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Abstract. Climate simulations often suffer from statistical
biases with respect to observations or reanalyses. It is there-
fore common to correct (or adjust) those simulations before
using them as inputs into impact models. However, most bias
correction (BC) methods are univariate and so do not account
for the statistical dependences linking the different locations
and/or physical variables of interest. In addition, they are of-
ten deterministic, and stochasticity is frequently needed to
investigate climate uncertainty and to add constrained ran-
domness to climate simulations that do not possess a realis-
tic variability. This study presents a multivariate method of
rank resampling for distributions and dependences (R2D2)
bias correction allowing one to adjust not only the univariate
distributions but also their inter-variable and inter-site de-
pendence structures. Moreover, the proposed R2D2 method
provides some stochasticity since it can generate as many
multivariate corrected outputs as the number of statistical di-
mensions (i.e., number of grid cell× number of climate vari-
ables) of the simulations to be corrected. It is based on an
assumption of stability in time of the dependence structure
– making it possible to deal with a high number of statisti-
cal dimensions – that lets the climate model drive the tem-
poral properties and their changes in time. R2D2 is applied
on temperature and precipitation reanalysis time series with
respect to high-resolution reference data over the southeast
of France (1506 grid cell). Bivariate, 1506-dimensional and
3012-dimensional versions of R2D2 are tested over a histori-
cal period and compared to a univariate BC. How the differ-
ent BC methods behave in a climate change context is also
illustrated with an application to regional climate simula-
tions over the 2071–2100 period. The results indicate that the

1d-BC basically reproduces the climate model multivariate
properties, 2d-R2D2 is only satisfying in the inter-variable
context, 1506d-R2D2 strongly improves inter-site properties
and 3012d-R2D2 is able to account for both. Applications of
the proposed R2D2 method to various climate datasets are
relevant for many impact studies. The perspectives of im-
provements are numerous, such as introducing stochasticity
in the dependence itself, questioning its stability assumption,
and accounting for temporal properties adjustment while in-
cluding more physics in the adjustment procedures.

1 Introduction

Climate change impact studies aim to investigate and un-
derstand the consequences of the potential evolutions of the
climate system. Impacts can be hydrological with changes
in seasonal flows and water resources driven by precipita-
tion changes (e.g., Schneider et al., 2013), agronomical with
crop yields perturbed by heat stress and/or rainfall evolutions
(e.g., Müller et al., 2010; Wheeler and von Braun, 2013) and
ecological with plant and animal diversity (in terms of struc-
tures or spatial repartitions) modified by future climate con-
ditions (e.g., Araújo and Rahbek, 2006; Tisseuil et al., 2012),
among many others. The common point of those impact stud-
ies is that they use global (GCM) or regional climate model
(RCM) simulations of different variables over future time pe-
riods according to some scenarios as inputs into impact mod-
els to project (e.g., hydrological, ecological) consequences of
climate change. However, most of those climate simulations
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suffer from statistical biases with respect to observations –
or more generally reference data. This means that some of
their statistical properties, such as mean, variance, distribu-
tion or even temporal, spatial or inter-variable dependence
structures may not be representative of what is observed in
the reference dataset. Consequently, before employing cli-
mate simulations to feed an impact model, it is often manda-
tory to “bias correct” (or to “adjust”) them in order to correct
some of their statistical properties (e.g., Christensen et al.,
2008; Muerth et al., 2013).

Over the last decade, most of the developed – and there-
fore applied – bias correction (BC) methods focused on
the adjustment of the mean (e.g., Delta method, Xu, 1999),
the variance (e.g., simple scaling adjustment, Berg et al.,
2012) or more generally on the adjustment of the distribution
(e.g., “quantile-mapping”, Haddad and Rosenfeld, 1997).
Bias adjustments of the whole distribution through quantile-
mapping techniques have been quite popular since it allows
for adjusting not only the mean and variance but also any
quantile of the variable of interest. Hence, many variants
have been proposed (e.g., Déqué, 2007; Michelangeli et al.,
2009; Kallache et al., 2011; Tramblay et al., 2013; Vrac et al.,
2016) and applied in different studies (e.g., Oettli et al., 2011;
Colette et al., 2012; Tisseuil et al., 2012; Vigaud et al., 2013).
Nevertheless, usually, those approaches only work in a uni-
variate context, which means that they are designed to in-
dependently correct one variable at a time, for one location
(e.g., grid cell) at a time. Therefore, if the marginal (i.e., uni-
variate) distributions are generally improved, that is closer to
the reference ones – even when the BC is used as a prelimi-
nary step to downscaling (e.g., Colette et al., 2012; Vrac and
Vaittinada Ayar, 2017) – the inter-site and inter-variable de-
pendence structures are usually conserved from the climate
model simulations to be corrected. Indeed, 1d-BC methods
preserving the ranks of the simulations – as it is the case
for quantile-mapping approaches – will not correct the cop-
ula functions characterizing the dependencies between sites
and/or between variables (e.g., Nelsen, 2006; Schölzel and
Friederichs, 2008; Vrac et al., 2011; Bevacqua et al., 2017).
Such a preservation of the model dependence can obviously
cause some deficiencies in the subsequent impact studies that
will use the 1-dimensional bias corrected simulations if the
model copula function is far from that of the references. It
is therefore crucial to adjust not only the marginal distribu-
tions of the climate simulations but also their multivariate de-
pendence structures, which is the goal of the present study.
A few multivariate methodologies have been proposed over
the last few years (e.g., Bardossy and Pegram, 2012; Piani
and Haerter, 2012; Mao et al., 2015; Vrac and Friederichs,
2015; Cannon, 2017; Dekens et al., 2017; Li et al., 2017).
Most of these methods can be categorized into one of the
two following approaches: the “marginal/dependence” cor-
rection approach and the “successive conditional” correction
approach. The “marginal/dependence” BC methods (e.g.,
“matrix recorrelation” approach in Bardossy and Pegram,

2012; Vrac and Friederichs, 2015; Cannon, 2017; Li et al.,
2017) separately correct the 1d-marginal distributions (e.g.,
one variable at one given location) and the dependence struc-
ture, usually under the form of the underlying copula func-
tion linking the different marginal distributions. Once those
two components of the joint distribution have been corrected,
they are reassembled to obtain adjusted data that respect
both the univariate and multivariate dependencies. Although
they also aim to adjust climate simulations in a multivari-
ate fashion, the “successive conditional” BC methods (e.g.,
“sequential recorrelation” approach in Bardossy and Pegram,
2012; Piani and Haerter, 2012; Dekens et al., 2017) are based
on a slightly different philosophy. They consist first of cor-
recting one given variable (e.g., one variable at one spe-
cific location). Then, a second variable (e.g., another vari-
able or another location) is corrected conditionally on the
previously corrected variable. The procedure goes on suc-
cessively for each dimension (variable/location), correcting
variable n conditionally on previously corrected variables
(1, . . . ,n−1). However, this approach suffers from two main
limitations. First, since at each step the correction is per-
formed conditionally on previously corrected data, this re-
duces the number of data available for adjusting each simu-
lation. Consequently, the higher the number of variables to
correct, the fewer the number of data to perform the bias
correction at each successive step, and therefore the less ro-
bust the correction. Second, the ordering of the variables in
the successive corrections matters: different orderings gener-
ally produce different corrections with different qualitative
results (e.g., in terms of multivariate properties; see Piani
and Haerter, 2012; Vrac and Friederichs, 2015). For those
reasons, the present study deals with the development of a
multivariate BC method within the “marginal/dependence”
approach. The proposed methodology relies on the “Empir-
ical Copula – Bias Correction” (EC-BC) method (Vrac and
Friederichs, 2015) and is intended to fill some of its weak-
nesses, mainly its lack of flexibility in terms of temporal
properties as well as its deterministic aspect. Concerning the
time-related weakness, it has to be noted that it is not pos-
sible to correct the multidimensional properties of the sim-
ulations without changing the rank sequence of the simula-
tions. In other words, any multivariate BC method will nec-
essarily modify the initial rank chronology of the simulated
events. For example, the EC-BC method – belonging to the
“marginal/dependence” correction family – allows for both
the corrected 1d-distributions to evolve consistently with the
modeled ones and to reproduce the dependence (copula)
structure of the references. But the price for this reproduction
is that the temporal sequence of the ranks of the corrected
data is exactly that of the reference data over the calibration
time period, even for an adjustment performed over a future
time period (or more generally over a projection/correction
time period different from the calibration one). Of course,
there is no reason why the rank chronology should be the
same. This also implies that this multivariate BC provides
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deterministic corrections, while some studies pointed out the
need for stochastic corrections or at least the need for intro-
ducing some stochasticity and variability in the BC process
(e.g., Wong et al., 2014; Mao et al., 2015; Volosciuk et al.,
2017). Hence, the goals of this paper are

