Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 23, issue 4
Hydrol. Earth Syst. Sci., 23, 2173–2186, 2019
https://doi.org/10.5194/hess-23-2173-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Modelling lakes in the climate system (GMD/HESS inter-journal...

Hydrol. Earth Syst. Sci., 23, 2173–2186, 2019
https://doi.org/10.5194/hess-23-2173-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Apr 2019

Research article | 30 Apr 2019

Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai–Tibet Plateau: a case study

Wenfeng Huang et al.

Viewed

Total article views: 1,435 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,000 385 50 1,435 59 60
  • HTML: 1,000
  • PDF: 385
  • XML: 50
  • Total: 1,435
  • BibTeX: 59
  • EndNote: 60
Views and downloads (calculated since 21 Dec 2018)
Cumulative views and downloads (calculated since 21 Dec 2018)

Viewed (geographical distribution)

Total article views: 1,026 (including HTML, PDF, and XML) Thereof 1,005 with geography defined and 21 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 28 Nov 2020
Publications Copernicus
Download
Short summary
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the Tibetan Plateau during ice-covered seasons due to a lack of field data. Here, model experiments on ice thermodynamics were conducted in a shallow lake using HIGHTSI. Water–ice heat flux was a major source of uncertainty for lake ice thickness. Heat and mass budgets were estimated within the vertical air–ice–water system. Strong ice sublimation occurred and was responsible for water loss during winter.
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the...
Citation