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Abstract: Quantifying the potential impacts of climate change on water yield and ecosystem 30 

productivity is essential to developing sound watershed restoration plans, and ecosystem 31 

adaptation and mitigation strategies. This study links an ecohydrological model (Water 32 

Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) 33 

dynamically downscaled climate data of the HadCM3 model under the IPCC SRES A2 34 

emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), 35 

water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 36 

across the 82,773 watersheds (12-digit Hydrologic Unit Code level) in the coterminous U.S. 37 

(CONUS). Across the CONUS, the future multi-year means show increases in annual 38 

precipitation (P) of 45 mm yr-1 (6%), 1.8 oC increase in temperature (T), 37 mm yr-1 (7%) 39 

increase in ET, 9 mm yr-1 (3%) increase in Q, and 106 gC m-2 yr-1 (9%) increase in GPP. We 40 

found a large spatial variability in response to climate change across the CONUS 12-digit 41 

HUC watersheds, but in general, the majority would see consistent increases all variables 42 

evaluated. Over half of the watersheds, mostly found in the northeast and the southern part of 43 

the southwest would have an increase in annual Q (>100 mm yr-1 or 20%). In addition, we 44 

also evaluated the future annual and monthly changes of hydrology and ecosystem 45 

productivity for the 18 Water Resource Regions (WRRs) or 2-digit HUCs. The study provides 46 

an integrated method and example for comprehensive assessment of the potential impacts of 47 

climate change on watershed water balances and ecosystem productivity at high spatial and 48 

temporal resolutions. Results may be useful for policy-makers and land managers to 49 

formulate appropriate watershed specific strategies for sustaining water and carbon sources in 50 

the face of climate change. 51 
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1. Introduction 60 

Due to human activities, such as emissions of greenhouse gas, aerosol and land use/cover 61 

change (LUCC), the Earth’s climate system has been significantly altered over the past 100 62 

years. The Intergovernmental Panel on Climate Change (IPCC, 2014) concludes that global 63 

surface temperature has increased 0.85 oC during 1880-2012, and increased 0.78 oC during 64 

2003-2012 when compared to 1850-1900. Additionally, extreme precipitation and droughts 65 

have increased (Tebaldi et al., 2006; Trenberth, 2011; Bony et al., 2013; Hegerl et al., 2014). 66 

The global climate is projected to continue to change over this century and beyond (IPCC, 67 

2014). In comparison to the period of 1986-2005, the period 2018-2100 is projected to see 0.3 68 

oC to 4.8 oC increase in global surface temperature (IPCC, 2014). Future changes in 69 

precipitation show a small increase in the global average, but a substantial shift in where and 70 

how precipitation falls (Noake et al., 2012; Scheff and Frierson, 2012; Liu et al., 2013a). 71 

In response, the hydrological cycle and ecosystems have been markedly changed through 72 

various physical, chemical and biological processes during the past century (Labat et al., 2004; 73 

Milly et al., 2005; Dai et al., 2009; Harding et al., 2011; Sedláček and Knutti, 2014). 74 

Mounting evidence has suggested that climate and its change played an important role in 75 

controlling water cycle by changes in evaporation, transpiration, and runoff (McCabe, et al., 76 

2002; Hamlet et al., 2007; Syed et al., 2010; Wang and Hejazi, 2011; Chien et al., 2013; 77 

Hegerl et al., 2014; Huntington and Billmire, 2014; McCabe and Wolock, 2014; Sun et al., 78 

2014). Also, climate can exert a dominant control on vegetation structural and phenological 79 

characteristics through variations in air temperature, precipitation, solar radiation, wind, and 80 

CO2 concentration (Nemani et al., 2003; Harding et al., 2011; Wang et al., 2014). Climate 81 

change affects vegetation dormancy onset date, timing of bud burst, net primary production 82 

(NPP), gross primary production (GPP), and ecosystem respiration (Nemani et al., 2003; 83 

Scholze et al., 2006; Pennington and Collins, 2007; Anderson-Teixeira et al., 2011; Gang et 84 

al., 2013; Peng et al., 2013; Zhang et al., 2013; Williams et al., 2014; Wu et al., 2014; Piao et 85 

al., 2015; Wang et al., 2015). In addition, future water cycle and ecosystems are affected by 86 

the combined forces from natural environment (e.g., climate and land surface properties) and 87 

socio-economics (e.g., economic development and population increases) (Cox et al., 2000; 88 
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Somerville and Briscoe, 2001; Sitch et al., 2008; Alkama et al., 2013; Piontek et al., 2014; 89 

Schewe et al., 2014; Zhang et al., 2014; Aparício et al., 2015). 90 

In the U.S., average temperature has dramatically increased since the record keeping 91 

began in 1895. The most recent decade was believed to be the warmest on record (see the 92 

website: http://www.nasa.gov/home/hqnews/2010/jan/HQ_10-017_Warmest_temps.html). 93 

Mean precipitation over the U.S. has increased overall since 1900; some areas have increased 94 

with a higher rate than the national average, and some areas have decreased (Groisman et al., 95 

2004; Meehl et al., 2005; Anderson et al., 2015). Over the past century, climate change in the 96 

U.S. has caused severe water stress, floods and droughts as well as forest morality (Xu et al., 97 

2013), leading to serious economic losses in some regions. Quantifying the impacts on future 98 

climate change on water and ecosystem productivity has become a major research area in 99 

hydrology and ecosystem sciences (Lettenmaier et al., 1994; Lins and Slack, 1999; Groisman 100 

et al., 2001; McCabe and Wolock, 2011; Sagarika et al., 2014). 101 

Because climate change patterns are not uniform across space or time 102 

(Sankarasubramanian et al., 2001; Sankarasubramanian, 2003; Wang and Hejazi, 2011; Xu et 103 

al., 2013; Brikowski, 2014) climate change impacts on water cycle and ecosystem 104 

productivity vary from region to region, and variability will be even bigger across small 105 

watersheds. To support future water resource planning, watershed management and to 106 

develop sound adaptation strategies over the continental U.S. (CONUS), tools are needed to 107 

integrate various climate scenarios from a variety of Atmospheric Ocean General Circulation 108 

Models (AOGCMs) and Community Earth System Models (CESMs), and hydrological and 109 

vegetation dynamic models (Brown et al., 2013; Blanc et al., 2014; Yu et al., 2014). 110 