– to propose a multivariate BC (MBC) method for both
multi-site and multi-variable simulations;

– to relax the temporal constraints of EC-BC on the cor-
rected data ranks in order to let the climate model drive
more temporal properties and their evolutions and there-
fore express its own temporal dynamics;

– to introduce some stochasticity in the MBC outputs, or
at least to enable the proposed MBC method to provide
multiple corrected scenarios.

The proposed method relies on a multivariate Rank Resam-
pling for Distributions and Dependences bias correction and
will here be referred to as R2D2. This paper is organized as
follows: the reference and reanalysis datasets used in this
study are presented in Sect. 2. The R2D2 method is then
described in Sect. 3 after some reminders about the copula
theory and the EC-BC approach. The design of experiments
performed to evaluate R2D2 over a historical time period is
presented in Sect. 4 and results are provided in Sect. 5. Sec-
tion 6 displays an application of R2D2 to RCM simulations
over a future time period. Conclusions, potential future de-
velopments and discussions are finally given in Sect. 7.

2 Reference and model data

To apply, investigate and evaluate the proposed R2D2 cor-
rection method, a reference dataset and a model dataset to
be corrected is needed, as for any BC method. The reference
data employed here are daily temperature and precipitation
time series from the “Systeme d’Analyze Fournissant des
Renseignements Atmosphériques à la Neige” (SAFRAN) re-
analysis data (Quintana-Segui et al., 2008) over the southeast
region of France (2− 7.5◦E× 42− 45◦N) corresponding to
1506 continental grid cell with an approximate 8 km× 8 km
spatial resolution. SAFRAN has been described, validated
and employed in many studies (e.g., Quintana-Segui et al.,
2008; Lavaysse et al., 2012; Vrac et al., 2012).

The ERA-Interim (hereafter ERA-I; Dee et al., 2011) daily
reanalysis data with a 0.75◦ by 0.75◦ spatial resolution are
used here as model data to be corrected. Temperature at
2 m (hereafter T2) and precipitation data (hereafter PR) have
been extracted for the same spatial domain as for the refer-
ence data. The time period from 1 January 1980 to 31 De-
cember 2009 is retained for both reference and ERA-I data.
Then, each ERA-I grid cell is first regridded by a simple
nearest neighbor technique to the nearest SAFRAN grid cell
center, in order to be associated with a unique reference

SAFRAN grid cell. Next, each BC method to be tested is ap-
plied over two distinct periods of the year: one corresponding
loosely to “winter” from 15 October to 14 April, the other to
“summer” from 15 April to 14 October. For each “season”,
corrected ERA-I T2 and PR are obtained for the 1995–2009
“evaluation” time period based on BC models calibrated over
1980–1994. Note that, as they potentially still include some
seasonality (especially in temperature), 6-month long sea-
sons to condition the BC procedures are certainly not the
most suited time intervals for practical use or applications.
In the latter cases, regular 3-month seasons or even monthly
conditioning could be preferred, provided that enough data
are available for calibration and projection. This could nev-
ertheless introduce some artificial “discontinuities” when go-
ing from one month or season to another, which may be
detrimental to some specific applications. However, here, 6-
month seasons correspond to a very convenient cutting for
testing and illustrating how a newly developed BC method
behaves, which is the main purpose of this article. Indeed,
this cutting allows for (1) increasing the number of data
points (e.g., with respect to a monthly cutting) and (2) re-
stricting the number of figures and evaluations that would be
multiplied by two in case of 3-month seasons, or by six with
a monthly cutting.

Moreover, Sect. 6 of this article will present an illustra-
tion of how the suggested R2D2 method works when ap-
plied to RCMs, both in present and future climates. Never-
theless, the ERA-I reanalyses are primarily used as test data
to be corrected because they ensure some consistency with
the SAFRAN reference dataset. Indeed, when employing
RCM data in a cross-validation context (or more generally
when applying a BC method to RCM data over a projection
time period different from the calibration time period), the
changes in statistical properties (e.g., mean, variance) from
the calibration to the projection time periods can be different
for the reference and for the RCM data. Hence, when evalu-
ating the results of a BC method over a projection period, it
may be difficult to assess which remaining biases come from
the disagreement between reference and RCM changes, and
which come from the BC method itself. Using reanalysis data
ensures more consistency with the reference and is therefore
more appropriate for initial evaluation of a BC method.

3 Reconstructing multi-site and multi-variable
dependence structures

3.1 A brief reminder on copulas

In many of the multivariate BC development papers, the no-
tion of “copula functions” is used. Indeed, those functions
characterize the rank dependence structure of most multi-
variate joint distributions (e.g., Nelsen, 2006; Schölzel and
Friederichs, 2008) through the Sklar’s theorem (Sklar, 1959).
This theorem expresses that any multivariate cumulative dis-
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tribution function (CDF) can be described by the univariate
marginal CDFs of the multivariate random variable and a
copula function. The latter is itself a multivariate CDF de-
picting the statistical dependence of the transformed random
variablesUj = FXj (Xj ), whereXj is the j -th variable of the
d-dimensional random variable X = (X1, . . . ,Xd)

T and FXj
the respective marginal CDF. Mathematically, Sklar’s theo-
rem states that any multivariate CDF FX (e.g., temperature at
several stations) can be written as

FX = CX

(
FX1 , . . . ,FXd

)
, (1)

where CX is the copula of X. Therefore, any multivariate
BC method will necessarily correct the copula of the sim-
ulations, explicitly (e.g., Piani and Haerter, 2012; Vrac and
Friederichs, 2015) or implicitly (e.g., Cannon, 2017; Dekens
et al., 2017).

3.2 A brief reminder of the “Empirical Copula – Bias
Correction” (EC-BC) approach

The EC-BC approach (Vrac and Friederichs, 2015) takes
advantage of the so-called “Schaake Shuffle”, described by
Clark et al. (2004) and employed in various studies to recon-
struct multivariate dependence structures (e.g., Voisin et al.,
2010; Verkade et al., 2013; Cannon, 2017, among others).
The principle is the following: first, a 1d-BC is performed on
each statistical dimension (i.e., for each variable at each loca-
tion). Second, the univariate bias corrected data are reordered
such that their rank time series is identical to that of the
reference sample. This univariate shuffling performed sep-
arately on each variable allows us to reproduce both the tem-
poral, inter-site and inter-variable dependencies of the refer-
ence data (see the synthetic example in Table 1 of Sect. 4c
in Vrac and Friederichs, 2015), since it exactly reproduces
the empirical copula function of the references. However, if
the inter-site and inter-variable dependence structures can be
assumed to be stable over time because they can be consid-
ered to be imposed by physical constraints over the region
of interest, this is not the case for the temporal structures
(or rank chronology of the climate events). For example, rain
persistence can shorten or enlarge, or heat waves can increase
and/or be more frequent, and seasonality of some specific
(temperature or precipitation) events may change, depend-
ing on the geographical domain. It is therefore needed to re-
lax the EC-BC temporal constraint to let the climate simula-
tions express their temporal dynamics and evolutions through
time. This is the goal of the proposed methodology.

