Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 20, issue 5
Hydrol. Earth Syst. Sci., 20, 2047–2061, 2016
https://doi.org/10.5194/hess-20-2047-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 2047–2061, 2016
https://doi.org/10.5194/hess-20-2047-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 May 2016

Research article | 24 May 2016

HYPERstream: a multi-scale framework for streamflow routing in large-scale hydrological model

Sebastiano Piccolroaz et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (02 Dec 2015) by Roger Moussa
AR by Sebastiano Piccolroaz on behalf of the Authors (08 Jan 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (16 Jan 2016) by Roger Moussa
RR by Anonymous Referee #1 (25 Apr 2016)
ED: Publish as is (04 May 2016) by Roger Moussa
Publications Copernicus
Download
Short summary
We present HYPERstream, an innovative, parsimonious, and computationally efficient streamflow routing scheme based on the width function instantaneous unit hydrograph theory. HYPERstream is designed to be easily coupled with climate models and to preserve the geomorphological dispersion of the river network, irrespective of the model grid size. This makes HYPERstream well suited for multi-scale applications (from catchment up to continental scale) and to investigate extreme events (e.g. floods).
We present HYPERstream, an innovative, parsimonious, and computationally efficient streamflow...
Citation