Two major research gaps exist in past climate change studies that aim at quantifying the 111 

interactions among climate, hydrology and ecosystem productivity. First, few studies 112 

provided projections of future climate change impacts on water and carbon balances at 113 

watershed scale using a consistent approach. Various land surface models (LSMs) simulate 114 

and predict water fluxes for a large region, but the scale is often too coarse with a spatial 115 

resolution ranging from 0.25o to 2.5o. The water budget within each grid cell in LSMs may 116 

not be balanced because it is not a closed watershed system. Key hydrological processes (e.g., 117 

lateral surface and sub-surface flows among grid boxes) have been rarely considered, 118 
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potentially resulting in uncertainties in water balance projections (Overgaard et al., 2006; Li 119 

et al., 2011). Second, to save computational resource and enhance the computational 120 

efficiency, statistical (or empirical) downscaling method has been mostly used to generate 121 

climate forcing to land surface models or watershed ecosystem models. However, this type of 122 

methods does not consider the effects of atmospheric dynamical processes (Xue et al., 2014) 123 

and could introduce uncertainties into the crucial land surface variables. 124 

Therefore, the general goal of this study is to explore how dynamically downscaled 125 

climate data can be used to drive a common ecosystem model for climate change assessment 126 

at a fine spatial scale (i.e., 12-digit HUC watersheds, whose detailed information can be found 127 

in the following text). The specific objectives of this study are to (1) evaluate future climate 128 

changes in precipitation, and temperature during 1979-2007 and 2031-2060 for one emission 129 

scenarios over the CONUS using dynamically downscaled climate projections from the WRF 130 

(Weather Research and Forecasting) model; (2) project future changes of water yield (Q), ET, 131 

and GPP for the study area by linking the WRF dynamically downscaled climate change 132 

scenarios and the WaSSI model. The goal is to generate information that can be useful for 133 

policy makers to plan for potential shifts in water resources and ecosystem productivity at the 134 

watershed to national level. 135 

2. Data and Methodology 136 

2.1 Study area 137 

The research area includes the conterminous continental U.S. covering 82,773 12-digit 138 

HUC watersheds within the 18 Water Resources Regions (WRRs; Fig.1a).  The size of these 139 

HUC12 watersheds ranges from 0.16 km2 to 9238 km2, with the median and the mean values 140 

of 88.2 km2 and 95.0 km2, respectively. Moreover, area of the overwhelming majority of the 141 

watersheds (>80,000) is between 50 km2 and 170 km2. The WRRs vary in size with the 142 

maximum of 1.3×106 km2 (WRR10) and the minimum of 1.1×105 km2 (WRR6). In addition, 143 

climatology and land surface characters (e.g., land cover; Fig.1b) vary dramatically among 144 

theses WRRs. From the east to the west CONUS, multi-year mean (1979-2007) annual 145 

precipitation as estimated by the Parameter-elevation Regressions on Independent Slopes 146 

Model (PRISM) shows longitudinal decreases ranging from 1300 mm yr-1 to 341 mm yr-1. For 147 
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the multi-year mean temperature (1979-2007), the spatial distribution displays the latitudinal 148 

characteristic decreasing from the south to the north CONUS, with a range from a high of 149 

18oC to a low of 4oC. The WRRs in the east had the larger percentages (around 10%) of urban 150 

use with WRR2 (13%) and WRR4 (11%) ranked as the top two. The wetlands are mainly 151 

located in the WRRs in the eastern U.S., while the western regions had the higher percentages 152 

of shrubland (>30%). The WRRs in the east generally had higher forest (including mixed, 153 

evergreen and deciduous forests) percentages (>33%) than the southwest (<30%). The 154 

deciduous and the evergreen forests were mainly found in the east and the west, respectively. 155 

Most of the crop lands were located in the east and central CONUS (Fig.1b). 156 

2.2 Dynamically downscaled climate by WRF 157 

The IPCC Special Report on Emissions Scenarios (SRES) scenarios were designed to 158 

project future global environment with a special reference to the production of greenhouse 159 

gases and aerosol precursor emissions (Nakicenvoic et al., 2000). The SRES scenarios mainly 160 

include four narrative storylines (i.e., A1, A2, B1 and B2), which describe the relationships 161 

between the forces affecting greenhouse gas and aerosol emissions and their evolution in the 162 

21st century for large regions and the globe. Each storyline represents a specific and typical 163 

demographic, economic, technological, social and environment progresses with divergence in 164 

increasingly irreversible ways. The A2 storyline represents the high end of the SRES emission 165 

scenarios (but not the highest) and has been widely used by the scientific communities 166 

(Seneviratne et al., 2006; Wi et al., 2012). Therefore, the SRES A2 emission scenario was 167 

selected in this study. From an impact and adaptation point of view, if one can adapt to a 168 

larger climate change, then the smaller climate changes of the lower end scenarios can also be 169 

adapted to. Moreover, the historic emissions (1990 to present) correspond to a relatively high 170 

emission trajectory (http://www.narccap.ucar.edu/about/emissions.html). 171 

The Global Circulation Models (GCMs) have significant issues in representing local 172 

climates, mountains in particular, because of their coarse spatial resolution (Leung and Qian, 173 

2003). To downscale the GCMs climate data to a higher spatial resolution for regional and 174 

local applications, two types of downscaling method are available: dynamical and statistical 175 

(or empirical) downscaling (Huang et al., 2011). Due to better representation of finer scale 176 

physical processes in climate variables (Gao et al., 2011; Xue et al., 2014), dynamical 177 
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downscaling was used here for generating the current and the future climate. 178 

The HadCM3 (Hadley Centre Coupled Model, Version 3) is a coupled atmosphere-ocean 179 

general circulation model (AOGCM) developed by the Hadley Centre in the United Kingdom 180 

(Gordon et al., 2000; Pope et al., 2000; Collins et al., 2001), which has been used extensively 181 

for climate prediction, detection and attribution, and other climate sensitivity studies, e.g., the 182 

3rd, the 4th and the 5th IPCC Assessments reports. For the atmospheric component, this model 183 

dynamics and physics are solved on a 3.75o (longitude) × 2.5o (latitude) grid with 19 hybrid 184 

vertical levels, while there has a horizontal resolution of 1.25o (longitude) × 1.25o (latitude) 185 

with 20 vertical levels in the oceans. The reader is referred to Pope et al. (2000) for details of 186 

the HadCM3 dynamical and physical processes. Generally speaking, despite that the flux 187 

adjustments are not utilized by the HadCM3, it still ranks highly compared to other models in 188 

the respect of current climate simulation (Reichler and Kim, 2008). In addition, among the 189 

many GCMs, the HadCM3 model was believed to have the most realistic description of the 190 

ENSO mechanisms in the current climate, and reasonably capture ENSO-associated 191 

precipitation anomalies over the North America (van Oldenborgh et al., 2005; Joseph and 192 