3.3 The Rank Resampling for Distributions and
Dependences (R2D2) bias correction approach

The R2D2 method is developed in the
“marginal/dependence” context: The main idea of R2D2 is
to take advantage of the Schaake Shuffle as in EC-BC but
to relax the constraint of the reproduction of the temporal

structure observed in the reference dataset. To do so, a
historical time period is used as the calibration time period
for which both climate simulations and reference datasets
are at one’s disposal. The correction is performed over a
projection time period (e.g., a future time period) where
only climate simulations are available. The R2D2 method
proceeds as follows (please refer to Appendix A for a
detailed mathematical description of the R2D2 algorithm):

1. As in EC-BC or any “marginal/dependence” approach,
each dimension (variable/location) is first corrected in-
dependently from the others by a univariate BC method.
In the present study, the CDF-t method is used (e.g.,
Vrac et al., 2012).

2. Then, a dimension is selected (i.e., one physical vari-
able at one given location) to serve as a “reference di-
mension” for the shuffling. For this specific dimension,
the time sequence of the ranks of the 1d-bias-corrected
data is kept untouched. Note that this sequence is there-
fore the same as that of the ranks of the simulations to
be corrected, at least with a BC method preserving the
ranks as it is the case for CDF-t.

3. Next, for each time step t of the projection time period,
R2D2 looks for the time step t∗ in the calibration time
period for which the rank of the reference dimension
is the same as the current rank of the reference dimen-
sion, i.e., R2D2 searches t∗ such that rankdim

1d−BC(t)=

rankdim
ref.data(t∗), where rankdim

A(t) is the rank – in the
dataset A – of the value taken by the reference dimen-
sion dim at time step t .

4. Once this time step t∗ is found, the time series of the
other dimensions (i.e., the other variables at the same
location, and all variables at the other locations) are
shuffled such that the inter-site and inter-variable rank
structures of the reference dataset are reproduced. This
means that the rank association found in the reference
dataset for time t∗ is reproduced for time t .

5. Steps 2 to 4 are then repeated successively until each
dimension has served as the reference dimension.

Those different steps are expressed in more mathematical
and algorithmic ways in the Appendix A.

An example is now given to illustrate the functioning
of R2D2. Let’s assume that the multivariate bias correction
problem of interest concerns P = 3 statistical dimensions.
Those can be one physical variable for three grid cell, or three
physical variables for one grid cell. Each dimension is simu-
lated and observed over N = 4 consecutive time steps (e.g.,
days). Of course, in practice, many more variables, grid cell
and time steps can be treated. Let’s say that the first step of in-
dependent univariate bias correction was performed and that
the reference and 1d-bias-corrected data are those given in
Table 1, where each second column indicates the ranks of the
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Table 1. One example of 3-dimensional reference data and results from the 1d-bias correction of sample size 4 for illustration of the R2D2

method. k() indicates the rank within the sample.

References 1d-BC

x
(i)
R

k(x
(i)
R
) y

(i)
R

k(y
(i)
R
) z

(i)
R

k(z
(i)
R
) x

(i)
1d k(x

(i)
1d ) y

(i)
1d k(y

(i)
1d ) z

(i)
1d k(z

(i)
1d )

0.3 1 1.1 1 2.1 2 0.7 3 1.3 2 1.9 1
0.5 2 1.7 3 1.8 1 0.5 2 1.8 4 2.9 4
0.9 4 1.2 2 3.0 4 0.2 1 1.1 1 2.0 2
0.8 3 1.9 4 2.7 3 0.9 4 1.4 3 2.6 3

Table 2. Results of the R2D2 correction method. As the initial data are 3-dimensional, three time series are provided by R2D2. The k indicates
the rank within the sample. Within each 3-dimensional time series, the bold values and ranks indicate the dimension and rank sequence taken
as reference.

3d-BC (1/3) 3d-BC (2/3) 3d-BC (3/3)

x(i) k y(i) k z(i) k x(i) k y(i) k z(i) k x(i) k y(i) k z(i) k

0.7 3 1.8 4 2.6 3 0.9 4 1.3 2 2.9 4 0.5 2 1.4 3 1.9 1
0.5 2 1.4 3 1.9 1 0.7 3 1.8 4 2.6 3 0.9 4 1.3 2 2.9 4
0.2 1 1.1 1 2.0 2 0.2 1 1.1 1 2.0 2 0.2 1 1.1 1 2.0 2
0.9 4 1.3 2 2.9 4 0.5 2 1.4 3 1.9 1 0.7 3 1.8 4 2.6 3

values in the time series displayed in the previous column.
The results provided by R2D2 are given in Table 2. First, a
reference dimension is selected, starting with x in this illus-
tration, and the 1d-BC time series of this dimension is pre-
served at this stage. We can note that the first column of “3d-
BC (1/3)” in Table 2 is therefore the same as that given by
the univariate BC of dimension x in Table 1. Then, for each
time step (i.e., row in those two tables), the rank of the cur-
rent 1d-BC value is calculated. The time step with the same
rank is then searched into the reference data for this dimen-
sion (here, x, first and second columns in Table 1) and the
ranks of the other dimensions y and z for this time step are
taken to shuffle the 1d-corrections of those two dimensions.
For example, for the first time step in Table 2, the value 0.7 of
the reference dimension x has rank 3. Looking into Table 1,
rank 3 is found at the last time step for x, and is associated
with ranks 4 and 3 for y and z, respectively. Therefore, the
x = 0.7 value is associated with values 1.8 and 2.6, which
have ranks 4 and 3 for y and z, respectively, in the univari-
ate bias correction (Table 1). This procedure is then repeated
for each time step before changing the reference dimension
and rank sequence. R2D2 then provides as many corrections
as the total number dimensions – or at least as many as the
number of reference dimensions employed. Indeed, for prac-
tical reasons, it may be necessary to apply this algorithm on
a reduced number of reference dimensions, therefore reduc-
ing the number of corrected outputs. However, whatever the
number of reference dimensions or correction scenarios se-
lected, the multivariate corrected data should all have equiv-
alent inter-site and inter-variable copula functions.

Moreover, step 4 assumes that these copula (dependence)
functions are stable in time (i.e., stationary) and correspond
to those from the reference data. This assumption makes
it possible to apply the proposed R2D2 method in a high-
dimensional context, e.g., more than 3000 statistical dimen-
sions as will be illustrated in the following sections.

In the present study, the CDF-t univariate adjustment
method (e.g., Vrac et al., 2012) is used to perform step 1 of
the above algorithm. For the precipitation variable, CDF-t
has been applied based on the relatively common “threshold
adaptation” procedure. It consists of first defining a thresh-
old th for which model data below th are set to zero (e.g.,
Schmidli et al., 2006; Lavaysse et al., 2012). This threshold
is chosen such that the frequency of days with model precip-
itation greater than th is the same as the frequency of rainy
days in the reference (observed) precipitation dataset. After
this thresholding, only the positive values are corrected by
CDF-t with respect to the strictly positive observed values.
Other approaches are possible, such as applying a BC model
directly on the whole time series including both dry days and
rainy days, i.e., without separating the correction methodol-
ogy into occurrence and intensity (e.g., Vrac et al., 2012; Vi-
gaud et al., 2013; Vrac et al., 2016, among others). The latter
approach has also been tested for preliminary tests and the
results were not sensibly different from those presented in
this article (not shown). Note also that other 1d-BC methods
can of course be employed instead of CDF-t. For example,
the regular quantile-mapping approach (e.g., Déqué, 2007)
has also been tested within R2D2 and similar results were
obtained (not shown).
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4 Design of experiments

This section describes the comparisons that will be per-
formed between different BC methods in the following for
evaluating the proposed R2D2 bias correction methodology.

