are not really fair or helpful at
this stage, as optimization was not the primary objective of
this paper, and the EVA model should not be seen as a com-
petitor designed to replace traditional cascades but rather as
a new complementary tool for modelers to deal with intermit-
tency and have new insight into the complex spatiotemporal
organization of rainfall across scales.
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