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Abstract. In recent years, copula multivariate functions were
used to model, probabilistically, the most important variables
of flood events: discharge peak, flood volume and duration.
However, in most of the cases, the sampling uncertainty, from
which small-sized samples suffer, is neglected. In this paper,
considering a real reservoir controlled by a dam as a case
study, we apply a structure-based approach to estimate the
probability of reaching specific reservoir levels, taking into
account the key components of an event (flood peak, vol-
ume, hydrograph shape) and of the reservoir (rating curve,
volume–water depth relation). Additionally, we improve in-
formation about the peaks from historical data and reports
through a Bayesian framework, allowing the incorporation
of supplementary knowledge from different sources and its
associated error. As it is seen here, the extra information can
result in a very different inferred parameter set and conse-
quently this is reflected as a strong variability of the reser-
voir level, associated with a given return period. Most impor-
tantly, the sampling uncertainty is accounted for in both cases
(single-site and multi-site with historical information scenar-
ios), and Monte Carlo confidence intervals for the maximum
water level are calculated. It is shown that water levels of
specific return periods in a lot of cases overlap, thus mak-
ing risk assessment, without providing confidence intervals,
deceiving.

1 Introduction

In the relatively recent literature, there is a wide applica-
tion of the copula functions to model the natural variabil-
ity of hydrometeorological variables, ranging from rainfall
(De Michele and Salvadori, 2003; Zhang and Singh, 2007;

Balistrocchi and Bacchi, 2011; Singh and Zhang, 2007; Ar-
iff et al., 2012) to floods (Aronica et al., 2012; Balistrocchi
et al., 2014; Candela et al., 2014; Domeneghetti et al., 2013;
Gräler et al., 2013; Ganguli and Reddy, 2013).

An important application of this multivariate analysis is
the determination of the risk of failure of a hydraulic struc-
ture. De Michele et al. (2005) were the first to check the
adequacy of a dam’s spillway under a bivariate hydrologi-
cal load, followed by Requena et al. (2013), while Volpi and
Fiori (2014) formalised the idea that the return period of a
failure of a structure depends on the structure of interest, and
therefore the interaction between the hydrological loads and
the structure should be taken into consideration by fixing a
“structure-based” return period.

In the same conceptual framework, Serinaldi (2016) sug-
gested that the choice between a univariate and multivariate
risk assessment should not be based on whether one or the
other overestimate/underestimate the risk but rather on the
operational criteria of the problem, or simply on what is the
mechanism of failure.

Copulas are functions that combine marginal distributions
with the joint cumulative distribution; therefore, the latter is
only indirectly affected by the choice of the marginals. So,
the practical problem of identification and estimation of the
joint distribution is handled from two non-interwinding as-
pects: the dependence structure of the set of variables and
the marginal distributions.

In the majority of the studies, the communication of the
sampling uncertainty – an integral component in a univari-
ate framework – is overlooked in a multivariate case. Seri-
naldi (2013) studied the effect of sample size on the confi-
dence bands of the probability of exceedance curves of a joint
peak-volume event and showed that in small and medium
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sample sizes these curves largely overlap. Similarly, Zhang
et al. (2015) implemented a Bayesian inference approach to
account for the uncertainty of parameter estimation and for
the occurrence of a drought, coming to the conclusion that
the 95 % confidence interval of a 20-year event can include
the expected values of 10 to 50-year events.

In order to account for the sampling uncertainty of multi-
variate cases, where a variable of interest can be expressed
as a function of one or more variables, Serinaldi (2016) pro-
posed a Monte Carlo procedure. He also underlined the im-
portance of including confidence intervals when providing
point estimates of the variable of interest, which is even more
necessary in the multivariate frequency analysis, where the
unknown dependence structure contributes to the uncertainty.

The sampling uncertainty in a joint peak-volume event was
quantified by Dung et al. (2015) who used two bootstrap-
ping methods – one developed by the authors and the sec-
ond by Serinaldi (2013) – and concluded, as the previous,
that the model selection and parameter estimation methods
are of minor significance in uncertainty estimation with re-
spect to sampling uncertainty, even in relatively large sample
sizes. They suggested that efforts should be focused on the
expansion of the data set in order to achieve a reduction of
uncertainty.

