Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1135–1155, 2018
https://doi.org/10.5194/hess-22-1135-2018

Special issue: Environmental changes and hazards in the Dead Sea region (NHESS/ACP/HESS/SE...

Hydrol. Earth Syst. Sci., 22, 1135–1155, 2018
https://doi.org/10.5194/hess-22-1135-2018

Research article 09 Feb 2018

Research article | 09 Feb 2018

Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates

Jutta Metzger et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to revisions (further review by editor and referees) (13 Nov 2017) by Matthew Hipsey
AR by Jutta Vüllers on behalf of the Authors (20 Dec 2017)  Author's response    Manuscript
ED: Publish as is (27 Dec 2017) by Matthew Hipsey
Download
Short summary
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS) and methods to estimate and forecast evaporation. A new approach to measure lake evaporation with a station located at the shoreline, also transferable to other lakes, is introduced. The first directly measured DS evaporation rates are presented as well as applicable methods for evaporation calculation. These results enable us to further close the DS water budget and to facilitate the water management.