Articles | Volume 22, issue 7
Hydrol. Earth Syst. Sci., 22, 3561–3574, 2018
https://doi.org/10.5194/hess-22-3561-2018
Hydrol. Earth Syst. Sci., 22, 3561–3574, 2018
https://doi.org/10.5194/hess-22-3561-2018

Research article 02 Jul 2018

Research article | 02 Jul 2018

Sensitivity and identifiability of hydraulic and geophysical parameters from streaming potential signals in unsaturated porous media

Anis Younes et al.

Related authors

Hydraulic and transport parameter assessment using column infiltration experiments
Anis Younes, Thierry Mara, Marwan Fahs, Olivier Grunberger, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 21, 2263–2275, https://doi.org/10.5194/hess-21-2263-2017,https://doi.org/10.5194/hess-21-2263-2017, 2017
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Uncertainty analysis
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019,https://doi.org/10.5194/hess-23-2897-2019, 2019
Inflation method for ensemble Kalman filter in soil hydrology
Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018,https://doi.org/10.5194/hess-22-4921-2018, 2018
Short summary
Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty
K. Steffens, M. Larsbo, J. Moeys, E. Kjellström, N. Jarvis, and E. Lewan
Hydrol. Earth Syst. Sci., 18, 479–491, https://doi.org/10.5194/hess-18-479-2014,https://doi.org/10.5194/hess-18-479-2014, 2014
Deep drainage estimates using multiple linear regression with percent clay content and rainfall
D. L. Wohling, F. W. Leaney, and R. S. Crosbie
Hydrol. Earth Syst. Sci., 16, 563–572, https://doi.org/10.5194/hess-16-563-2012,https://doi.org/10.5194/hess-16-563-2012, 2012

Cited articles

Allègre, V., Jouniaux, L., Lehmann, F., and Sailhac, P.: Streaming potential dependence on water-content in Fontainebleau sand, Geophys. J. Int., 182, 1248–1266, https://doi.org/10.1111/j.1365-246X.2010.04716.x, 2010. 
Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME, 146, 54–62, https://doi.org/10.2118/942054-G, 1942. 
Arora, B., Mohanty, B. P., and McGuire, J. T.: Uncertainty in dual permeability model parameters for structured soils, Water Resour. Res., 48, https://doi.org/10.1029/2011WR010500, 2012. 
Belfort, B., Ramasomanan, F., Younes, A., anf Lehmann, F.: An efficient Lumped Mixed Hybrid Finite Element Formulation for variably saturated groundwater flow, Vadoze Zone Journal, 8, 352–362, https://doi.org/10.2136/vzj2008.0108, 2009. 
Blatman, G. and Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering & System Safety, 95, 1216–1229, https://doi.org/10.1016/j.ress.2010.06.015, 2010. 
Download
Short summary
Water movement through unsaturated soils generates streaming potential (SP). Reliability of SP for the determination of soil properties is investigated. First, influence of hydraulic and geophysical soil parameters on the SP signals is assessed using global sensitivity analysis. Then, a Bayesian approach is used to assess the identifiability of the parameters from SP data. The results of a synthetic drainage column experiment show that all parameters can be reasonably estimated from SP signals.