Articles | Volume 22, issue 7
https://doi.org/10.5194/hess-22-3561-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-3561-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity and identifiability of hydraulic and geophysical parameters from streaming potential signals in unsaturated porous media
Anis Younes
LHyGES, Université de Strasbourg/EOST/ENGEES, CNRS, 1 rue
Blessig, 67084 Strasbourg, France
LISAH, Univ. Montpellier, INRA, IRD, SupAgro, Montpellier, France
LMHE, ENIT, Tunis, Tunisia
Jabran Zaouali
LHyGES, Université de Strasbourg/EOST/ENGEES, CNRS, 1 rue
Blessig, 67084 Strasbourg, France
François Lehmann
LHyGES, Université de Strasbourg/EOST/ENGEES, CNRS, 1 rue
Blessig, 67084 Strasbourg, France
LHyGES, Université de Strasbourg/EOST/ENGEES, CNRS, 1 rue
Blessig, 67084 Strasbourg, France
Related authors
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023, https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Short summary
Hydraulic properties of soil include the ability of water to move through the soil and the amount of water that is held in the soil in dry or wet conditions. In this work, we further investigate a protocol used to evaluate such hydraulic properties. We propose a modified version of the protocol, with which we show (i) how the data obtained with this protocol are influenced by the soil hydraulic properties and (ii) how one can use it to estimate these properties.
Anis Younes, Hussein Hoteit, Rainer Helmig, and Marwan Fahs
Hydrol. Earth Syst. Sci., 26, 5227–5239, https://doi.org/10.5194/hess-26-5227-2022, https://doi.org/10.5194/hess-26-5227-2022, 2022
Short summary
Short summary
Despite its advantages for the simulation of flow in heterogeneous and fractured porous media, the mixed hybrid finite element method has been rarely used for transport as it suffers from strong unphysical oscillations. We develop here a new upwind scheme for the mixed hybrid finite element that can avoid oscillations. Numerical examples confirm the robustness of this new scheme for the simulation of contaminant transport in both saturated and unsaturated conditions.
Anis Younes, Thierry Mara, Marwan Fahs, Olivier Grunberger, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 21, 2263–2275, https://doi.org/10.5194/hess-21-2263-2017, https://doi.org/10.5194/hess-21-2263-2017, 2017
Short summary
Short summary
The estimation of flow and solute transport in unsaturated soil is essential for quantifying groundwater resources or pollution. Usual column laboratory experiments and a new method are analyzed using a global sensitivity analysis. The data sets are composed of water pressure and water content measured inside the column and water flow rate and solute BTC measured at the outflow. Non-invasive methods (using flow rate and BTC only) provide comparable results than usual invasive methods.
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023, https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Short summary
Hydraulic properties of soil include the ability of water to move through the soil and the amount of water that is held in the soil in dry or wet conditions. In this work, we further investigate a protocol used to evaluate such hydraulic properties. We propose a modified version of the protocol, with which we show (i) how the data obtained with this protocol are influenced by the soil hydraulic properties and (ii) how one can use it to estimate these properties.
Anis Younes, Hussein Hoteit, Rainer Helmig, and Marwan Fahs
Hydrol. Earth Syst. Sci., 26, 5227–5239, https://doi.org/10.5194/hess-26-5227-2022, https://doi.org/10.5194/hess-26-5227-2022, 2022
Short summary
Short summary
Despite its advantages for the simulation of flow in heterogeneous and fractured porous media, the mixed hybrid finite element method has been rarely used for transport as it suffers from strong unphysical oscillations. We develop here a new upwind scheme for the mixed hybrid finite element that can avoid oscillations. Numerical examples confirm the robustness of this new scheme for the simulation of contaminant transport in both saturated and unsaturated conditions.
Anis Younes, Thierry Mara, Marwan Fahs, Olivier Grunberger, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 21, 2263–2275, https://doi.org/10.5194/hess-21-2263-2017, https://doi.org/10.5194/hess-21-2263-2017, 2017
Short summary
Short summary
The estimation of flow and solute transport in unsaturated soil is essential for quantifying groundwater resources or pollution. Usual column laboratory experiments and a new method are analyzed using a global sensitivity analysis. The data sets are composed of water pressure and water content measured inside the column and water flow rate and solute BTC measured at the outflow. Non-invasive methods (using flow rate and BTC only) provide comparable results than usual invasive methods.