The data expansion can be temporal, spatial and causal
(Merz and Blöschl, 2008), thus enriching the available evi-
dence with information from neighbouring basins, previous
periods and by comprehension of the flood-generating mech-
anisms. In the past, many researchers (Parent and Bernier,
2003; Reis Jr. and Stedinger, 2005; Gaume et al., 2010; Hal-
bert et al., 2016; Parkes and Demeritt, 2016; Viglione et al.,
2013) have dealt with the extension of the available data
using information on paleo-floods, historical flood reports,
marks of the river stage during important flood events, ex-
pert judgement, etc. with the aim of reducing the range of
uncertainty bands or simply to reach a more realistic design
value. Bayesian inference allows the integration of informa-
tion from different sources and their associated uncertainty
and errors and provides a means of conveying hydrological
reasoning in a mathematical context.

In this research, we validate a methodology of flood risk
assessment in a real case study, where risk is expressed in
terms of probability of exceeding a given reservoir level in an
online flood mitigation dam. We consider this level as a func-
tion of flood peak, volume and hydrograph shape and, conse-
quently, multivariate modelling is implemented with the use
of copulas. The characteristics of the reservoir – also a func-
tion of the level – are synthesised in the rating curve and the
volume-level curve. The main scope is to integrate the asso-
ciated sampling uncertainty and to build confidence intervals
for each water level through Monte Carlo simulations. Fur-
thermore, we incorporate additional information on the peaks
in a Bayesian framework and we examine its effect on the
distributions, their confidence intervals, as well as the ones
of the reservoir-level frequency curve.

Figure 1. Panaro study watershed.

2 Case study and data

We have focused our interest on the Panaro catchment – an
important influent of the Po river in northern Italy. In par-
ticular, the watershed under investigation is composed of the
Panaro river itself, the Scoltenna and the Leo tributaries with
an outlet upstream of the Panaro dam (Fig. 1) and occupies an
area of 876 km2. The Panaro has its source at Monte Cimone
(2165 m a.s.l.) and flows into the Po at Bondeno; it takes
its name from the valley of Montespecchio after converging
with the Leo and Scoltenna streams that constitute the up-
per part of the river network. The hydrographic network of
the watershed shows a low degree of hierarchy, indicating an
evolving state which is also evident by the existence of tor-
rential dynamic phenomena (Autorità di bacino del fiume Po,
2006).

The influence of snowfall is negligible due to the mod-
est land elevation and the majority of rainfall events occur-
ring seasonally (September–April). The average precipita-
tion height ranges between 700 and 2000 mm yr−1 (Autorità
di bacino del fiume Po, 2006).

The basin’s permeability is low, and therefore the runoff
is influenced little by water infiltration. In fact, the study
basin consists mostly of sandstones and silicatic alternating
sequences (44 % of total area) and marls and clay (34 %).

The Panaro dam is a concrete gravity dam (150 m in
length), located near the city of Modena and constructed for
flood mitigation purposes. The hydraulic system consists of
two reservoirs, a principal on the river course and a secondary
at the right river bank, and a series of levees that enclose
them. The crest of the principal levees is at 44.85 m a.s.l. The
reservoirs can hold in total 23.66 hm3 up to the spillway’s
crest at 41.1 m a.s.l. There are also nine discharge outlets at
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the bottom of the dam that ensure constant flow to the down-
stream valley.

The available flood data included a 52-year discharge se-
ries (1936–1943, 1945 and 1946 were missing) with an
hourly time interval from the Bomporto station located
downstream near the current location of the dam. The hydro-
logical characteristics of the study basin are briefly presented
in Table 1.

Additional data included the annual peaks of the missing
years from the same station (Servizio Idrografico Italiano,
1939, 1953) and recent annual peaks from upstream stations,
after consulting the annual hydrological reports of ARPA –
Emilia Romagna published in its website (http://www.arpae.
it), in particular, for 2003 from Pievepelago, for 2004, 2005
and 2015 from Ponte Samone, and for 2006 to 2014 from
Spilamberto.

