Articles | Volume 22, issue 6
https://doi.org/10.5194/hess-22-3175-2018
https://doi.org/10.5194/hess-22-3175-2018
Research article
 | 
07 Jun 2018
Research article |  | 07 Jun 2018

Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction

Mathieu Vrac

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (22 May 2018) by Florian Pappenberger
AR by Mathieu Vrac on behalf of the Authors (22 May 2018)  Author's response   Manuscript 
Download
Short summary
This study presents a multivariate bias correction method named R2D2 to adjust both the 1d-distributions and inter-variable/site dependence structures of climate simulations in a high-dimensional context, while providing some stochasticity. R2D2 is tested on temperature and precipitation reanalyses and illustrated on future simulations. In both cases, R2D2 is able to correct the spatial and physical dependence, opening proper use of climate simulations for impact (e.g. hydrological) models.