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Uncertainty analysis
Evaluation of root zone soil moisture products over the Huai River basin
Data worth analysis within a model-free data assimilation framework for soil moisture flow
Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model
Technical Note: Sequential ensemble data assimilation in convergent and divergent systems
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Inflation method for ensemble Kalman filter in soil hydrology
Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty
Deep drainage estimates using multiple linear regression with percent clay content and rainfall
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024, https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Short summary
Overestimated root zone soil moisture (RZSM) based on land surface models (LSMs) is attributed to overestimated precipitation and an underestimated ratio of transpiration to total evapotranspiration and performs better in the wet season. Underestimated SMOS L3 surface SM triggers the underestimated SMOS L4 RZSM, which performs better in the dry season due to the attenuated radiation in the wet season. LSMs should reduce and increase the frequency of wet and dry soil moisture, respectively.
Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 27, 2661–2680, https://doi.org/10.5194/hess-27-2661-2023, https://doi.org/10.5194/hess-27-2661-2023, 2023
Short summary
Short summary
To avoid overloaded monitoring cost from redundant measurements, this study proposed a non-parametric data worth analysis framework to assess the worth of future soil moisture data regarding the model-free unsaturated flow models before data gathering. Results indicated that (1) the method can quantify the data worth of alternative monitoring schemes to obtain the optimal one, and (2) high-quality and representative small data could be a better choice than unfiltered big data.
Natascha Brandhorst and Insa Neuweiler
Hydrol. Earth Syst. Sci., 27, 1301–1323, https://doi.org/10.5194/hess-27-1301-2023, https://doi.org/10.5194/hess-27-1301-2023, 2023
Short summary
Short summary
Data assimilation aims at quantifying and minimizing model uncertainty. In hydrological models, this uncertainty is mainly caused by the uncertain soil hydraulic parameters and their spatial variability. In this study, the impact of updating these parameters along with the model states on the estimated soil moisture is investigated. It is shown that parameter updates are beneficial and that it is advisable to resolve heterogeneous structures instead of applying a simplified soil structure.
Hannes Helmut Bauser, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 25, 3319–3329, https://doi.org/10.5194/hess-25-3319-2021, https://doi.org/10.5194/hess-25-3319-2021, 2021
Short summary
Short summary
Data assimilation methods are used throughout the geosciences to combine information from uncertain models and uncertain measurement data. In this study, we distinguish between the characteristics of geophysical systems, i.e., divergent systems (initially nearby states will drift apart) and convergent systems (initially nearby states will coalesce), and demonstrate the implications for sequential ensemble data assimilation methods, which require a sufficient divergent component.
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019, https://doi.org/10.5194/hess-23-2897-2019, 2019
Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018, https://doi.org/10.5194/hess-22-4921-2018, 2018
Short summary
Short summary
Data assimilation methods like the ensemble Kalman filter (EnKF) can combine models and measurements to estimate states and parameters, but require a proper representation of uncertainties. In soil hydrology, model errors typically vary rapidly in space and time, which is difficult to represent. Inflation methods can account for unrepresented model errors. To improve estimations in soil hydrology, we designed a method that can adjust the inflation of states and parameters to fast varying errors.
K. Steffens, M. Larsbo, J. Moeys, E. Kjellström, N. Jarvis, and E. Lewan
Hydrol. Earth Syst. Sci., 18, 479–491, https://doi.org/10.5194/hess-18-479-2014, https://doi.org/10.5194/hess-18-479-2014, 2014
D. L. Wohling, F. W. Leaney, and R. S. Crosbie
Hydrol. Earth Syst. Sci., 16, 563–572, https://doi.org/10.5194/hess-16-563-2012, https://doi.org/10.5194/hess-16-563-2012, 2012
Cited articles
Allègre, V., Jouniaux, L., Lehmann, F., and Sailhac, P.: Streaming
potential dependence on water-content in Fontainebleau sand, Geophys. J. Int., 182, 1248–1266,
https://doi.org/10.1111/j.1365-246X.2010.04716.x, 2010.
Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some
Reservoir Characteristics, Transactions of the AIME, 146, 54–62,
https://doi.org/10.2118/942054-G, 1942.