Nigam, 2006; Dominguez et al., 2009). Based on the importance of precipitation in hydrology 193 

and ecosystem productivity assessment, we chose the HadCM3 model to provide forcing 194 

fields for running the Advanced Research version (ARW) of the Weather Research and 195 

Forecasting (WRF) regional climate model (Skamarock et al., 2005). 196 

Data generated from the WRF model were described below. The WRF model was run for 197 

the years 1969 to 2079 at a 35 km resolution. HadCM3 inputs with 6-hour time resolution 198 

were used, and the dynamically downscaled output by the WRF model was also stored at 6-hr 199 

time interval. For the model domain, the CONUS and northern Mexico were included (Wi et 200 

al., 2012). The model’s physical parameterizations mainly included: WRF Single-Moment 201 

three-class microphysics (Hong et al., 2004), Kain-Fritsch cumulus parameterization (Kain 202 

and Fritsch, 1993), Goddard Shortwave radiation (Chou and Suarez, 1994), Rapid Radiative 203 

Transfer Model (RRTM), Longwave (Mlawer et al., 1997), Eta surface layer (Janjic, 2002), 204 

Mellor-Yamada-Janjic (MYJ) planetary boundary layer (Janjic, 2002), and the Noah land 205 

surface model Version 1.0 (Chen and Dudhia, 2001). To ensure the maintenance of 206 

synoptic-scale circulation features, like ridges and troughs, in the RCM (Regional Climate 207 
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Model), we performed spectral nudging on the zonal and meridional winds, the temperatures 208 

and the geo-potential height fields for all pressure levels below 0.36 of the surface pressure 209 

(for a surface pressure of 1000 mb it would be all pressures below 360 mb) effectively 210 

nudging only at very high elevations above the surface. 211 

2.3 Climate data bias corrections 212 

The dynamically downscaled precipitation and temperature simulations by WRF were 213 

sufficient for a hydrological study (1981-2005) by Wi et al. (2012) in the Colorado River 214 

Basin). Our comparison study showed that although downscaled climate simulations agreed 215 

well with the observations (PRMS data) in a climatological sense, some large regional biases 216 

were found. Therefore, bias correction was performed using a monthly Bias Correction 217 

Spatial Disaggregation (BCSD; Wood et al., 2002, 2004) approach. The method has been 218 

applied for hydrologic forecasting in the eastern U.S. (Wood et al., 2002). Basically, the bias 219 

correction include the following procedures: (1) scale up the PRISM monthly precipitation 220 

and temperature with 4 km × 4 km resolution to match the simulated WRF data (35 km × 35 221 

km) for the time period of 1978-2007; (2) construct cumulative distribution functions (CDFs) 222 

for climate variables in each grid cell, month for both historic WRF and upscaled PRISM 223 

datasets; (3) the paired CDFs combined to form a ‘quantile map’, where at each rank 224 

probability or percentile, the bias between the WRF and the PRISM (at that location, for that 225 

variable, and during that month) was calculated; (4) The computed bias in each month, grid 226 

cell and variable were applied to the WRF future outputs (2031-2060). The detailed 227 

procedures can be found in (Brekke et al., 2013; 228 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections). Both the corrected WRF monthly 229 

precipitation and temperature in historic and future periods were scaled to the 12-digit HUC 230 

watershed scale because the WaSSI model operated on the 12-digit HUC watershed level. 231 

2.4 The WaSSI model 232 

The WaSSI model is an integrated, water-centric process-based ecohydrological model 233 

designed for modeling water and carbon balance and water supply stress at a broad scale (Sun 234 

et al., 2011a; Caldwell et al., 2012; Sun et al., 2015a, 2015b). It operates on a monthly time 235 

step at the 8-digit HUC or 12-digit HUC watershed scale for the CONUS. The WaSSI model 236 

simulates the full monthly water (ET, Q and soil moisture storage) and carbon balances (GPP, 237 
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ecosystem respiration and net ecosystem productivity) for each land cover class at the given 238 

watershed scale. This model has been tested in a variety of geographical regions, and widely 239 

used for quantitatively assessing combined or individual effects of climate change, land 240 

use/cover change (LUCC), and population dynamics on water supply stress and ecosystem 241 

productivity (i.e., carbon dynamic) over the CONUS (Sun et al., 2008, 2011a; Lockaby et al., 242 

2011; Caldwell et al., 2012; Averyt et al., 2013; Tavernia et al., 2013; Marion et al., 2014; 243 

Sun et al., 2015a, 2015b). The model has also been applied internationally in Mexico, China 244 

(Liu et al., 2013b) and Africa (McNulty et al., 2015). 245 

The key algorithms of the WaSSI model were derived from accumulated knowledge of 246 

ecosystem carbon and water cycles gained through the global eddy covariance flux 247 

monitoring networks and watershed-based ecohydrologhical studies across the U.S. The 248 

ecosystem ET sub-module, the core of the WaSSI model, is described as a function of 249 

potential ET (PET), LAI, precipitation, and soil water availability by land cover type (Sun et 250 

al., 2011a). The snow model embedded with WaSSI (McCabe and Wolock, 1999; McCabe 251 

and Markstrom, 2007) estimates snow melt rates and mean monthly snow water equivalent 252 

(SWE) mean watershed elevation and monthly air temperature. Infiltration, surface runoff, 253 

soil moisture and baseflow processes for each watershed are simulated by the Sacramento 254 

Soil Moisture Accounting Model (SAC-SMA; Burnash, 1995). The ecosystem productivity 255 

module computes carbon dynamics (GPP and respiration) using linear relationships between 256 

ET and GPP derived from global eddy covariance flux measurements (Sun et al., 2011a, 257 

2011b). The User Guide of WaSSI Ecosystem Services Model-Version 2.1 258 

(http://www.forestthreats.org/research/tools/WaSSI) provides detailed description of model 259 

algorithms and data requirements (Caldwell et al., 2012). 260 

To run the WaSSI model, the necessary inputs include monthly precipitation, monthly 261 

mean air temperature, monthly mean leaf area index (LAI) by land cover, land cover 262 

composition within each watershed, and 11 SAC-SMA soil parameters. The historic 263 

(1979-1997) climate data (i.e., precipitation and air temperature) derived from the 264 

Precipitation Elevation Regression on Independent Slopes Model (Daly et al., 1994; PRISM 265 

Climate Group, 2013) at the 4 km × 4 km resolution were scaled to the 12-digit HUC level. 266 