In a report about natural disaster risks in the city of Mod-
ena (Nora and Ghinoi, 2009), it is also stated that the most
disastrous flood events of the 20th century happened during
the last 40 years (1966, 1969, 1972 and 1973). In Novem-
ber 1966, the flooded area from the Panaro covered 9400 ha;
in September 1972, it covered 2540 ha; and in Septem-
ber 1973, it covered 6000 ha (Nora and Ghinoi, 2009).

3 Methodology

3.1 Data regionalisation

In order to rescale the flood information from subcatchments
and from the downstream station, depending on the area, the
following scale function was used:

Q(A1)=Q(A2)(A1/A2)
m (1)

where Q(A1) is the rescaled discharge, Q(A2) a known dis-
charge and m a regional-scale exponent.

De Michele and Rosso (2002) clustered basins with simi-
lar flood generation mechanisms and checked the homogene-
ity of the grouped regions. The study area was located in
northwestern Italy and included the Panaro watershed. The
proposed scale exponent m for this region is 0.772 with a
standard deviation of 0.072. In our case, the rescaling re-
garded different locations of the same basin, although in the-
ory neighbouring basins could have been used (e.g. the Sec-
chia basin), but they did not add additional information here.

3.2 Incorporating additional data

Thomas Bayes’ theorem expresses how an individual’s de-
gree of belief can change after the presence of new evidence.
Bayes’ theorem can be formulated as

p(θ |D)=
l(D|θ)π(θ)∫
l(D|θ)π(θ)dθ

∝ l(D|θ)π(θ), (2)

where π(θ) is the prior density distribution of the parame-
ters θ , p(θ |D) is the posterior distribution after the introduc-

Table 1. Main hydrological characteristics of the Panaro watershed
(area A, main stream length L, minimum elevation Hmin, elevation
drop 1H , time of concentration tc).

A (km2) 876
L (km) 124.4
Hmin (m) 32
1H (m) 1449.9
tc (h) 10.0

tion of the observed information D and l(D|θ) is the likeli-
hood of the data. The denominator serves only as a normali-
sation constant to ensure unity of the area under p(θ |D), so
the equality sign can be substituted with the proportionality
sign. This integral cannot be solved analytically, so for its
computation Monte Carlo Markov chain algorithms are em-
ployed. In each Markov chain, the aim is the maximisation
of the logarithm of the unnormalised joint posterior distribu-
tion starting from an initial value and proceeding iteratively,
in order to arrive at each target distribution (Statisticat, LLC,
2016).

In a Bayesian framework, the model’s parameters are han-
dled as stochastic variables in order to incorporate the un-
certainty of their values (Ouarda and El-Adlouni, 2011). In
the present case, the model’s parameters were the parameter
of the peak marginal distribution and the scale exponent. We
used noninformative prior distribution for the marginal and
a normal prior distribution for the exponent mvN (0.772,
0.072). We integrated a perception threshold XP – a value
which only in k number of years in a historic period of
h years was exceeded; here, it is set as at about 1000 m3 s−1,
a value thought to be exceeded only once in a historic period
of 117 years since flood reports indicate that during the early
years of the 1900s, when systematic records were nonexis-
tent, the flood events were of less significance in comparison
with the events occurring in the 1970s. Additionally, we have
introduced the uncertainty of the scale exponent m. There-
fore, the likelihood function of the data is set as

l(D|θ)=

[
h
k

]
FX(XP)

(h−k)
s∏
i=1

[
ni∏
j=1

fx
(
yij (A/Ai)

m
)]
, (3)

where
[
h

k

]
=

h!
k!(h−k)!

is the binomial coefficient, s is the

number of different sites of the recorded flood peaks, ni is
the number of recorded peaks for each site and yij are the
annual peaks from the different sites.

The Bayesian inference was conducted in R with the
package LaplacesDemon (Statisticat, LLC, 2016) and the
MCMC algorithm utilised was the Componentwise Hit-And-
Run Metropolis. The logarithm of the posterior distribution
to be maximised is the sum of the logarithm of the likelihood
and the logarithm of the priors:
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log(p(µ,σ,m|D)= log(l(D|µ,σ,m)+ log(π(m)), (4)

where µ and σ are the mean and shape parameters of the
peak distribution.