It is first reminded that, for each tested BC method ap-
plied to ERA-I reanalyses with SAFRAN data as refer-
ence, the calibration period is 1980–1994, while the correc-
tion/evaluation period is 1995–2009. Moreover, each calibra-
tion/evaluation is performed for daily temperature and pre-
cipitation time series on 1506 grid cell in the southeast of
France over a 6-month “winter” (15 October to 14 April) and
a 6-month “summer” (15 April to 14 October).

First of all, the 1-dimensional CDF-t bias correction (e.g.,
Michelangeli et al., 2009; Vrac et al., 2012) is performed.
As it is also the 1d-BC method used in step 1 of the R2D2

algorithm, this will allow us to evaluate the contribution of
the other steps in R2D2. Then, various configurations of the
R2D2 method are applied and evaluated:

– a 2-dimensional R2D2 version, where each grid cell is
corrected independently but temperature and precipita-
tion are corrected jointly within each grid cell. As there
are 1506 grid cell for the present dataset, 1506 applica-
tions of 2d-R2D2 are realized;

– a 1506-dimensional R2D2 version, where all 1506
grid cell time series are corrected jointly but separately
in temperature and precipitation. Therefore, two 1506d-
R2D2 are realized, one for temperature and one for pre-
cipitation;

– a 3012-dimensional version, where temperature and
precipitation for all the 1506 grid cell are corrected
jointly. Only one 3012d-BC is needed here.

Note that, as R2D2 can return as many datasets (or “scenar-
ios”) of correction as the number of statistical dimensions,
the 2d-R2D2 versions return two corrected datasets for each
grid cell. However, for the 1506d- and 3012d-R2D2 versions,
a sub-sample of 10 reference dimensions has been selected
for each version. Therefore, those versions provide 10 cor-
rected datasets. The 10 reference dimensions have been cho-
sen to uniformly cover the geographical domain for each
physical variable.

In the following Sect. 5, the results of those four BC meth-
ods (1d, 2d, 1506d, 3012d) as well as the initial dataset to
be corrected (ERA-I) are compared according to three differ-
ent aspects evaluated on the 1995–2009 evaluation period.
First, the inter-variable dependence properties are investi-
gated in Sect. 5.1. Second, the inter-site dependence struc-
tures are compared in Sect. 5.2. Finally, although this aspect
was not part of the correction design, the temporal properties
are also evaluated in Sect. 5.3. Indeed, as any multivariate
BC method will necessarily modify the initial rank chronol-
ogy of the simulated events, it is interesting to understand –
or at least to quantify – these modifications.

5 Results

In this section, all analyses are realized for the winter season
but the main conclusions hold for the summer results that are
displayed in the Supplement.

5.1 Inter-variable correlations

First, the BC results are compared in terms of inter-variable
correlations. To do so, the spearman correlation between
temperature and precipitation time series have been com-
puted for each of the 1506 grid cell and the resulting maps
are shown in Fig. 1. Note that the Pearson correlation maps
have also been computed. The results were very similar (not
shown) but, based on Pearson correlations, a larger gap be-
tween the ERA-I Pearson correlations Fig. 1b and the ref-
erence SAFRAN Pearson correlations Fig. 1a means that
most maps only use a reduced number of colors, which is
not convenient for visual evaluations. This is why only the
Spearman correlation is used in Fig. 1. In this figure, it is
clear that the ERA-I inter-variable correlation map Fig. 1b is
very different from that of SAFRAN (a), with spearman rank
correlations not only differing in their intensities but also in
their structure. This strongly exemplifies the need for adjust-
ment of this aspect. The 1d-BC CDF-t method Fig. 1c mod-
ifies the intensities of those correlations but does not change
its structure, basically conserving that of ERA-I. However,
the 2d- and 3012d-R2D2 methods (Fig. 1d and f, respec-
tively) provide major improvements, since they allow us to
approximate the temperature–precipitation correlations from
SAFRAN (a). Correlation maps from those two R2D2 ver-
sions are strictly the same, indicating that the 3012d-version
is a generalization of the 2d-configuration (at least in this
inter-variable evaluation context). This is not the case for the
1506d-R2D2 configuration that basically destroys the inter-
variable correlations. Indeed, as in this configuration, tem-
perature and precipitation are adjusted separately and inde-
pendently from each other, the obtained correlations are – by
construction – close to 0. This version is designed to take care
of the inter-site dependence but completely disregards and
even ruins inter-variable correlations. Note that the 3012d-
R2D2 configuration provides the same correlation map as
presented in Fig. 1.f, whatever the reference dimension se-
lected. This is also true for the 2d- and 1506d-versions where
a different reference dimension still generates equivalent cor-
relations.

5.2 Spatial correlations

The evaluation is now performed in terms of inter-site and
spatial correlation. A principal component analysis (PCA)
is first carried out on each physical variable (i.e., tempera-
ture and precipitation) separately but for the whole region
of interest (i.e., 1506 grid cell). However, before applying
the PCA, the daily areal mean has been removed from each

Hydrol. Earth Syst. Sci., 22, 3175–3196, 2018 www.hydrol-earth-syst-sci.net/22/3175/2018/



M. Vrac: Multivariate bias correction: the R2D2 method 3181

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

(a)

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

(b)

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

(c)

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

(d)

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

(e)

2 3 4 5 6 7 8

42
.0

43
.0

44
.0

45
.0

Longitude

La
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

(f)

Figure 1. Inter-variable Spearman correlation maps in winter over the evaluation period from: (a) SAFRAN; (b) ERA-I; (c) 1d-BC
(CDF-t); (d) 2d-R2D2; (e) 1506d-R2D2 on temperature and 1506d-R2D2 on precipitation; (f) 3012d-R2D2.

daily data. Indeed, the data present a high day-to-day vari-
ability within the region of interest. This strongly impacts
the PCA that shows a predominant empirical orthogonal
function (EOF) almost uniform over the region if the areal
mean is not removed (not shown). Moreover, as precipitation
presents a skewed distribution, all zero precipitation values
are put to a non-zero but positive small value (3.3−4) and the
precipitation PCA is performed on the logarithm of the val-
ues (following, e.g., Vrac and Friederichs, 2015), where the
areal mean has been removed. Although the log-precipitation
values look more Gaussian than the initial ones, a PCA on
those transformed data should still be interpreted with pru-
dence. This is nevertheless a helpful means to describe spa-
tial modes of variability. Figures 2 and 3 show the maps of
the first EOFs obtained from PCAs applied to temperature
or log-precipitation, respectively, from the different datasets.
For both variables, ERA-I first EOF (Figs. 2b and 3b) maps
are quite dissimilar from the SAFRAN EOF maps (Figs. 2a
and 3a). The univariate BC (Figs. 2c and 3c) shows simi-
lar results as those from ERA-I, although less pronounced
for precipitation (Fig. 3c). Concerning the results of the 2-
dimensional version of R2D2 (Figs. 2d and 3d), for each
grid cell, they are obtained based on selecting as reference di-
mension the “other” dimension. In other words, for precipita-

