Articles | Volume 20, issue 8
https://doi.org/10.5194/hess-20-3277-2016
https://doi.org/10.5194/hess-20-3277-2016
Research article
 | 
12 Aug 2016
Research article |  | 12 Aug 2016

ENSO-conditioned weather resampling method for seasonal ensemble streamflow prediction

Joost V. L. Beckers, Albrecht H. Weerts, Erik Tijdeman, and Edwin Welles

Abstract. Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the local streamflow regime in many rivers around the world. A new method is proposed to incorporate climate mode information into the well-known ensemble streamflow prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an ENSO index in two steps. First, a number of original historical ESP traces are selected based on similarity between the index value in the historical year and the index value at the time of forecast. In the second step, additional ensemble traces are generated by a stochastic ENSO-conditioned weather resampler. These resampled traces compensate for the reduction of ensemble size in the first step and prevent degradation of skill at forecasting stations that are less affected by ENSO. The skill of the ENSO-conditioned ESP is evaluated over 50 years of seasonal hindcasts of streamflows at three test stations in the Columbia River basin in the US Pacific Northwest. An improvement in forecast skill of 5 to 10 % is found for two test stations. The streamflows at the third station are less affected by ENSO and no change in forecast skill is found here.

Download
Short summary
Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the streamflow regime in many rivers around the world. A new method is presented for ENSO conditioning of the ensemble streamflow prediction (ESP) method, which is often used for seasonal streamflow forecasting. The method was tested on three tributaries of the Columbia River, OR. Results show an improvement in forecast skill compared to the standard ESP.