Arora, B., Mohanty, B. P., and McGuire, J. T.: Uncertainty in dual
permeability model parameters for structured soils, Water Resour. Res., 48, https://doi.org/10.1029/2011WR010500, 2012.
Belfort, B., Ramasomanan, F., Younes, A., anf Lehmann, F.: An efficient Lumped
Mixed Hybrid Finite Element Formulation for variably saturated groundwater
flow, Vadoze Zone Journal, 8, 352–362, https://doi.org/10.2136/vzj2008.0108, 2009.
Blatman, G. and Sudret, B.: Efficient computation of global sensitivity
indices using sparse polynomial chaos expansions, Reliability Engineering
& System Safety, 95, 1216–1229, https://doi.org/10.1016/j.ress.2010.06.015,
2010.
Bogoslovsky, V. A. and Ogilvy, A. A.: Deformation of natural electric fields
near drainage structures, Geophys. Prospect., 21, 716–723.
https://doi.org/10.1111/j.1365-2478.1973.tb00053, 1973.
Bolève, A., Revil, A., Janod, F., Mattiuzzo, J. L., and Fry, J.-J.:
Preferential fluid flow pathways in embankment dams imaged by self-potential
tomography, Near Surf. Geophys., 7, 447–462, https://doi.org/10.3997/1873-0604.2009012,
2009.
Brown, P. N., Hindmarsh, A. C., and Petzold, L. R.: Using Krylov Methods in the
Solution of Large-Scale Differential-Algebraic Systems, SIAM J. Sci. Comp.,
15, 1467–1488, https://doi.org/10.1137/0915088, 1994.
Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions
of soil water retention characteristics, Water Resour. Res., 24,
755–769, https://doi.org/10.1029/WR024i005p00755, 1988.
Christensen, S. and Cooley, R. L.: Evaluation of confidence intervals for a
steady-state leaky aquifer model, Adv. Water Res., 22,
807–817, https://doi.org/10.1016/S0309-1708(98)00055-4, 1999.
Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., and Schaibly, J.
H.: Study of the sensitivity of coupled reaction systems to uncertainties in
rate coefficients, I. theory, J. Chem. Phys., 59, 3873–3878, 1973.
Darnet, M., Marquis, G., and Sailhac, P.: Estimating aquifer hydraulic
properties from the inversion of surface Streaming Potential (SP) anomalies,
Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017631, 2003.
Deng, B. and Wang, J.: Saturated-unsaturated groundwater modeling using 3D
Richards equation with a coordinate transform of nonorthogonal grids,
Applied Mathematical Modelling, 50, 39–52, doi10.1016/j.apm.2017.05.021;
2017.
Donaldson, J. R. and Schnabel, R. B.: Computational Experience with
Confidence Regions and Confidence Intervals for Nonlinear Least Squares,
Technometrics, 29, https://doi.org/10.2307/1269884, 1987.
Dostert, P., Efendiev, Y., and Mohanty, B.: Efficient uncertainty
quantification techniques in inverse problems for Richards' equation using
coarse-scale simulation models, Adv. Water Res., 32,
329–339, https://doi.org/10.1016/j.advwatres.2008.11.009, 2009.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution
approach for effective and efficient global minimization, J. Optimiz. Theory App., 76, 501–521,
https://doi.org/10.1007/BF00939380, 1993.
Fahs, M., Younes, A., and Lehmann, F.: An easy and efficient combination of
the Mixed Finite Element Method and the Method of Lines for the resolution
of Richards' Equation, Environ. Modell. Soft., 24,
1122–1126, https://doi.org/10.1016/j.envsoft.2009.02.010, 2009.
Fahs, M., Younes, A., and Ackerer, P.: An Efficient Implementation of the
Method of Lines for Multicomponent Reactive Transport Equations, Water Air. Soil Pollut., 215, 273–283, https://doi.org/10.1007/s11270-010-0477-y,
2011.
Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T. A., Ackerer, P., and
Guadagnini, A.: Use of global sensitivity analysis and polynomial chaos
expansion for interpretation of nonreactive transport experiments in
laboratory-scale porous media, Water Resour. Res., 47,
https://doi.org/10.1029/2010WR009639, 2011.
Fajraoui, N., Mara, T. A., Younes, A., and Bouhlila, R.: Reactive Transport
Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial
Chaos Expansion, Water Air. Soil Pollut., 223, 4183–4197,
https://doi.org/10.1007/s11270-012-1183-8, 2012.