The 2006 National Land Cover Dataset (NLCD; http://www.mrlc.gov/nlcd06_data.php) with 267 
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17 land cover classes were aggregated into 10 classes (Fry et al., 2011): crop, deciduous forest, 268 

evergreen forest, mixed forest, grassland, shrubland, wetland, water, urban and barren. WaSSI 269 

The monthly LAI time series data required by WaSSI for each land cover type were derived 270 

from the Moderate Resolution Imaging Spectroradiometer (MODIS)—MOD15A2 FPAR/LAI 271 

8-day product (Myneni et al., 2002). The 1 km × 1 km SAC-SMA soil dataset provided by the 272 

State Soil Geographic Data Base (STATSGO)—based on the Sacramento Soil Moisture 273 

Accounting Model Soil Parameters was aggregated to the 12-digit HUC watershed. No 274 

WaSSI model parameters were calibrated during the model evaluation process. 275 

The WaSSI has been evaluated at multiple scales using gaging station data for streamflow 276 

and remote sensing products for evapotranspiration across the U.S. (Sun et al., 2011a; 277 

Caldwell et al., 2012; Sun et al., 2015a). At the 12-digit HUC scale, the model was validated 278 

using monthly and annual water yield data collected at 72 selected USGS watersheds, and ET 279 

and GPP data for 170 National Forests over the CONUS (Sun et al., 2015a). Overall, the 280 

validation results suggested that this model could capture characteristics of water and carbon 281 

balances at the selected spatial levels under various climatic conditions (Sun et al., 2015a, b). 282 

2.5 Impact analysis 283 

We first examined modeled changes in monthly ET and GPP at the 12-digit HUC 284 

watershed scale using the WRF dynamically downscaled, bias corrected historic and future 285 

climate data, respectively. Then, we computed future annual changes at three spatial levels: 286 

the entire CONUS as whole, the 12-digit HUC watershed, and the individual WRR. The 287 

multi-year means of annual precipitation, temperature, ET, Q, and GPP averaged across the 288 

whole CONUS, WRR, or each 12-digit HUC watershed for the 1979-2007 time period were 289 

compared to those for the 2031-2060 period. The absolute or percent (except for temperature) 290 

changes for each variable were calculated. Herein, the absolute differences were expressed as 291 

the future means minus those in the historical period, while the percent differences were 292 

calculated using the absolute difference divided by baseline mean in the 1979-2007. In 293 

addition, the future monthly changes of these ecosystem flux variables were also assessed for 294 

the whole CONUS and each WRR. 295 

3. Results 296 
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3.1 Baseline characteristics of hydro-climatology and ecosystem productivity 297 

(1979-2007) 298 

For the baseline period, multi-year means of annual precipitation (Fig.2a), ET (Fig.3a), Q 299 

(Fig.3e) and GPP (Fig.4a) all generally showed longitudinal decreases from east to west 300 

across the CONUS. The Pacific Northwest region has the highest precipitation (>1800 mm 301 

yr-1), followed by the larger values for precipitation in the southeast (>1200 mm yr-1 in Fig.2a). 302 

For ET, the maximum (>750 mm yr-1 in Fig.3a) mainly appeared in the southeast. The largest 303 

Q higher than 600 mm yr-1 (Fig.3e), mainly exited in the Pacific Northwest region, the Rocky 304 

and the Appalachian Mountains, especially for some 12-digit HUC watersheds in the Pacific 305 

Northwest region being greater than 1000 mm yr-1. For GPP (Fig.4a), the 12-digit HUC 306 

watersheds with higher values (>1000 gC m-2 yr-1) were mainly located in the areas of the 307 

southeast and the Pacific Northwest. By contrast, the average annual temperature climatology 308 

of the CONUS presented a clear latitudinal increase ranging from -0.8 oC in the north to 22 oC 309 

in the south. Because of topographical effects, temperature in the Rocky Mountains was lower 310 

than 4 oC relative to the surrounding regions. 311 

Taking the CONUS as a whole, the area weighted average precipitation, temperature, ET, 312 

Q and GPP in the period of 1979-2007 was 801 mm yr-1, 11.2 oC, 515 mm yr-1, 290 mm yr-1 313 

and 1232 gC m-2 yr-1, respectively (Table 1). Comparing the area-average precipitation among 314 

the 18 WRRs, the WRR3, 6 and 8 had the highest precipitation (>1200 mm yr-1), while the 315 

WRR13-16 had the lowest (<400 mm yr-1). In the WRR3, 8, and 12, the area average 316 

temperatures were the highest (>17 oC), while the WRR9 had the lowest temperature (4.2 oC). 317 

The WRR3, 6 and 8 had the highest ET (>750 mm yr-1), with the lowest values found in 318 

WRR16 (<300 mm yr-1). The WRR1 had the largest Q of 636 mm yr-1, while the smallest Q 319 

was found in the WRR13-16 (<100 mm yr-1). Similar to the average ET, the highest GPP 320 

(>2100 gC m-2 yr-1) were also found in the WRR3, 6 and 8, but the western WRRs (e.g., 321 

WRR13-16 and 18) exhibited lowest values (<800 gC m-2 yr-1). 322 

The baseline intra-annual precipitation presented a complicated pattern (Fig.5). Except in 323 

February, precipitation in all the months was more than 65 mm yr-1, and peaked in May with 324 

(78 mm yr-1). Overall, temperature (Fig.5b), ET (Fig.5c) and GPP (Fig.5e) all increased 325 

gradually starting from January, peaked (24.8 oC, 80 mm yr-1 and 205 gC m-2 yr-1, respectively) 326 
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in July and then decreased sharply. Fluctuations of Q clearly differed from other variables 327 

(Fig.5d) following a pattern similar to a sine function. Q increased in January, peaked in April 328 

(36 mm yr-1), decreased to the lowest (15 mm yr-1) in August, and after then rose. 329 

We also explored multi-year mean monthly precipitation, temperature, ET, Q and GPP for 330 

each WRR (not shown). Generally, the intra-annual distribution was different (e.g., phases 331 

and magnitudes) among the 18 WRRs, due to the complex differences in topography and 332 

climate among them. For WRR16-18, most precipitation fell in January-April and 333 

October-December, while precipitation in other WRRs mainly concentrated in 334 

May-September. In all the WRRs, the intra-annual temperature followed a unimodal curve, 335 

with peaks in July or August and the lowest values in January or December. For ET and GPP, 336 

the higher values were mainly found from May to November, except for the WRR18. 337 

Comparing the monthly distributions among the 18 WRRs, they could be divided into three 338 

categories: unimodal, sine and trough curves. 339 

3.2 Future climate change 340 

Future precipitation and temperature followed a similar pattern as the baseline (Fig.2). 341 