tion the reference dimension is temperature, and for temper-
ature the reference dimension is precipitation. Indeed, oth-
erwise (i.e., if the reference dimension is the variable of in-
terest), by construction, the spatial structures resulting from
the 2d-R2D2 are exactly the same as those from the 1d-BC
presented in Figs. 2c and 3c (not shown). In the present con-
figuration of the 2d-R2D2 version, the spatial modes of vari-
ability (in Figs. 2d and 3d) are different from both the ERA-I
and 1d-BC results. They visually look more similar to the
SAFRAN results and seem to improve the inter-site depen-
dence structure. But this is not the case for summer results
(see Supplement) and they do present some major differ-
ences with respect to SAFRAN for both precipitation and
temperature in the two seasons. However, the first EOF maps
from the 1506-dimensional (Figs. 2e and 3e) and the 3012-
dimensional versions (Figs. 2f and 3f) are very close to those
from the reference SAFRAN dataset, indicating a satisfying
modeling of the main modes of inter-site variability, both for
temperature and (log-) precipitation. This is also confirmed
by the eigenvalues and explained variance fractions of the
leading EOF for temperature and log-precipitation given in
Fig. 4, as well as by the correlograms (i.e., correlations in
function of the distance) displayed in Fig. 5. In those fig-
ures, the results of the 1506d- and 3012d-R2D2 versions are
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Figure 2. Maps of first temperature predominant empirical orthogonal functions (EOFs) in winter over the evaluation period
for (a) SAFRAN; (b) ERA-I; (c) 1d-BC (CDF-t); (d) 2d-R2D2 (with PR as reference dimension); (e) 1506d-R2D2 (on T2 only); (f) 3012d-
R2D2.

the same: they stick closely to the SAFRAN eigenvalues and
explained variances (Fig. 4) and reproduce well its correl-
ogram (Fig. 5), even at long distances. The other datasets
show deviations from SAFRAN more or less pronounced
and in agreement with previous Figs. 2 and 3: ERA-I re-
sults are relatively far away from SAFRAN, 1d-BC slightly
modifies the spatial properties but stays comparable to ERA-
I and 2d-R2D2 degrades the ERA-I spatial properties (at least
in the present configuration). The same conclusions hold for
summer (see the Supplement) where the 1506d- and 3012d-
R2D2 versions follow SAFRAN spatial properties, although
some differences appear between the correlograms at long
distances (> 400 km) especially for temperature.

In order to get more quantification of those results, various
Spearman and Pearson correlation matrices was computed
for the different datasets (SAFRAN, ERA-I and the BC re-
sults) in the evaluation period over the 1506 locations:

– on temperature vs. temperature (resulting in a
1506× 1506 spatial correlation matrix);

– on precipitation vs. precipitation (1506× 1506 spatial
correlation matrix);

– on temperature vs. precipitation (1506× 1506 spatial
correlation matrix across the two variables);

– on (temperature, precipitation) vs. (temperature, precip-
itation) (3012× 3012 spatial and inter-variable correla-
tion matrix).

The SAFRAN correlation matrix is then subtracted from the
correlation matrix of each dataset (ERA-I and the BC re-
sults), therefore providing matrices that describe differences
in correlations (hereafter referred to as Diffcorr). The abso-
lute values of the elements of this matrix are then summed
and the result – noted Scorr – gives a numerical indication of
the global quality of the dataset dependence structure with
respect to that of SAFRAN. The values of Scorr for each
dataset and for the different types of correlations are given
in Table 3. The results for the “T2 vs. T2” and “PR vs. PR”
correlations are quite similar, showing the good behavior of
the 1506d- and 3012d-BC methods, while it is clear that the
2d-R2D2 version deteriorates the ERA-I and 1d-BC corre-
lations. For the “T2 vs. PR” correlations, the 2d-BC ver-
sion is relatively equivalent to the ERA-I and 1d-BC but the
1506d-R2D2 slightly degrades those results, while the 3012-
dimensional version is much better. Finally, for the “(T2,PR)
vs. (T2,PR)” correlations, the 2d-BC version appears as not
adapted, the 1506d-BC improves ERA-I and the 1d-BC but
3012d-R2D2 provides the best results.
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Figure 3. Same as Fig. 2 but for precipitation.

Table 3. Values of Scorr, corresponding to the sum of the absolute values of the elements of the difference correlation matrices for each
dataset and for the different types of correlations (see text for details) in winter. Values have to be multiplied by 104. Some methods and
applications provide different Scorr values depending on the reference dimension. For those cases, the mean Scorr value is indicated and the
standard deviation is indicated between brackets. Values in bold font indicate the smallest values for the line.

ERA-I 1d-BC 2d-R2D2 1506d-R2D2 (T2 or PR) 3012d-R2D2

Spearman (T) 20.1 20.1 96.4 (±107.9) 5.4 5.4
Pearson (T) 19 18.6 96.3 (±109.8) 4.8 4.8

Spearman (PR) 69 40.6 73.6 (±46.7) 5.8 5.8
Pearson (PR) 87.9 62.1 74.7 (±17.8) 10.4 10.4

Spearman (T2 vs. PR) 25.8 24.5 23.4 (±11) 30.4 (±5.8) 8
Pearson (T2 vs. PR) 16.3 13.3 14.8 (±6.7) 19.4 (±3.5) 5.7

Spearman (T and PR) 140.7 109.6 216.7 (±83.2) 71.9 (±11.6) 27
Pearson (T and PR) 139.5 107.3 200.6 (±105.5) 54 (±7.1) 26.6

Other analyses of the spatial properties derived for the
different BC methods were also performed (e.g., quantile-
quantile plots of the daily areal means) but are not provided
here since their conclusions were the same as in the presented
figures: 1d-BC approximately preserves ERA-I properties
that are biased with respect to SAFRAN’s; 2d-BC changes
the ERA-I spatial statistics but does not necessarily improve
them, while 1506d- and 3012d-BC via R2D2 provides satis-

fying spatial variability and dependence structures, close to
those from SAFRAN.

5.3 Temporal correlations

The proposed R2D2 method is not designed to reproduce,
correct or preserve the temporal structure of the simulations
to be corrected. However, as any multivariate BC will neces-
sarily modify their rank sequence, it is interesting to under-
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Figure 4. Eigenvalues (a, c) and percentage of explained variance (b, d) of temperature at 2 m (a, b) and precipitation (c, d) in winter over
the evaluation period for: SAFRAN (circles); ERA-I (dashed); 1d-BC by CDF-t (dotted); 2d-R2D2 (dashed-dotted); 1506d-R2D2 (T2 or PR,
long dashed); 3012d-R2D2 (solid line). Note that results of the 1506d- (long dashed) and 3012d-R2D2 (solid line) versions are the same and
are therefore superimposed.
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Figure 5. Correlograms in winter over the evaluation period for (a) temperature at 2 m; (b) precipitation, from SAFRAN (circles); ERA-I
(dashed); 1d-BC (dotted); 2d-BC (dashed-dotted); 1506d-BC (T2 or PR, long dashed); 3012d-BC (solid line). Note that results of the 1506d-
(long dashed) and 3012d-R2D2 (solid line) versions are the same and are therefore superimposed.
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Figure 6. Maps of lag-1 day temperature auto-correlations in winter over the evaluation period for (a) SAFRAN; (b) ERA-I; (c) 1d-
BC; (d) 2d-R2D2 (with PR as ref.dim. for each grid cell); (e) 1506d-R2D2; (f1–5) 3012d-R2D2 with five different reference temperature
locations.

stand how strong those modifications are, depending on the
R2D2 version. Hence, Figs. 6 and 7 display, for each dataset,
the 1-day lag auto-correlation maps over the evaluation pe-
riod for T2 and PR, respectively. For temperature, the ERA-I
data (Fig. 6b) have high auto-correlation values between 0.8
and 0.9 in agreement with SAFRAN data (Fig. 6a), although
the spatial structure is different (not highlighted here). Since

the univariate CDF-t method preserves the rank sequence,
the 1d-BC results (Fig. 6c) have similar auto-correlations.
However, the other results (2d, 1506d and 3012d) deeply
change the ERA-I auto-correlation values, with a strong re-
duction from the 2d-BC results (Fig. 6d). For the 3012d-
R2D2 version, the auto-correlations depend on the statistical
dimension serving as reference. Therefore, five illustrations
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Figure 7. Same as Fig. 6 but for precipitation.