Fajraoui, N., Fahs, M., Younes, A. and Sudret, B.: Analyzing natural
convection in porous enclosure with polynomial chaos expansions: Effect of
thermal dispersion, anisotropic permeability and heterogeneity,
Int. J. Heat Mass Trans., 115, 205–224,
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.003, 2017.
Gallagher, M. and Doherty, J.: Parameter estimation and uncertainty
analysis for a watershed model, Environ. Modell. Soft.,
22, 1000–1020, https://doi.org/10.1016/j.envsoft.2006.06.007, 2007.
Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian Data Analysis, Second
Edition, London, Great Britain: Chapman Hall, 696 p., ISBN:0-158-48838-8,
1996.
Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive
MCMC, Statist. Comput., 16, 339–354,
https://doi.org/10.1007/s11222-006-9438-0, 2006.
Hastings, W. K.: Monte Carlo Sampling Methods Using Markov Chains and Their
Applications, Biometrika, 57, https://doi.org/10.2307/2334940, 1970.
Hinnell, A. C., Ferré, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey,
S., Rings, J., and Kowalsky, M. B.: Improved extraction of hydrologic
information from geophysical data through coupled hydrogeophysical
inversion, Water Resour. Res., 46, https://doi.org/10.1029/2008WR007060, 2010.
Ishido, T. and Mizutani, H.: Experimental and theoretical basis of
electrokinetic phenomena in rock–water systems and its applications to
geophysics, J. Geophys. Res., 86, 1763–1775, https://doi.org/10.1029/JB086iB03p01763,
1981.
Jardani, A., Revil, A., Bolève, A., Crespy, A., Dupont, J.-P., Barrash,
W., and Malama, B.: Tomography of the Darcy velocity from self-potential
measurements, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2007GL031907, 2007.
Jougnot, D. and Linde, N.: Self-Potentials in Partially Saturated Media: The
Importance of Explicit Modeling of Electrode Effects, Vadose Zone J.,
12, https://doi.org/10.2136/vzj2012.0169, 2013.
Kahl, G. M., Sidorenko, Y., and Gottesbüren, B.: Local and global inverse
modelling strategies to estimate parameters for pesticide leaching from
lysimeter studies: Inverse modelling to estimate pesticide leaching
parameters from lysimeter studies, Pest Manage. Sci., 71, 616–631,
https://doi.org/10.1002/ps.3914, 2015.
Kayshap, R. L.: Optimal choice of AR and MA parts in autoregressive moving
average models, IEEE T. Pattern Anal., 4, 99–104,
1982.
Kool, J. B., Parker, J. C., and van Genuchten, M. T.: Parameter estimation
for unsaturated flow and transport models – A review, J. Hydrol., 91, 255–293, https://doi.org/10.1016/0022-1694(87)90207-1, 1987.
Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of
hydrologic models using multiple-try DREAM (ZS) and high-performance
computing, Water Resour. Res., 48, https://doi.org/10.1029/2011WR010608, 2012.
Linde, N., Jougnot, D., Revil, A., Matthäi, S. K., Arora, T., Renard, D.,
and Doussan, C.: Streaming current generation in two-phase flow conditions,
Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL028878, 2007.
Mara, T. A. and Tarantola, S.: Application of global sensitivity analysis of
model output to building thermal simulations, Build. Sim., 1,
290–302, https://doi.org/10.1007/s12273-008-8129-5, 2008.
Mara, T. A., Belfort, B., Fontaine, V., and Younes, A.: Addressing factors
fixing setting from given data: A comparison of different methods,
Environ. Modell. Soft., 87, 29–38,
https://doi.org/10.1016/j.envsoft.2016.10.004, 2017.
Mboh, C. M., Huisman, J. A., Zimmermann, E., and Vereecken, H.: Coupled
Hydrogeophysical Inversion of Streaming Potential Signals for Unsaturated
Soil Hydraulic Properties, Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0115, 2012.
Mertens, J., Kahl, G., Gottesbüren, B. and Vanderborght, J.: Inverse
Modeling of Pesticide Leaching in Lysimeters: Local versus Global and
Sequential Single-Objective versus Multiobjective Approaches, Vadose Zone J.,
8, 793, https://doi.org/10.2136/vzj2008.0029, 2009.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953.