3.3 Copula and marginal inference

Copulas are functions that describe the dependence struc-
ture between variables independently of the choice of
marginal distributions. The joint distribution functions and
the marginals are linked by Sklar’s theorem (Sklar, 1959):

F (x1, . . .,xd)= C (F1 (x1) , . . .,Fd (xd)) , (5)

for all x ∈Rd , where the Fi , i= 1, . . . , d are the marginals
of F and C is the copula function.

Copulas provide a powerful tool for the statistical mod-
elling of multivariate data: for a theoretical introduction, see
Nelsen (2006), Joe (2014) and Durante and Sempi (2015);
for a practical engineering approach, see Genest and Favre
(2007), Salvadori et al. (2007) and Salvadori and De Michele
(2007).

The application of copula functions has facilitated over-
coming some inadequacies of traditional multivariate distri-
butions such as that the marginals must derive from the same
distribution family and their parameters may define the de-
pendence structure between the variables (Salvadori et al.,
2007).

The degree of relation between pairs of variables
was examined by measures of association. These include
Kendall’s τ , Spearman’s ρS (which expresses the existence or
absence of concordance) and Pearson’s ρP (which expresses
linear dependence). For the observed discharge/volume pairs,
these were equal to 0.58, 0.77 and 0.81, respectively, and in-
dicate strong dependence.

In the absence of a long sample, the copulas that fit the
data can be numerous and goodness-of-fit tests cannot dis-
tinguish between them (Serinaldi, 2013). Since inferring the
“correct” copula model is not the aim of this research and
since this endeavour at this point can be futile, given the
available data set, the final choice was based partly on the
preference of previous published research of the Gumbel dis-
tribution, including conference proceedings by Balistrocchi
et al. (2014) who fitted the Gumbel on peaks obtained from a
peak-over-threshold method on the same discharge time se-
ries. In the present case, both the Gaussian and the Gumbel–
Hougaard one-parameter copulas passed the goodness-of-
fit tests (Cramér–von Mises and Kolmogorov–Smirnov) and
demonstrated the smallest Akaike weights – or else the prob-
ability that the chosen model is the most apt among the tested
ones (Burnham and Anderson, 2004). However, we thought
that if tail dependence exists, Gumbel would be more ap-
propriate (belonging to the extreme value copula family), as
the Gaussian has no tail dependence. We recall the Gumbel–
Hougaard copula as

C(u,v)= exp
[
−
(
(− log(u))θ + (− log(v))θ

)1/θ]
, (6)

where u, v are the pseudo-observations and θ the copula pa-
rameter.

The existence of tail dependence between peak and vol-
ume was also implied by some historical evidence. Many
significant events in Italy occur when a frontal perturba-
tion, generated by the cold high masses coming from the
North Atlantic Ocean or the Arctic Ocean, meets Mediter-
ranean southward warm fronts. Depending on the persistence
of the south and north currents, the generated front begins
to develop, covering a large area (e.g. 104 km2). Inside this
warm front, the energy content is very high. This causes local
convective phenomena enhanced by orographic effects. So,
thunderstorms can appear locally producing rainfall whose
values can surpass one-third of the mean annual in 24–30 h.
In the vicinity of the local thunderstorms, the rainfall is mod-
erately high, producing large soil saturation and increasing,
significantly, the contribution to the groundwater. This kind
of rainfall event produces not only maximum observed peaks
of flood in many rivers of small (< 100 km2) and medium
(< 2000 km2) sizes but also the largest observed volumes as-
sociated with the persistence of the global event. This is the
case, for example, for the flood in Florence and Triveneto on
4 November 1966, in Valtellina on 18–25 July 1987, along
the Tanaro on 5–6 November 1994, along the Po in Piedmont
on 17–21 October 2000, etc.

Unfortunately, tail dependence estimators such as the ones
of Frahm et al. (2005) and Schmidt and Stadtmüller (2006)
can be biased and susceptible to high uncertainty even in
large sample sizes (Serinaldi et al., 2015); thus, their use in
this case is discouraged.

Regarding the choice of the marginal distributions, we pre-
ferred distributions that were more parsimonious, thus reduc-
ing the additional statistical uncertainty introduced by an ex-
tra parameter, following the logic of Occam’s razor, and this
provided a nice visual fit. The differences between the cor-
rected Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC) and Akaike-weighted values were not
sufficient to make a safe distinction between the models. The
peaks were modelled with the inverse Gaussian distribution
(two parameters instead of three of the generalised extreme
value (GEV) distribution) and their corresponding volumes
with the one-parameter Rayleigh. It is, however, imperative
to note that there was no clear indication of overall perfor-
mance superiority of the chosen distributions.