are provided in panels 6f1–f5 obtained from five reference
dimensions, here corresponding to temperature at five loca-
tions. Interestingly, those five locations roughly correspond
to the center of the red zones visible in panels Fig. 6f1–f5.
Indeed, as the reference dimension preserves the rank se-
quence of the 1d-BC – and therefore of the model data to
be corrected – the same auto-correlation values are found
at this specific location. The obtained correlation is some-
how also reproduced on a neighborhood more or less ex-

tended around this location, and rapidly decreases out of this
neighborhood. For precipitation (Fig. 7), the same behavior
is present although less pronounced. Moreover, the ERA-I
auto-correlation results (Fig. 6b) are not in agreement with
SAFRAN (Fig. 6a) anymore, and the 1d-BC results (Fig. 6c)
appear quite different from ERA-I. The changes in behav-
ior of the different BC results come from the precipitation
occurrences that are modified both in frequency and in the
structure of their sequence (e.g., spells). This is not shown
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Figure 8. Box plots of the mean absolute error (MAE) values calculated on lag-1 to lag-7 day Pearson correlations for: ERA-I; 1d-BC;
2d-BC; 1506d-BC of T2 or PR (example for first reference variable); 3012d-BC with five different reference temperature locations. (a, c) for
2 m-temperature; (b, d) for precipitation; (a, b) winter; (c, d) summer.

here to constrain this article to a reasonable size but maps of
wet and dry spell mean lengths as well as maps of probability
of dry day given that the previous one is wet, and the other
way around, are provided in the Supplement for both winter
and summer. Nevertheless, in order to have a larger view on
the temporal correlation of the different datasets, the mean
absolute error (hereafter referred to as MAE) with respect to
SAFRAN was computed over the evaluation period for each
grid cell and physical variable, based on the first seven auto-
correlation values:

MAE=
7∑
n=1
|ρn(D)− ρn(SAFRAN)|, (2)

where ρn(D) is the n-day lag auto-correlation value of the
dataset D. The resulting values are presented via box plots –
summarizing the spatial variability of the MAE – in Fig. 8,
and via maps as Supplement. For temperature (left panels of
Fig. 8), except for the 2d-BC results that show a degrada-
tion of the MAE values compared to those from ERA-I or

1d-BC for both seasons, the conclusions are not exactly the
same in winter and in summer. In winter, the MAE results
from the 1506d- and 3012d-BC versions are of lower qual-
ity (i.e., higher MAE values) than those from ERA-I. This is
not the case in summer where those versions present equiv-
alent or even better (i.e., smaller) MAE values. For precip-
itation, however, winter and summer results are consistent:
all tested BC methods generally improve the ERA-I MAEs
– although only slightly for 2d-R2D2 – and the 1506d- and
3012d-R2D2 MAE are relatively close to those from the 1d-
BC that presents the best (i.e., smallest) MAE values.

6 Bias correction of RCM simulations

6.1 GCM/RCM runs and scenario

For illustration purposes, in order to evaluate and compare
the different BC methods when applied to regional climate
simulations over a historical period and in a future climate
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change context, two RCMs driven by the same GCM are
used to provide simulations to be corrected. Those RCMs are
(i) the “Weather Research and Forecasting” (WRF) regional
climate model (Skamarock et al., 2008) developed by the Na-
tional Center for Atmospheric Research and (ii) the “Rossby
Centre regional Atmospheric” model (RCA4; Samuelsson
et al., 2011). Both RCMs provide daily simulations at a
0.11◦×0.11◦ spatial resolution over the European domain of
the Coordinated Regional Climate Downscaling Experiment
(CORDEX; Giorgi et al., 2009; Jacob et al., 2014), and were
forced by the “Institut Pierre Simon Laplace” (IPSL) global
climate model (Marti et al., 2010; Dufresne et al., 2013) with
a “historical” 1950–2005 run, as well as for the 2006–2100
time period under a scenario of representative concentration
pathway associated with a radiative forcing of +8.5 W m2

(RCP8.5) in the year 2100 with respect to the preindustrial
period (IPCC, 2013). The calibration of the different BC
methods is made over the SAFRAN 1980–2009 time period,
and for the same winter and summer seasons as previously.
The corrections of the WRF and RCA4 simulations are then
performed over 1980–2009 and 2071–2100, and only with
1d-CDF-t, 2d-R2D2 (for T2 and PR together but for each of
the 1506 grid cell separately) and 3012d-R2D2. The 1506d-
BC version (either on T2 or PR) was not performed in this
section since, in the previous one, it provided either equiva-
lent or lower quality results than the 3012d-R2D2 version. In
the following, results are given for the WRF model in winter
but the WRF summer and RCA4 winter and summer results
are provided as Supplement.

6.2 Historical evaluations and changes from historical
to future climate simulations

This subsection contains a short evaluation of the BC meth-
ods applied to the RCM simulations over the 1980–2009 his-
torical period, as well as an illustration of how the tested
BC methods behave and differ from each other in a climate
change context, both in terms of inter-variable and inter-site
dependencies. As an objective of this sub-section is to eval-
uate the changes from the historical (1980–2009) to the fu-
ture (2071–2100) time periods, in order to save space, the
evaluations of the BC methods applied to the RCM simula-
tions are performed directly over the whole historical period
(1980–2009), without cross-validation. Nevertheless, when
applying the same cross-validation exercise as was done with
ERA-I in Sect. 5, the conclusions were exactly the same with
RCM data (not shown). First, for each dataset, the inter-
variable correlation between T2 and PR in winter is calcu-
lated for each grid cell for both the historical and future time
period. The resulting maps are presented in the left panels
of Fig. 9. Similarly to the BC of the ERA-I reanalyses, al-
though the inter-variable correlations from WRF and its 1d-
BC are quite distinct from the reference ones, the 2d- and
3012d-R2D2 versions (Fig. 9e and g, respectively) provide
the same maps as that from SAFRAN (Fig. 9i), confirm-

ing their performance also on RCM simulations. However,
the 2d-version does not do so well from the spatial per-
spective, as illustrated in Fig. 10 showing the temperature
and precipitation correlograms. When driven by the “oppo-
site” variable (i.e., T2 for PR correlograms and PR for T2
correlograms), the 2d-BC correlograms are away from both
SAFRAN and RCM data, with a strong fall of correlation as
soon as the very short distances (a few km) and a flat behav-
ior after. As for the 3012d-BC of WRF, its correlogram nicely
fits the empirical correlations calculated from SAFRAN for
both variables. Regarding the RCM future climate simula-
tions and their bias corrections, right panels of Fig. 9 show
the changes (i.e., future – present) of the inter-variable cor-
relations. The 1d-CDF-t method smoothes the RCM changes
but preserves their structure, while, as expected, the 2d- and
3012d-BC versions do not present strong changes and there-
fore tend to provide an inter-variable correlation structure
close to that of the SAFRAN data. For the changes in the
temperature correlograms (Fig. 10a), the RCM simulations
do not present much evolutions from the historical period to
2071–2100, and therefore the 1d-BC does the same. More-
over, neither the 2d-BC nor the 3012d-version show major
changes and so the two versions are consistent with the raw
simulations in terms of changes. For precipitation (Fig. 10b),
the RCM simulations (solid and dashed black lines) do see
some changes in the spatial dependence, and therefore, so
does the 1d-BC (green lines). Interestingly, the 3012d-BC
(red and orange, superimposed) also captures some changes,
although slightly less pronounced. This means that 3012d-
R2D2 allows a change (from historical to future) in the inter-
site dependence structure that is consistent with the change
provided by the RCM.