Miller, C. T., Williams, G. A., Kelley, C. T., and Tocci, M. D.: Robust
solution of Richards' equation for nonuniform porous media, Water Resour. Res., 34, 2599–2610, https://doi.org/10.1029/98WR01673, 1998.
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.
Nützmann, G., Thiele, M., Maciejewski, S., and Joswig, K.: Inverse
modelling techniques for determining hydraulic properties of coarse-textured
porous media by transient outflow methods, Adv. Water Res.,
22, 273–284, https://doi.org/10.1016/S0309-1708(98)00009-8, 1998.
Patella, D.: Introduction to ground surface self-potential tomography,
Geophys. Prospect, 45, 653–681, https://doi.org/10.1046/j.1365-2478.1997.430277, 1997.
Rajabi, M. M., Ataie-Ashtiani, B., and Simmons, C. T.: Polynomial chaos
expansions for uncertainty propagation and moment independent sensitivity
analysis of seawater intrusion simulations, J. Hydrol., 520,
101–122, https://doi.org/10.1016/j.jhydrol.2014.11.020, 2015.
Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S., and
Finsterle, S.: Electrokinetic coupling in unsaturated porous media, J. Colloid Interface Sci., 313, 315–327,
https://doi.org/10.1016/j.jcis.2007.03.037, 2007.
Richards, K., Revil, A., Jardani, A., Henderson, F., Batzle, M., and Haas,
A.: Pattern of shallow ground water flow at Mount Princeton Hot Springs,
Colorado, using geoelectric methods, J. Volcanol. Geotherm. Res., 198, 217–232, https://doi.org/10.1016/j.jvolgeores.2010.09.001, 2010.
Riva, M., Guadagnini, A., and Dell'Oca, A.: Probabilistic assessment of
seawater intrusion under multiple sources of uncertainty, Adv. Water Res., 75, 93–104, https://doi.org/10.1016/j.advwatres.2014.11.002, 2015.
Sailhac, P. and Marquis, G.: Analytic potentials for the forward and inverse
modeling of SP anomalies caused by subsurface fluid flow, Geophy. Res. Lett., 28, 1851–1854, https://doi.org/10.1029/2000GL012457, 2001.
Saltelli, A., Tarantola, S., and Chan, K. P.-S.: A Quantitative
Model-Independent Method for Global Sensitivity Analysis of Model Output,
Technometrics, 41, 39–56, https://doi.org/10.1080/00401706.1999.10485594, 1999.
Shao, Q., Younes, A., Fahs, M., and Mara, T. A.: Bayesian sparse polynomial
chaos expansion for global sensitivity analysis, Comput. Method Appl. M., 318, 474–496, https://doi.org/10.1016/j.cma.2017.01.033,
2017.
Sobol', I. M.: Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates, Math. Comput. Sim., 55, 271–280, https://doi.org/10.1016/S0378-4754(00)00270-6, 2001.
Sobol', I. M.: Sensitivity estimates for nonlinear mathematical
models, Math. Model. Comput. Exp., 407–414, 1993.
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions,
Reliab. Eng. Syst. Safe., 93, 964–979,
https://doi.org/10.1016/j.ress.2007.04.002, 2008.
ter Braak, C. J. F.: A Markov Chain Monte Carlo version of the genetic
algorithm differential evolution: Easy Bayesian computing for real parameter
spaces, Stat Comput., 16, 239–249, https://doi.org/10.1007/s11222-006-8769-1, 2006.
ter Braak, C. J. F. and Vrugt, J. A.: Differential Evolution Markov Chain
with snooker updater and fewer chains, Statist. Comput., 18,
435–446, https://doi.org/10.1007/s11222-008-9104-9, 2008.
van Dam, J. C., Stricker, J. N. M., and Droogers, P.: Inverse Method to
Determine Soil Hydraulic Functions from Multistep Outflow Experiments, Soil
Sci. Soc. Am. J., 58,
https://doi.org/10.2136/sssaj1994.03615995005800030002x, 1994.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Volkova, E., Iooss, B., and Van Dorpe, F.: Global sensitivity analysis for a
numerical model of radionuclide migration from the RRC “Kurchatov
Institute” radwaste disposal site, Stoch. Env. Res. Risk A., 22, 17–31, https://doi.org/10.1007/s00477-006-0093-y, 2008.