Precipitation showed a longitudinal decrease from the east to the west, but temperature 342 

presented a clear latitudinal decrease. However, for each 12-digit HUC watershed, these two 343 

climate variables would increase or decrease by different magnitudes in the future (Fig.2c and 344 

Fig.2d for precipitation, and Fig.2g). During 2031-2060, annual precipitation would increase 345 

in 82% of the CONUS 12-digit HUC watersheds, while decreasing in the rest of the 346 

watersheds that were mainly located in the southeast and the west coastal regions. The 347 

northeast and the northwest coastal regions would generally have a greater increase (>150 348 

mm yr-1) or decrease (>200 mm yr-1), respectively, in P (Fig.2c). The greater percent increases 349 

in precipitation (>18%) were found in some watersheds in the southwest and the northeast 350 

regions (Fig.2d). Future temperature would increase consistently across watersheds, ranging 351 

from 1.0 to 3.0 oC. The northwest and the north-central regions would see an increases more 352 

than 2.1 oC (Fig.2g). 353 

For the CONUS as a whole, the area weighted mean annual precipitation and temperature 354 

for 2013-2060 would be 844 mm yr-1 and 13.1 oC, respectively (Table 1). The mean annual P 355 

for the entire CONUS would increase by 45 mm yr-1 (6%) and T increase by 1.8 oC , 356 



 13 / 44 
 

respectively (Table 2). Except for the WRR17 with a slight decrease in P (13 mm yr-1 or 1%), 357 

the other 17 WRRs all exhibited increases. The large absolute increment of precipitation (>60 358 

mm yr-1) could be found in the WRR2, 4, 5 and 7, while the WRR8 and 14 have lower 359 

increases (<15 mm yr-1). For the percent increment, the higher increases in precipitation (≥360 

10%) existed in the WRR2, 5, 15 and 16, however, the WRR1 and 8 showed lower increases 361 

(≤1%). For the future temperatures, all the 18 WRRs would increase relative to the past 362 

period, especially in the WRR9, 10, 14 and 16 (≥2 oC). 363 

Both future P and T had similar intra-annual fluctuations to those of the baseline period 364 

(top panels in Fig.5a and Fig.5b). However, the magnitudes of differences in both P and T 365 

differed in different seasons were different (the bottom of Fig.5a and Fig.5b). In most months, 366 

precipitation would increase ranging from 3 to 11 mm yr-1, especially in January, May and 367 

September (>7 mm yr-1). For February, March, October and November, P would have slight 368 

reduction with a range from -5 mm yr-1 to -1 mm yr-1. The temperatures for each month would 369 

significantly increase by at least 1.5 oC, particularly for January and June-October (>2.0 oC) 370 

(Fig.5b). 371 

The comparisons of seasonal climatic change patterns among the 18 WRRs suggested the 372 

timings agreed well among WRRs (not shown). However, the magnitudes of changes varied 373 

greatly. The future monthly precipitation would increase in January and May-October in more 374 

than 10 WRRs. The differences were most pronounced in January, July and September (Fig 375 

6a). In other months, however, the future monthly precipitation would reduce to some extent 376 

in most of the WRRs. The future monthly temperature for all the WRRs would increase with a 377 

range from 0.5 to 3.0 oC. In January and June-October, temperatures in most WRRs increased 378 

with a relatively highrate (>1.5 oC) comparing to other months for most WRRs. 379 

3.3 Future (2031-2060) changes in ET and Q 380 

Annual Change 381 

The spatial patterns in ET and Q for the baseline were similar to those in the future 382 

(Fig.3). However, the changes of annual ET (Fig.3c and Fig.3d) and Q (Fig.3g and Fig.3h) for 383 

each 12-digit HUC watershed would vary in magnitude spatially. Overwhelmingly, majority 384 

(98%) of the CONUS 12-digit HUC watersheds would increase in annual ET, and the 385 

watersheds with annual ET reduction mainly concentrated in the northwest coastal region. For 386 
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the absolute difference of ET (Fig.3c and Fig.3d), annual ET showed a relatively higher 387 

increase (>32 mm yr-1) in the northeast CONUS, especially in the southeast coastal region and 388 

the south part of the northeast CONUS (>48 mm yr-1) than other regions. Different from the 389 

absolute changes, relative changes (%) in most of the western regions (excluding the west 390 

coast) and the northeast had high values (>6%) with the highest increments (>12%) found in 391 

south of the southwest CONUS. 392 

Across the CONUS, annual Q in 52% and 48% of the CONUS 12-digit HUC watersheds 393 

would increase and decrease by 2031-2060, respectively (Fig.3g and Fig.3h). In general, the 394 

northeast and the south part of the south CONUS would increase in annual Q, while other 395 

regions would decrease (Fig, 3g and Fig. 3h). The positive (>100 mm yr-1) and the negative 396 

(>100 mm yr-1) changes in Q were mainly found in the northeast, and the west coastal and the 397 

southeast regions, respectively. Q in the south part of the southwest CONUS would 398 

significantly increase (>20%), while the central part of the west CONUS would generally 399 

decrease more than 20%. 400 

Over the CONUS, projected multi-year mean annual ET and Q were 551 mm yr-1 and 401 

297 mm yr-1 in the future, respectively (Table 1), representing an increase in ET by 37 mm 402 

yr-1 or 7%, and in Q by 9 mm yr-1 or 3% (Table 2). For each WRR, the future annual ET 403 

would increases more or less (Table 2). The WRR2, 5 and 7 were found to have the largest 404 

absolute increases for ET (>45 mm yr-1), while the WRR17 (18 mm yr-1) had the lowest 405 

increases. For the percent increment, the highest increases of ET (≥10%) existed in the 406 

WRR5, 9, 16 and 17, however, the WRR17 showed the lowest increases (4%). For the future 407 

annual Q, nine WRRs would increase, eight would reduce and one would have no change 408 

comparing the baseline period (Table 2). Among these 18 WRRs, the WRR2 and WRR5 had 409 

the largest absolute increase (>60 mm yr-1), and the WRR8 and WRR17 had the largest 410 

decline (>20 mm yr-1). According to the percent changes of annual Q, the greatest increases 411 

(>10%) and decreases (>10%) could be found in the WRR2, 5 and 15, and the WRR14. 412 

Seasonal Change 413 

The variations of future CONUS-wide multi-year mean monthly ET and Q were 414 

presented in Fig.5c and Fig.5d. Although these two variables had similar intra-annual 415 

fluctuations to those of the baseline period, their monthly magnitudes changed to some degree. 416 
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Overall, the future monthly ET would increase with the largest increments (>2 mm mon-1) in 417 

