Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 20, issue 5
Hydrol. Earth Syst. Sci., 20, 2047–2061, 2016
https://doi.org/10.5194/hess-20-2047-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 2047–2061, 2016
https://doi.org/10.5194/hess-20-2047-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 May 2016

Research article | 24 May 2016

HYPERstream: a multi-scale framework for streamflow routing in large-scale hydrological model

Sebastiano Piccolroaz et al.

Viewed

Total article views: 2,370 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,300 988 82 2,370 61 53
  • HTML: 1,300
  • PDF: 988
  • XML: 82
  • Total: 2,370
  • BibTeX: 61
  • EndNote: 53
Views and downloads (calculated since 04 Sep 2015)
Cumulative views and downloads (calculated since 04 Sep 2015)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 23 Oct 2020
Publications Copernicus
Download
Short summary
We present HYPERstream, an innovative, parsimonious, and computationally efficient streamflow routing scheme based on the width function instantaneous unit hydrograph theory. HYPERstream is designed to be easily coupled with climate models and to preserve the geomorphological dispersion of the river network, irrespective of the model grid size. This makes HYPERstream well suited for multi-scale applications (from catchment up to continental scale) and to investigate extreme events (e.g. floods).
We present HYPERstream, an innovative, parsimonious, and computationally efficient streamflow...
Citation