The parameters of the inferred distributions (copula and
marginals) are presented in Table 2.

3.4 Hydrograph selection

The shape of the “design hydrograph” is often considered
an important factor in the design procedure and is related
to the spatial and temporal rain distribution as well as the
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Table 2. Estimated parameters of the inferred distributions and their confidence interval (95 %).

Parameter Estimated Confidence interval Standard
name parameter (95%) deviation

Gumbel–Hougaard θ 2.27 [1.79, 3.01] 0.38
Inverse Gaussian for peak (single site) µ 364.12 [23.64, 416.40] 23.67

λ 1957.16 [1288.05, 2820.61] 380.17
Inverse Gaussian for peak (multi-site µ 398.61 [358.42, 442.54] 21.89
and historical information) λ 1533.41 [1108.84, 2058.99] 256.37
Rayleigh for volume σ 386.58× 105

[343.18, 430.53]× 105 26.54× 105

basin’s shape and behaviour (Singh, 1997). Therefore, typ-
ical hydrographs were determined from the annual maxima
flood events extracted from the available time series. In par-
ticular, the events’ hydrographs were clustered according to
their characteristics and utilising the methodology proposed
by Dyck and Peschke (1995), which suggests the normali-
sation of the hydrograph (after the removal of the baseflow)
by

Qnorm = (Q− qbase) /(Qmax− qbase) (7)
tnorm = t/tQmax , (8)

where Qmax is the hydrograph’s peak, qbase the base flow
and tmax the time to peak, starting from the rising limb of the
flood event.

Consequently, the normalised peak equals 1 at time 1. All
normalised hydrographs were extended to a common du-
ration (for comparison purposes) and cluster analysis with
the Ward method and Euclidean distances was implemented
(Aronica et al., 2012).

3.5 Structure-based risk analysis

Volpi and Fiori (2014) associated the return period with the
structure of interest by relating the structure design parame-
ter to the hydrological load through the function Z= g(X).
Consequently the structure-oriented return period of a value z
takes the form

TSTR =
µT

1−FZ(z)
, (9)

where µT is the mean interarrival time between two consec-
utive occurrences of z (in our case, µT = 1 year), FZ is the
probability distribution function of the derived variable Z,
which in this case is the reservoir level and X≡ (Q, V , shape,
etc.). Here, the structure function is very complex, since the
reservoir level is a function of the spillway’s rating curve and
the flood’s natural variables, and therefore the whole analy-
sis must be based on Monte Carlo simulations. This adds to
the computational burden, specifically when dealing with the
quantification of the uncertainty.

3.6 Uncertainty estimation

In order to account for sampling uncertainty and to estimate
the confidence intervals, the following Monte Carlo pro-
cedure was implemented, originally proposed by Serinaldi
(2016).

1. Estimate the parameter θ̂ of the copula for the observed
sample as well as the parameter of the flood volume dis-
tribution.

2. Simulate B bivariate samples of size n (equal to the
number of years of the observed sample) using the esti-
mated copula parameter and then transform into volume
using the estimated parameter of the marginal.

3. Calculate the copula parameter θ̂ and the volume
marginal parameter for each sample with the same esti-
mation method used for the observed sample.

4. Simulate B bivariate samples of size M with the copula
parameter θ̂ estimated in the previous step.

5. Transform the samples from the unit interval to dis-
charge and volume using the estimated marginal param-
eters. Generate B ×M hydrographs with an assigned
peak, volume and shape and route them to calculate the
reservoir level and the frequency curves of all B sam-
ples.

6. Build the confidence intervals of the reservoir level fre-
quency curves.

In the present research, B was set equal to 10 000 and
M equal to 1000.

The confidence intervals of the peaks’ marginal distribu-
tion parameters have been estimated in a Bayesian frame-
work, as stated previously, in order to incorporate the addi-
tional knowledge and to account for the scaling uncertainty.