January.  The April-October had higher values than other four months. For monthly Q, most 418 

of the months (9 months) would increase, especially in January and September (increase >3 419 

mm mon-1). 420 

We also have compared the future intra-annual fluctuations of ET and Q to those of the 421 

baseline period, and found that each WRR agreed well in their flow timings for the baseline 422 

and the future periods (not shown here). Fig.6c and Fig.6d presented the number of the WRR 423 

within a given difference interval for ET or Q by month respectively. Generally, the future 424 

monthly ET would increase by different rates for each month at each WRR (Fig.6c). 425 

Moreover, ET from May to September (roughly the growing season) would have greater 426 

increments (>2.4 mm yr-1) in most of the 18 WRRs. Q in most of WRRs would increase in 427 

January, February, July, September and December, but would decrease in April and 428 

November. 429 

3.4 Future changes in GPP 430 

Annual Change 431 

The overall spatial distribution of GPP did not change in the future (Fig.4b) when 432 

compared to the baseline (Fig.4a). For each 12-digit HUC watershed, GPP would change with 433 

great spatial variations (Fig.4c and Fig.4d). In the future, overwhelming majority (98%) of the 434 

CONUS 12-digit HUC watersheds would increase in annual GPP. The watersheds with annual 435 

GPP reduction were mainly located in the northwest coastal region. A relatively high increase 436 

(>120 gC m-2 yr-1) were found in the northeast, especially in the south part of the region (>180 437 

gC m-2 yr-1; Fig.4c). In contrast to the absolute difference, most of the west CONUS 438 

(excluding the coastal regions) had greatly increase (>12%) in relative change (%) of annual 439 

GPP. The highest changes (>20%) were mainly located in south of the southwest region. 440 

Over the CONUS, multi-year mean annual GPP would be 1339 gC m-2 yr-1 in the future 441 

(Table 1), representing an increase of 106 gC m-2 yr-1 or 9% (Table 2). Future annual GPP in 442 

every WRR would increase ranging from 49 gC m-2 yr-1to 202 gC m-2 yr-1 or from 5% to 12% 443 

(Table 2). The WRR2-WRR10 were found to have the larger absolute increases for GPP 444 

(>100 gC m-2 yr-1), especially for the WRR5 with the maximum of 202 gC m-2 yr-1, while the 445 

WRR13 (49 gC m-2 yr-1) had the lowest increases. In terms of percent change, GPP 446 
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increments ranged from 5% to 17% among all the WRRs. The higher GPP increases (>10%) 447 

occurred in WRR4, 5, 7, 9, 10 and WRR14-16, with the largest of 17% in WRR16, while 448 

other WRRs had the lower increments than 10%, particularly in WRR3 and 8 with the 449 

minimum of 5%. 450 

Seasonal Change 451 

Fig.5e (the top of each panel) showed the future multi-year mean monthly GPP averaged 452 

over the whole CONUS. Despite the similar intra-annual fluctuations of multi-year mean 453 

monthly GPP during the baseline and the future periods, the future magnitude in each month 454 

would change to some degree (the bottom of Fig.5e). Overall, the future monthly ET would 455 

have the larger increments (>9 gC m-2 yr-1) in January and May-October than other months. 456 

The future intra-annual fluctuation patterns of GPP for each WRR were similar to the baseline 457 

periods (not shown here). As indicated by the number of the WRR within a given GPP 458 

difference interval (Fig.6e), the future monthly GPP generally would increase by different 459 

rates for each WRR. Moreover, GPP from May to September would have greater increments 460 

(>4 gC m-2 yr-1) in most of the 18 WRRs. 461 

4. Discussions 462 

4.1 Uncertainties 463 

In the present study, we assumed that the water balance and ecosystems at each 12-digit 464 

HUC watersheds were unaffected by human activities as represented by a fixed land cover 465 

(year 2000), and ecosystem fluxes changes were fully attributed to climate change alone. 466 

However, one way or another, most catchments in the U.S. had experienced some levels of 467 

human influences (National Research Council, 2002). Hydrology and ecosystems can be 468 

influenced significantly by human activities on various temporal and spatial scales (Foley et 469 

al., 2005; Harding et al., 2011). Hydraulic projects such as dam constructions, reservoir 470 

management (Hu et al., 2008), groundwater withdrawals for irrigation and domestic use, and 471 

land use/cover change all affect watershed balances (Foley et al., 2005; Piao et al., 2007; 472 

Wang and Hejazi, 2011; Schilling et al., 2008) and ecosystem productivity (Zhang et al., 473 

2014). 474 

Similarly, natural disturbances (e.g., wildfire, climate extremes, and pest and pathogen 475 
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outbreak) would also impact water balance and ecosystem productivity in the past and the 476 

future. For example, the direct effects of wildfire include plant mortality and thus exert 477 

adverse impacts on vegetation productivity, consequently leading to a decrease in carbon 478 

uptake and stocks (Lenihan et al., 2008; Dore et al., 2010; Lee et al., 2015). Wildfires alter the 479 

watershed hydrologic processes through reducing vegetation canopy interception, 480 

transpiration, and infiltration rate (Yao, 2003; Neary et al., 2005; Bond-Lamberty et al., 2009; 481 

Brookhouse et al., 2013; Nolan et al., 2014, 2015). As an important natural disturbance, 482 

droughts generally increase vapor pressure gradient between leaves and atmosphere and thus 483 

cause stress on plant hydraulic systems (Anderegg et al., 2012; Reichstein et al., 2013). As a 484 

result, high tension in the xylem can trigger embolism and partial failure of hydraulic 485 

transport in the stem, and even tended to result in vegetation mortality, which can aversely 486 

impact on water yield and carbon sink capability (Cook et al., 2007; Allen et al., 2010; 487 

Guardiola-Claramonte et al., 2011; Adams et al., 2012). Usually, droughts often lead to pest 488 

and pathogen outbreaks (Overpeck et al., 1990; Hason and Weltzin, 2000; Marengo et al., 489 

2008; DeRose and Long, 2012; Jactel et al., 2012), and thus predisposed an individual plant 490 

species to disease or mortality (Schoeneweiss, 1981; Ayers and Lombarder, 2000). Although 491 

our modeling approach considered water stress on productivity, but tree mortality was not 492 

dealt with and the impacts of droughts on GPP might be underestimated and water yield may 493 

be underestimated as well. 494 

Additionally, elevated CO2 and climate change can also execrate impacts on hydrological 495 

and ecosystem productivity through changing water use efficiency (Miller-Rushing et al., 496 