Vrugt, J. A., Gupta, H. V., Bouten, W. and Sorooshian, S.: A Shuffled Complex Evolution Metropolis algorithm for optimization
and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, doi:10.1029/2002WR001642,
2003.
Vrugt, J. A. and Bouten, W.: Validity of First-Order Approximations to
Describe Parameter Uncertainty in Soil Hydrologic Models, Soil Sci. Soc. Am. J., 66, https://doi.org/10.2136/sssaj2002.1740, 2002.
Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson,
B. A.: Treatment of input uncertainty in hydrologic modeling: Doing
hydrology backward with Markov chain Monte Carlo simulation: FORCING DATA
ERROR USING MCMC SAMPLING, Water Resour. Res., 44,
https://doi.org/10.1029/2007WR006720, 2008.
Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J.
M., and Higdon, D.: Accelerating Markov chain Monte Carlo simulation by
differential evolution with self-adaptive randomized subspace sampling, Int.
J. Nonlinear Sci. Numer. Simul., 10, 273–290, https://doi.org/10.1515/IJNSNS.2009.10.3.273, 2009a.
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software
package: Theory, concepts, and MATLAB implementation, Environ. Modell. Soft., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013,
2016.
Vrugt, J. A., Robinson, B. A., and Hyman, J. M.: Self-adaptive multimethod search
for global optimization in real parameter spaces, IEEE Trans. Evol. Comput., 13, 243–259, https://doi.org/10.1109/TEVC.2008.924428, 2009b.
Vugrin, K. W., Swiler, L. P., Roberts, R. M., Stucky-Mack, N. J., and
Sullivan, S. P.: Confidence region estimation techniques for nonlinear
regression in groundwater flow: Three case studies, Water Resour. Res., 43,
W03423, https://doi.org/10.1029/2005WR004804, 2007.
Wiener, N.: The Homogeneous Chaos, Am. J. Math., 60, https://doi.org/10.2307/2371268, 1938.
Younes, A., Fahs, M., and Ahmed, S.: Solving density driven flow problems
with efficient spatial discretizations and higher-order time integration
methods, Adv. Water Res., 32, 340–352,
https://doi.org/10.1016/j.advwatres.2008.11.003, 2009.
Younes, A., Fahs, M., and Belfort, B.: Monotonicity of the cell-centred
triangular MPFA method for saturated and unsaturated flow in heterogeneous
porous media, J. Hydrol., 504, 132–141,
https://doi.org/10.1016/j.jhydrol.2013.09.041, 2013.
Younes, A., Mara, T. A., Fajraoui, N., Lehmann, F., Belfort, B., and Beydoun,
H.: Use of Global Sensitivity Analysis to Help Assess Unsaturated Soil
Hydraulic Parameters, Vadose Zone J., 12, https://doi.org/10.2136/vzj2011.0150, 2013.
Younes, A., Delay, F., Fajraoui, N., Fahs, M., and Mara, T. A.: Global
sensitivity analysis and Bayesian parameter inference for solute transport
in porous media colonized by biofilms, J. Contam. Hydrol.,
191, 1–18, https://doi.org/10.1016/j.jconhyd.2016.04.007, 2016.
Younes, A., Mara, T., Fahs, M., Grunberger, O., and Ackerer, P.: Hydraulic
and transport parameter assessment using column infiltration experiments, Hydrol.
Earth Syst. Sci., 21, 2263–2275, https://doi.org/10.5194/hess-21-2263-2017, 2017.
Zablocki, C. J.: Streaming potentials resulting from the descent of meteoric
water: A possible source mechanism for Kilauean self-potential anomalies,
Trans. Geotherm. Resour. Counc., 2, 747–748, 1978.
Short summary
Water movement through unsaturated soils generates streaming potential (SP). Reliability of SP for the determination of soil properties is investigated. First, influence of hydraulic and geophysical soil parameters on the SP signals is assessed using global sensitivity analysis. Then, a Bayesian approach is used to assess the identifiability of the parameters from SP data. The results of a synthetic drainage column experiment show that all parameters can be reasonably estimated from SP signals.
Water movement through unsaturated soils generates streaming potential (SP). Reliability of SP...