The parameter uncertainty of additional distributions that
fit the data could be introduced in the procedure, leading to
larger confidence intervals. However, in this case, only the
parameter uncertainty of the inferred models was of interest.
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Figure 2. Characteristic normalised hydrograph shapes (a) with a certain probability of occurrence and (b) “mean” normalised hydrograph
shape.
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Figure 3. Frequency curves of maximum water level of synthetic
hydrographs for four clusters and one cluster and corresponding lev-
els of observed hydrographs.

4 Results and discussion

Initially, we have clustered the hydrograph shapes into four
characteristic groups. After simulating 10 000 peak-volume
pairs from the inferred distributions, we assigned to each one
a specific hydrograph shape (respecting their frequency of
occurrence). Then, we denormalised and routed the hydro-
graphs; we repeated the same procedure but after clustering
into only one group, thus considering a global mean hydro-
graph. The characteristic shapes are depicted in Fig. 2a, along
with the mean shape (Fig. 2b). The level frequency curve
showed small differences between the two cases (Fig. 3) and,
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Figure 4. Flood frequency curves with 95 % confidence limits for
the single-site data and the multi-site data with the extra information
case. Observed peaks are also plotted with the Gringorten plotting
position.

as we shall see later, this difference is negligible in compar-
ison with the estimated uncertainty. So, we have proceeded
with the uncertainty assessment considering one mean hy-
drograph.

We have implemented the Bayesian framework on
the peaks extracted from the systematic discharge series
recorded at the Bomporto station, adding also the uncertainty
of the scaling exponent of the regionalisation relation. In the
second scenario, we also included recently recorded annual
peaks from other hydrometric stations of the same basin,
mentioned previously, as well as information from flood re-
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ports, while integrating the uncertainty of the scaling expo-
nent. As it can be seen in Fig. 4, when ignoring the addi-
tional information, the estimate of discharge peak is lower
for a given return period. We focus our attention on relatively
small return periods since any extrapolation beyond the avail-
able time period is subject to great uncertainty. Indicatively, a
peak with a univariate return period of 50 years can increase
by 18 %, exceeding the confidence intervals of the fitted dis-
tribution. This occurs because during the last 10 years crucial
flood events appeared in the area. In Table 2, we note that
in the second case the distribution’s mean is bigger and the
shape parameter is smaller with a significantly lower stan-
dard deviation.

The 95 % confidence interval of both of the peak distribu-
tions can be wide (Fig. 4); e.g. for a univariate return period
of 50 years, it can span from 665 to 941 m3 s−1 (29 % differ-
ence) and from 837 to 1092 m3 s−1 (23 % difference) for the
first and second cases.

Similarly, in the case of the flood volume, the 95 % confi-
dence interval for a univariate return period of 50 years can
span from 95.5 to 120 hm3 (20 % difference) (Fig. 5).

The confidence intervals of the parameters of the inferred
distributions are presented in Table 2.

The results of the increased peaks are reflected also on
the frequency curve of the maximum water level (MWL).
The return period here corresponds to a water level, so it
is considered structure based, since the level is a function
of the structural and operational characteristics of the dam,
among others. As it can be seen (Fig. 6), the MWL is signif-
icantly lower in the case of no extra information, especially
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Figure 6. MWL frequency curves with 95 % confidence limits for
the single-site data and the multi-site data with the extra information
case.

for greater return periods. For a return period of 50 years, the
average MWL can differ by 1.2 m – a considerable magni-
tude in terms of volume and when considering that the safety
margin above the spillway’s crest is in some cases 1 m.

In Fig. 7, the highest density regions depict a sort of con-
fidence interval of the MWL for specific return periods for
each case (single-site information and multi-site with histor-
ical information cases). These regions can be defined as the
smallest areas in the sample space with a certain probability
coverage and they have the advantage of displaying multi-
modal distributions; thus, they may consist of disjoint sub-
sets (Hyndman, 1996). They are particularly suitable in mul-
tivariate cases or for asymmetrical distributions. In the high-
density region (HDR) box plots, the mode (horizontal line)
substitutes the median and the darker region corresponds to
a probability coverage of 50 %, the lighter to a coverage of
95 % and the points outside to the data beyond the 95 % prob-
ability.