2009; de Kauwe et al., 2013; Zhang et al., 2014; Liu et al., 2015) and vegetation processes 497 

(e.g., stomatal conductance and LAI; Sun et al., 2014). However, the WaSSI model did not 498 

consider these effects, potentially resulting in errors in estimating ET, GPP or water yield 499 

(Cox et al., 2000; Gedney et al., 2006; Oki et al., 2006; Betts et al., 2007; Piao et al., 2007). 500 

Without considering human activities and natural disturbances and their couplings may 501 

introduce uncertainties into our results. However, the potential errors are largely dependent on 502 

specific trajectories of climate change and land cover change (Qi et al., 2009; Thompson et al., 503 

2011; Alkama et al., 2013). The complex interactions of climate, disturbance, ecohydrological 504 

processes require a more mechanistic integrated modeling approach. 505 
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4.2 Land management implications 506 

Numerous modeling studies around the world have showed that the future climate change 507 

could increase or decrease the water availability to certain specific ecosystems and human 508 

populations under different climate scenarios (Arnell, 1999; Blanc et al., 2014; Ingjerd et al., 509 

2014; Kundzewicz and Gerten, 2015). Our analyses showed that, over the whole CONUS, P 510 

would increase by 45 mm (6%) leading to a small increases in Q by 9 mm yr-1 (3%). So, 511 

climate change under the SRES A2 scenario had little influence on water shortage for the 512 

entire CONUS. However, there are large regional differences in Q responses to future climate 513 

change among the 18 WRRs. The magnitude is large, from a decrease of -32 mm yr-1 to an 514 

increase of 113 mm yr-1 or from -12% to 21%. Despite of the increase in annual P, annual Q 515 

in the WRR1, 3, 8, 11, 14, 16 and 18 decreased by various degrees, due to the increased ET. 516 

Consequentially, the climate scenario studied will likely increase stress on the water supply in 517 

these WRRs. In addition, it is worth noting that monthly responses of Q to future climate also 518 

vary among watersheds. Water yield in about half of the 18 WRRs (mainly located in the west 519 

CONUS) decreases and water yield in the WRR2-8 increases. The increased Q in the wet 520 

months tends to intensify the flooding risk, while decreased Q in the major dry months would 521 

likely to aggravate the water shortage conditions. Taking California (mostly in the WRR18) 522 

as an example, the monthly Q would decrease by around 5 mm during spring through early 523 

summer (the major runoff generation season) due to coupling changes in P and ET. The 524 

decrease in flow may cause severe water shortage similar to what is happening in 2014-2015 525 

in California (Aghakouchak et al., 2014; Mao et al., 2015). Hydrological changes will bring 526 

many impacts on water-related economic sectors. For example, droughts would reduce low 527 

flows and degrade water quality (high water temperature and nutrient concentrations), and 528 

thus bringing harmful influences on fishery (Magoulick et al., 2003; Dolbeth et al., 2008; 529 

Gillson et al., 2009), navigation (Theiling et al., 1996; Roberts, 2001), and recreations 530 

(Thomas et al., 2013). 531 

The modeling results suggested that GPP over the whole CONUS would increase 106 gC 532 

m-2 yr-1 (9%) in the future. The increase by WRR ranged from 49 gC m-2 yr-1 to 202 gC m-2 533 

yr-1 or from 5% to 17% among the 18 WRRs. These findings suggested that carbon stock and 534 

vegetation capacity to sequester atmospheric CO2 for the entire CONUS and each WRR 535 



 19 / 44 
 

tended to be enhanced under the SRES A2 climate scenario. For the intra-annual GPP 536 

changes to climate change, most WRRs showed GPP increases, particularly during late spring 537 

to summer with higher rates, which implied that the capability of ecosystem to sequestrate 538 

carbon in these months will be significantly enhanced in future. By contrast, several WRRs 539 

would decrease GPP in several months. For example, during August and September, GPP in 540 

WRR17 decreased. The ecosystem sequestration carbon capability would be weaken in these 541 

months under the SRES A2 climate scenario. For forests, variations of GPP caused by climate 542 

change will be ultimately reflected in timber production, soil carbon storage, and other 543 

ecosystem such as dissolved carbon loading in aquatic ecosystems. According to this study, 544 

under the SRES A2 climate scenario, the forest biomass and timber production is expected to 545 

increase, thus climate change may have implications to timber price in timberland dominated 546 

regions (Sohngen and Mendelsohn, 1998; Irland et al., 2001; Alig et al., 2004). At the same 547 

time, forest densification of forest lands under a warming climate may provide conditions of 548 

increased wildfire potential (Liu et al., 2013c). 549 

5. Conclusions 550 

We assessed the impacts of future climate change on hydrological cycle and GPP over the 551 

CONUS by linking an ecohydrology model (i.e., WaSSI) with WRF dynamically downscaled 552 

the HadCM3 model climate data under the IPCC SRES A2 emission scenario. The current 553 

study represents a coupling of bias-corrected, dynamically downscaled climate data with an 554 

ecohyrological model to address regional ecosystem issues. The study provides a potential 555 

scenario of likely impacts of future climate change on watershed hydrology and productivity 556 

across the CONUS, including 82,773 12-digit HUC watersheds. Although only one future 557 

climate scenario (the SRES A2 emission scenario) and one GCM (HadCM3 model) was 558 

employed here, the methodology applies to other scenarios when more climate change 559 

scenarios generated from the WRF are available. 560 

Future climate change will not likely change the spatial patterns of precipitation, 561 

temperature, ET, Q and GPP. However, a large spatial variability in the hydrological and 562 

ecosystem productivity responses is expected among the watersheds at both 12-digit and 563 

2-digit HUC scales. The assessment results provide a benchmark of water yield and 564 
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ecosystem productivity across the whole CONUS, the 18 WRRs and even the 82,773 12-digit 565 

HUC watersheds. This type of information will be useful for prioritizing watershed 566 

restoration and developing specific measures to mitigate the negative impacts of future 567 

climate to sustain the terrestrial ecosystem on different spatial scales (i.e., 12-digit HUC and 568 

WRR). 569 

 570 
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 1015 

Figure Caption: 1016 

Fig.1 Location of the Water Resource Regions (WRRs) over the CONUS (a) with the 1017 

percentage of each land use/cover type within each WRR. The numeral from 1 to 18 in left of 1018 

this figure represents the number of WRR. For right figure, the rectangle size notes the 1019 

percentage of each land use/cover type within each WRR. Note that the percentages of each 1020 

land use/cover were calculated based on the 2006 National Land Cover Dataset (NLCD) of 1021 