7 Conclusions and discussion

7.1 Conclusions

A new multivariate bias correction approach was proposed,
allowing to correct not only the marginal (univariate) distri-
butions of the climate variables of interest but also the sta-
tistical dependences between the variables, as well as the de-
pendences between the different locations over a given ge-
ographical domain. This approach relies on the previously
developed “Empirical Copula – Bias Correction” (EC-BC,
Vrac and Friederichs, 2015) method, whose all dependence
structures – inter-variable, inter-site and overall temporal -
were taken from reference data and exactly reproduced by
the EC-BC correction. The suggested BC approach is also
based on a rank resampling to adjust the copula functions
and therefore the dependences of the climate simulations,
but this R2D2 method relaxes the EC-BC temporal constraint
to let the climate model of interest express its temporal dy-
namics. Indeed, R2D2 is based on the assumption that the
inter-site and inter-variable copula (dependence) functions
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Figure 9. (left column) Inter-variable Pearson correlations between T2 and PR in winter for each grid cell and (right column) changes in inter-
variable Pearson correlations from the historical period to the 2071-2100 period; (a–b) for the WRF RCM; (c–d) for its 1d- bias correction
with CDFt; (e–f) for its 2d-R2D2 correction; (g–h) for its 3012d-R2D2 correction. Panel (i) corresponds to the correlations between T2 and
PR for the SAFRAN reference data over the historical period.

are imposed by physical constraints over the region of in-
terest and are therefore stable in time. Therefore, their de-
pendence structures can be extracted and reconstructed from
reference historical data. However, R2D2 is explicitly de-
signed to partially respect the changes in the climate model
(e.g., from historical to future periods) in terms of tempo-

ral (rank) properties. Since these evolutions can be distinct
for different physical variables and/or grid cell, R2D2 gener-
ates multiple bias corrected scenarios, which can be consid-
ered as a stochasticity describing the possible variability in
the different rank chronologies. As such, R2D2 can be seen
as a method that is halfway between a multivariate correc-
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Figure 10. Spatial correlograms of temperature (a) and precipitation (b) in winter computed from daily areal mean-removed data. Correla-
tions from SAFRAN are in circles; those from the WRF RCM are in black lines; 1d-BC in green; 2d-R2D2 driven by temperature in blue;
2d-R2D2 driven by precipitation in cyan; 3012d-R2D2 driven by temperature at a given location in red; 3012d-R2D2 driven by precipitation
at the same location in orange. Solid lines indicate results for the historical period and dashed lines for the 2071–2100 period. Note that for
temperature results (a), green and blue lines are superimposed. For precipitation (b), green and cyan are superimposed. Red and orange lines
are always superimposed for both (a) and (b).

tion method and a conditional multivariate stochastic weather
generator. The assumption of stability of the copula function
– which can hence be reproduced from the reference data –
allows us to apply the multivariate bias correction in a high-
dimensional context and at a reasonable computational cost.
For example, the dataset generated by 3012d-R2D2 and ana-
lyzed in Sect. 5 (2734 winter days to be corrected for temper-
ature and precipitation over 1506 grid cell) was obtained on a
regular laptop computer with a 2.2 GHz Intel Core i7 proces-
sor and a 8 Go 1600 MHz DDR3 memory. On this computer,
for each of the 1506 grid cell, the application of CDF-t (i.e.,
calibration and correction) takes about 0.05 s for tempera-
ture and 0.01 s for precipitation. Then, for one selected ref-
erence dimension, in the 3012-dimensional context, each ap-
plication of the steps 2–4 of the R2D2 algorithm presented in
Sect. 3.3 takes about 15 s. Consequently, the whole compu-
tation time of the 3012d-R2D2 version with 10 reference di-
mensions (and therefore 10 multivariate BC scenarios) took:
1506×(0.05+0.01)= 90.4 s (for the univariate BC, step 1) +
10× 15= 150 s (for the 10 iterations of the steps 2–4), sum-
ming to about 240 s= 4 min.

R2D2 was first applied to adjust temperature and precipi-
tation time series from ERA-Interim reanalyses (Dee et al.,
2011) with respect to the SAFRAN dataset (Quintana-Segui
et al., 2008) under a temporal cross-validation framework
on 1506 locations. Different configurations of R2D2 were
compared: a bivariate one (2d-R2D2) applied to jointly ad-
just temperature and precipitation but separately for each
grid cell, a 1506-dimensional version (1506d-R2D2) applied
jointly on the 1506 grid cell but separately for tempera-
ture and precipitation and a 3012-dimensional one (3012d-

R2D2) where the two variables were jointly corrected over
the 1506 grid cell. Those different versions were also com-
pared to the univariate CDF-t bias correction method (e.g.,
Vrac et al., 2012) and to the raw ERA-I data. The results indi-
cate that the 1d-BC by CDF-t generally reproduces the statis-
tical dependence properties of the data to be corrected, from
both the inter-variable, inter-site and temporal perspectives.
Moreover, by construction, if 2d-R2D2 greatly improves the
temperature–precipitation relationship, it does not do so well
for inter-site dependences. This is the other way around for
the 1506d-R2D2 that shows satisfying inter-site dependence
reconstructions but disregards the inter-variable relationship.
However, the 3012d-R2D2 performs well for both the inter-
variable and inter-site property corrections. Regarding the
temporal properties, except for the winter temperature with
the tested datasets, most BC versions tend to provide auto-
correlation getting slightly closer to SAFRAN’s. However, it
is worth keeping in mind that none of the multivariate BC
versions were designed to adjust the temporal properties.

The different BC versions were then also tested and com-
pared on climate simulations from the WRF and RCA4 re-
gional climate models (RCMs) over the 1980–2009 histori-
cal period as well as the 2071–2100 future time period. The
2071–2100 bias corrections was not made to evaluate the
methods (since no reference data are available for the future)
but rather to illustrate how the different multivariate R2D2

versions behave in a climate change context. The evaluations
over the historical period confirmed the results obtained on
ERA-I, indicating a robustness of R2D2 to the dataset to be
corrected.
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7.2 Future work and discussion

The possible future developments of this work are both
methodological and applied. First, as stated earlier, the vari-
ability/stochasticity introduced in the actual R2D2 version
refers only to the timing of the events and does not perturb
at all the corrected marginal distributions, neither the spatial
dependence between sites and/or variables. More stochastic-
ity could also be included into those properties. For exam-
ple, the inference of a parametric modeling of copulas (or
more generally of the dependence structures) would provide
parameters generally associated with some uncertainty (or
confidence intervals). Resampling those parameters based on
this uncertainty would then allow us to generate “perturbed”
copulas consistent with each other, and therefore multivariate
corrections that are stochastic in their dependences.

Moreover, based on the results presented in this study,
the assumption of conservation of the dependence structure
sounds reasonable for the inter-site aspects (Fig. 10) but a
bit more questionable for the inter-variable aspects, since the
tested RCM shows some evolution of the inter-variable cor-
relation in the future (Fig. 9). A generalization of this type of
analysis to many more climate models is therefore needed
to assess if the dependence preservation hypothesis is ro-
bust. This point can be reformulated as a practical question
for multivariate BC developments: should the (inter-variable
and/or inter-site) dependence structures evolve from calibra-
tion to projection periods? Due to the relative youth of the
multivariate BC methods, this is still an open question in the
literature that should be further investigated and debated.