The span of the highest density regions slightly decreases
as more information is introduced. However, this decrease
in uncertainty seems small and we cannot come to a con-
clusion, whereas the extra information has contributed to a
systematic uncertainty reduction. An increase in the simula-
tion size could lead to a slightly different picture; however,
the added computational burden is prohibitive and anyhow,
as Salvadori et al. (2015) stated, a clear rule of thumb re-
garding the simulation size does not exist. In any case, the
size is considered large enough for some safe conclusions,
especially for the smaller return periods.
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Figure 7. High-density region box plots of MWL for return periods of 10, 20 and 50 years for (a) single-site data and (b) multi-site data with
historical information.
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Figure 8. The 50th, 75th and 95th percentiles of the kernel density areas of MWLs with a return period of 50 years on the discharge–volume
plane for single-site data (a) and multi-site data with historical information (b).

Within a certain return period, the parameter uncertainty
can lead to substantial MWL variations, e.g. for 20 years (in
the case of extra information), the span of the MWL with
a density of 50 and 95 % is of 0.8 and 2.3 m, respectively,
which correspond to huge volume differences. These can
have devastating effects not only in the case of overtopping
but also because the remaining water can cause bank failure
due to piping. These spans could increase for larger return
periods, where the uncertainty is bound to get vaster.

As the results of previous studies suggested (Serinaldi,
2013; Dung et al., 2015; Zhang et al., 2015; Serinaldi, 2016),
the regions of the return periods can overlap; in this case, the
95 % confidence interval of an event of 20 years can include,
marginally, the expected values of events of 10 to 50 years
(e.g. single-site scenario). For the multi-site with the extra
information scenario, the overlapping region is smaller.

In Fig. 8, the highest density regions (50, 75 and 95 %) are
depicted in a two-dimensional plane (discharge–volume) that
correspond to a return period of 50 years. For events that re-
sult in a MWL with a specific return period, the variation of
discharge and volume can be huge even when looking in the
smaller density regions (e.g. 50 %). For example, in the 95 %
region, the discharge can assume values with a univariate re-
turn period from 1 to 50 years (for the multi-site scenario),
which is a strong indicator of the nonlinearity of the problem.
The same applies for the flood volume.

5 Conclusions

This analysis focuses on the uncertainty introduced when cal-
culating the probability of exceeding specific water levels in
a flood control reservoir, which is a result of the parameter
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uncertainty of the marginals of the hydrological variables,
as well as the copula multivariate function, due to the small
size that characterises, in most cases, a hydrological sample.
Therefore, we attempted to quantify this uncertainty, with-
out aiming our attention to copula/marginals inference. In-
stead, we studied the effect of additional flood information
not only on the distribution parameters but also on the un-
certainty range in a Bayesian framework that, among others,
permits the consideration of errors from different sources.

The extra flood data that included additional peaks from
different hydrometric stations led to a peak distribution with
bigger mean and smaller shape parameters and thus to el-
evated peaks, since the data include flood events of recent
years that exceed the events of the historical data series in
magnitude. Consequently, including the additional informa-
tion translates into a general bigger estimate of the peaks,
which is also reflected on the MWLs, as the peak is a driving
factor of the routing process.

The uncertainty range of discharge and volume is con-
siderable and affects, along with the copula parameter, the
MWL. The variations in the MWL for the same structure-
based return period correspond to significant variation in the
stored water volume. Most importantly, the return period of a
specific water level cannot be determined with certainty be-
cause the return periods of the events overlap. Naturally, the
range of discharge and volume values for a given structure-
based return period is very ample due to the wide range of
the parameters of the inferred distributions.

A clear observation of whether uncertainty is systemati-
cally reduced with the introduction of additional informa-
tion cannot be made here. Nonetheless, a Bayesian frame-
work allows a certain degree of transparency (Parkes and
Demeritt, 2016). Incorporating knowledge about water lev-
els during historic events, e.g. at the locality of Navicello for
the 1783 and 1842 floods, could result in a more significant
change in the uncertainty range, as past research has shown.
However, one must consider also the great amount of error
involved in these data in the Bayesian framework.

As a general remark, one can deduce that the process of
risk estimation is inherently crippled by uncertainty that can
be quantified or at least approximated. Any attempt to ob-
scure this uncertainty could create a false notion about its ex-
istence in a multivariate problem with eventual implications
in dam safety.
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