CONUS. 1022 

Fig.2 Characteristics of precipitation and temperature during the baseline (1979-2007) and the 1023 

future periods, and the future changes (future – baseline) 1024 

Fig.3 Spatial distribution of ET and Q during the baseline and the future periods, and the 1025 

future changes 1026 

Fig.4 Spatial distribution of GPP during the baseline and the future periods, and climate 1027 

change impacts (future – baseline). 1028 

Fig.5 Monthly precipitation (a), temperature (b), ET (c), Q (d) and GPP (e) for the whole 1029 

CONUS during 1979-2007 and 2031-2060 (the top of each panel), and their differences 1030 

(future – baseline) between the two periods (the bottom of each panel) 1031 

Fig.6 Number of the WRR within a given interval of change (future minus past) for each 1032 

month. (a)-(e) is for precipitation (P), temperature (T), ET, Q and GPP, respectively. The 1033 

rectangle size for each month represents the number of the WRR that fall in a given interval 1034 

value. 1035 
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 1041 

Fig.1 Location of the Water Resource Regions (WRRs) over the CONUS (a) with the percentage of each 1042 

land use/cover type within each WRR. The numeral from 1 to 18 in left of this figure represents the number 1043 

of WRR. For right figure, the rectangle size notes the percentage of each land use/cover type within each 1044 

WRR. Note that the percentages of each land use/cover were calculated based on the 2006 National Land 1045 

Cover Dataset (NLCD) of CONUS. 1046 
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   1077 

 1078 

  1079 

Fig.2 Characteristics of precipitation and temperature during the baseline (1979-2007) and the future 1080 

periods, and the future changes (future – baseline) 1081 
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Fig.3 Spatial distribution of ET and Q during the baseline and the future periods, and the future changes 1097 
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 1109 

 1110 
Fig.4 Spatial distribution of GPP during the baseline and the future periods, and climate change impacts 1111 

(future – baseline). 1112 
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 1138 

Fig.5 Monthly precipitation (a), temperature (b), ET (c), Q (d) and GPP (e) for the whole CONUS during 1139 

1979-2007 and 2031-2060 (the top of each panel), and their differences (future – baseline) between the two 1140 

periods (the bottom of each panel) 1141 
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 1164 
Fig.6 Number of the WRR within a given interval of change (future minus past) for each month. (a)-(e) is 1165 

for precipitation (P), temperature (T), ET, Q and GPP, respectively. The rectangle size for each month 1166 

represents the number of the WRR that fall in a given interval value. 1167 
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Table Caption: 1180 

Table 1. Multi-year mean precipitation, temperature, ET, Q and GPP averaged over each 1181 

WRR or the entire CONUS during the baseline (1979-2007) and the future period 1182 

(2031-2060). 1183 

 1184 

Table 2. Future changes in multi-year mean precipitation, temperature, ET, Q and GPP 1185 

averaged over each WRR or the entire CONUS relative to the baseline period. 1186 
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Table 1. Multi-year mean precipitation, temperature, ET, Q and GPP averaged over each WRR or the entire 1220 

CONUS during the baseline (1979-2007) and the future period (2031-2060) 1221 

WRR Precipitation 

(mm yr-1) 

Temperature 

(oC) 

ET 

(mm yr-1) 

Q 

(mm yr-1) 

GPP 

(gC m-2 yr-1) 

Baseline Future Baseline Future Baseline Future Baseline Future Baseline Future 

1 1143 1169 6.3 8.0 506 538 636 632 1218 1316 

2 1100 1211 10.2 11.8 582 629 518 583 1564 1712 

3 1299 1334 17.5 19.2 823 863 477 471 2104 2207 

4 875 944 7.3 9.0 476 518 400 427 1241 1376 

5 1123 1297 11.6 13.1 580 641 543 655 1680 1882 

6 1354 1395 13.8 15.4 769 810 585 585 2218 2347 

7 863 931 8.5 10.3 550 597 314 335 1516 1677 

8 1414 1425 17.4 19.2 836 877 577 549 2247 2361 

9 542 592 4.2 6.5 429 472 115 123 1120 1256 

10 534 572 7.9 10.1 424 462 115 118 985 1104 

11 819 840 14.0 15.8 593 626 229 219 1502 1597 

12 828 866 18.7 20.3 615 650 215 220 1379 1457 

13 392 419 13.9 15.7 368 394 35 35 602 651 

14 397 411 7.3 9.4 318 343 86 76 546 614 

15 342 387 15.1 16.8 316 354 34 40 522 588 

16 339 372 8.6 10.8 298 331 54 50 478 557 

17 854 841 7.2 9.2 464 481 395 363 904 972 

18 626 647 13.9 15.7 366 391 267 258 740 793 

CONUS 801 844 11.2 13.1 515 551 290 297 1232 1339 
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Table 2. Future changes in multi-year mean precipitation, temperature, ET, Q and GPP averaged over each 1241 

WRR or the entire CONUS relative to the baseline period 1242 

WRR Precipitation Temperature ET Q GPP 

Absolute 

(mm yr-1) 

Percent 

(%) 

Absolute 

(oC) 

Absolute 

(mm yr-1) 

Percent 

(%) 

Absolute 

(mm yr-1) 

Percent 

(%) 

Absolute 

(gC m-2 yr-1) 

Percent 

(%) 

1 26 2 1.7 32 6 -4 -1 98 8 

2 111 10 1.6 46 8 65 13 148 9 

3 35 3 1.6 40 5 -7 -1 103 5 

4 68 8 1.7 42 9 27 7 135 11 

5 174 15 1.6 61 11 113 21 202 12 

6 40 3 1.7 41 5 0 0 129 6 

7 68 8 1.8 47 9 22 7 160 11 

8 11 1 1.8 41 5 -29 -5 114 5 

9 50 9 2.2 43 10 8 7 136 12 

10 38 7 2.2 39 9 3 3 119 12 

11 21 3 1.9 33 6 -10 -4 95 6 

12 38 5 1.7 35 6 4 2 78 6 

13 26 7 1.8 27 7 1 2 49 8 

14 14 4 2.1 25 8 -10 -12 68 13 

15 45 13 1.7 39 12 6 16 65 13 

16 33 10 2.1 33 11 -3 -6 79 17 

17 -13 -1 2.0 18 4 -32 -8 69 8 

18 21 3 1.8 25 7 -9 -3 53 7 

CONUS 45 6 1.8 37 7 9 3 106 9 

 1243 


