Articles | Volume 20, issue 10
https://doi.org/10.5194/hess-20-4237-2016
https://doi.org/10.5194/hess-20-4237-2016
Research article
 | 
19 Oct 2016
Research article |  | 19 Oct 2016

Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin

Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (22 May 2016) by Patricia Saco
AR by Kaniska Mallick on behalf of the Authors (21 Jun 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (08 Jul 2016) by Patricia Saco
RR by Anonymous Referee #3 (13 Aug 2016)
RR by Anonymous Referee #4 (29 Aug 2016)
ED: Publish subject to technical corrections (14 Sep 2016) by Patricia Saco
AR by Kaniska Mallick on behalf of the Authors (19 Sep 2016)  Author's response   Manuscript 
Download
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.