Furthermore, the R2D2 method only partially preserves
the temporal properties of the simulations to be corrected,
and all multivariate BC methods necessarily modify the tem-
poral structure and rank chronology of the simulations. If
this is indirect for most of them (i.e., when accounting only
for inter-site or inter-variable structures), some authors tried
specifically to tackle the question of the temporal proper-
ties adjustment, such as Johnson and Sharma (2012) with
a nesting 1d-BC model working across multiple timescales,
Mehrotra and Sharma (2015) including inter-site dependence
or Mehrotra and Sharma (2016) including multiple meteo-
rological variables. However, no general comparison of the
pros and cons of the two approaches has been performed and
any BC method for both inter-site, inter-variable and tempo-
ral properties will necessarily consist of a trade-off between
the temporal modifications brought by the multivariate ad-
justment and the correction of the temporal aspects, while
respecting their changes from one time period to another.

More generally, there is not yet a complete intercompar-
ison of the multivariate bias adjustment methods. As the
need for such multivariate methods becomes crucial for many
impact studies, intercomparison exercises are now essential
to evaluate the various existing methodologies and to make
distinctions, not only between “marginals/dependence” and
“successive conditional” correction approaches for example

but also between different methods and assumptions within
each approach. If such an intercomparison study has to be
performed first from the climate point of view (i.e., in terms
of quality of the corrected climate variables and their various
properties), it should also be conducted from the perspec-
tive of some specific impacts and impact models, trying to
understand how the quality of the bias adjusted simulations
transfer into the often non-linear impact model outputs. To
do so, applying a high-dimensional R2D2 (and other meth-
ods) to various CMIP5 (and upcoming CMIP6) GCM sim-
ulations or to various CORDEX RCM runs would generate
useful large datasets of multivariate bias corrected climate
simulations. From the purely climatic point of view, those
datasets would provide a corrected ensemble to conduct cli-
mate change studies, such as related to detection and attri-
bution questions (e.g., Yiou et al., 2017), to the evolution
in risks of compound events (e.g., Bevacqua et al., 2017) or
more generally related to understanding of climate changes.
From the societal and/or environmental point of view, those
ensembles of multivariate corrected simulations would al-
low us to investigate how the correction of the dependence
structures might modify the impacts of climate change. This
question is quite large and concerns many domains, such as
hydrology, agronomy, ecology, etc., and can have major con-
sequences on adaptation and mitigation strategies.

Finally, the selection of an “optimal” reference dimension,
or at least some preferential ones, is certainly a necessary fu-
ture step. However, the notion of optimality here may depend
on the context of the correction and on the subsequent use of
the multivariate bias-corrected data. However, simple selec-
tion methods can be imagined. For example, a logical choice
can be to select the dimension for which the temporal dy-
namics of the model to be corrected is the most similar to
that of the observations over the calibration period. In such
a case, that could correspond to the dimension for which the
Spearman rank correlation (or an auto-correlation value) is
the closest to that of the reference (observational) data. Of
course, other selections are possible but this question is left
for future work. In the same idea, we could also consider a
“multivariate” reference vector. For example, instead of re-
lying on a univariate reference dimension, the latter can be a
couple (or more generally a n-dimensional vector) of dimen-
sions. This would then ensure that the dependence structure
linking those dimensions would be exactly that of the ini-
tial model and therefore “preserved” (i.e., not corrected). An-
other natural extension would also be to replace the univari-
ate or multivariate “reference dimension” time series (used to
condition the rank resampling in R2D2) by physical indices,
such as NAO or ENSO indices, coming from the climate
model to correct. Hence, by such an approach, R2D2 would
be applied in a conditional process-oriented BC framework.
Indeed, if the present study focused on the methodological
aspects of the multivariate bias correction, it is worth keeping
in mind that any application of a BC method should be per-
formed with some physically based motivations: depending
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on their intrinsic skills to model specific features, some cli-
mate simulations cannot sensibly be corrected, especially in
climate change context where artifacts of bias correction may
appear while not visible in present climate evaluations (e.g.,
Maraun et al., 2017). So the development of BC methodolo-
gies allowing one to include some physics in the adjustment
procedure is an important perspective of research, in order
to have BC approaches not used as black boxes while they
should be a support to increase the realism of the climate
simulations based on physical knowledge.

Data availability. ERA-Interim temperature and precipitation
datasets can be accessed through the ECMWF website at
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/
reanalysis-datasets/era-interim/ (Dee et al., 2011). SAFRAN
temperature and precipitation datasets can be obtained on demand
from Meteo-France (https://donneespubliques.meteofrance.fr/
?fond=produit&id_produit=230&id_rubrique=40, in French;
Quintan-Segui et al., 2008). RCM simulations used in this study
can be downloaded from ESGF nodes, more information from
https://www.euro-cordex.net/060378/index.php.en (Jacob et al.,
2014).
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Appendix A: Some more mathematical descriptions of
the R2D2 bias correction method

The multivariate BC method is applied to P statistical dimen-
sions. Those dimensions encompass several physical vari-
ables at several grid cell. For example, if there are V physical
variables at each of the S grid cell, then P = V ×S. Each di-
mension is observed or simulated over N time steps, and in
the following V Ap (t) is the value of the dimension p from the
dataset A (reference, raw or corrected simulations) at time t .

The R2D2 method consists of the following steps:

1. Apply separate univariate BC to each dimension.
We obtain P univariate time series of N val-
ues: {(V 1dBC

1 (1), . . . ,V 1dBC
1 (N)), . . . , (V 1dBC

P (1), . . . ,
V 1dBC
P (N))};

2. Compute the time series of ranks for each 1d-bias cor-
rected dimension p mong (V 1dBC

p (1), . . . ,V 1dBC
p (N)).

For example, for dimension p, we compute
(rank(V 1dBC

p (1)), . . . , rank(V 1dBC
p (N))) that will

be denoted as (r1dBC
p (1), . . . , r1dBC

p (N)). Therefore, for
each time t , we have a P -dimensional vector of ranks:
R1dBC(t)= (r1dBC

1 (t), . . . , r1dBC
P (t));

3. Compute the time series of ranks for each dimension p
among (V ref

p (1), . . . ,V ref
p (N)) in the reference (calibra-

tion) dataset. For example, for dimension p, we com-
pute (rank(V ref

p (1)), . . . , rank(V ref
p (N))) that will be de-

noted as r ref
p (1), . . . , r

ref
p (N)). Therefore, for each time

t , we have a P -dimensional vector of ranks: Rref(t)=

(r ref
1 (t), . . . , r ref

P (t));

4. Choose one dimension p (e.g., p = 1) and
(V 1dBC
p (1), . . . ,V 1dBC

p (N)) as the reference di-
mension and sequence. Then, for each time t from 1 to
N in the projection period:

(a) Find t∗ in the calibration period such that
r1dBC
p (t)= r ref

p (t
∗) and therefore deduce Rref(t∗)=

(r ref
1 (t∗), . . . , r ref

P (t
∗));

(b) For time t in the projection period, impose that
the P -dimensional vector of ranks is RPdBC(t)=

(r ref
1 (t∗), . . . , r1dBC

p (t), . . . , r ref
P (t

∗));

(c) For all dimensions d 6= p, find the time step td
such that r ref

d (t
∗)= V 1dBC

d (td). Then, define the
P -dimensional BC vector at time t as MBC(t)=
(V 1dBC

1 (t1), . . . ,V
1dBC
p (t), . . . ,V 1dBC

P (tP )). Thus,
MBC= {MBC(t = 1), . . . ,MBC(t =N)} gathers
theN P -dimensional vectors. In other words, MBC
is a P -dimensional time series of lengthN and con-
tains the multivariate bias corrected data via R2D2

with dimension p as reference dimension;

5. Repeat steps 4 (a–c) for all dimensions until P . This
generates MBCall, which gathers P objects MBC (one
per dimension as reference for the shuffling):
MBCall = (MBC(ref.dim.= 1), . . . ,MBC(ref.dim.=
P)).
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