Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1827-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-1827-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning
Michal Gallay
CORRESPONDING AUTHOR
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04001 Košice, Slovakia
Zdenko Hochmuth
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04001 Košice, Slovakia
Ján Kaňuk
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04001 Košice, Slovakia
Jaroslav Hofierka
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04001 Košice, Slovakia
Related authors
Maria Teresa Melis, Massimo Musacchio, Marco Casu, Claudia Collu, Mariana Correa, Lorenzo Sedda, Malvina Silvestri, Fabrizia Buongiorno, Federico Rabuffi, Stefano Andreucci, Jan Kanuk, Michal Gallay, Katarina Onacillova, Jan Sasak, Stefano Naitza, Giovanni Fantini, Francesco Dessì, and Salvatore Noli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 337–343, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-337-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-337-2024, 2024
Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay
The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019, https://doi.org/10.5194/tc-13-2835-2019, 2019
Short summary
Short summary
Cave ice formations can be considered an indicator of long-term changes in the landscape. Using terrestrial laser scanning we generated a time series database of a 3-D cave model. We present a novel approach toward registration of scan missions into a unified coordinate system and methodology for detection of cave floor ice changes. We demonstrate the results of the ice dynamics monitoring correlated with meteorological observations in the Silická ľadnica cave situated in the Slovak Karst.
J. Kaňuk, S. Zubal, J. Šupinský, J. Šašak, M. Bombara, V. Sedlák, M. Gallay, J. Hofierka, and K. Onačillová
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W15, 35–40, https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019, 2019
Vladimír Sedlák, Katarína Onačillová, Michal Gallay, Jaroslav Hofierka, Ján Kaňuk, Ján Šašak, and Jozef Šupinský
Abstr. Int. Cartogr. Assoc., 1, 326, https://doi.org/10.5194/ica-abs-1-326-2019, https://doi.org/10.5194/ica-abs-1-326-2019, 2019
J. Hofierka, M. Gallay, J. Kaňuk, J. Šupinský, and J. Šašak
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W7, 7–12, https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017, https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017, 2017
Michal Gallay, Christoph Eck, Carlo Zgraggen, Ján Kaňuk, and Eduard Dvorný
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 823–827, https://doi.org/10.5194/isprs-archives-XLI-B1-823-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-823-2016, 2016
Maria Teresa Melis, Massimo Musacchio, Marco Casu, Claudia Collu, Mariana Correa, Lorenzo Sedda, Malvina Silvestri, Fabrizia Buongiorno, Federico Rabuffi, Stefano Andreucci, Jan Kanuk, Michal Gallay, Katarina Onacillova, Jan Sasak, Stefano Naitza, Giovanni Fantini, Francesco Dessì, and Salvatore Noli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 337–343, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-337-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-337-2024, 2024
Jaroslav Hofierka
Abstr. Int. Cartogr. Assoc., 6, 92, https://doi.org/10.5194/ica-abs-6-92-2023, https://doi.org/10.5194/ica-abs-6-92-2023, 2023
J. Hofierka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 195–200, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-195-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-195-2022, 2022
Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay
The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019, https://doi.org/10.5194/tc-13-2835-2019, 2019
Short summary
Short summary
Cave ice formations can be considered an indicator of long-term changes in the landscape. Using terrestrial laser scanning we generated a time series database of a 3-D cave model. We present a novel approach toward registration of scan missions into a unified coordinate system and methodology for detection of cave floor ice changes. We demonstrate the results of the ice dynamics monitoring correlated with meteorological observations in the Silická ľadnica cave situated in the Slovak Karst.
J. Kaňuk, S. Zubal, J. Šupinský, J. Šašak, M. Bombara, V. Sedlák, M. Gallay, J. Hofierka, and K. Onačillová
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W15, 35–40, https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019, 2019
Vladimír Sedlák, Katarína Onačillová, Michal Gallay, Jaroslav Hofierka, Ján Kaňuk, Ján Šašak, and Jozef Šupinský
Abstr. Int. Cartogr. Assoc., 1, 326, https://doi.org/10.5194/ica-abs-1-326-2019, https://doi.org/10.5194/ica-abs-1-326-2019, 2019
J. Hofierka, M. Gallay, J. Kaňuk, J. Šupinský, and J. Šašak
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W7, 7–12, https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017, https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017, 2017
Michal Gallay, Christoph Eck, Carlo Zgraggen, Ján Kaňuk, and Eduard Dvorný
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 823–827, https://doi.org/10.5194/isprs-archives-XLI-B1-823-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-823-2016, 2016
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Remote Sensing and GIS
A robust gap-filling approach for European Space Agency Climate Change Initiative (ESA CCI) soil moisture integrating satellite observations, model-driven knowledge, and spatiotemporal machine learning
Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil moisture beyond the 1 km scale
An inverse dielectric mixing model at 50 MHz that considers soil organic carbon
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Parameter optimisation for a better representation of drought by LSMs: inverse modelling vs. sequential data assimilation
Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS
Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany
Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals
Influence of cracking clays on satellite estimated and model simulated soil moisture
Kai Liu, Xueke Li, Shudong Wang, and Hongyan Zhang
Hydrol. Earth Syst. Sci., 27, 577–598, https://doi.org/10.5194/hess-27-577-2023, https://doi.org/10.5194/hess-27-577-2023, 2023
Short summary
Short summary
Remote sensing has opened opportunities for mapping spatiotemporally continuous soil moisture, but it is hampered by data gaps. We propose a robust gap-filling approach to reconstruct daily satellite soil moisture. The merit of our approach is to integrate satellite observations, model-driven knowledge, and spatiotemporal machine learning. We also apply the developed approach to long-term datasets. Our study provides a potential avenue for hydrological applications.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Chang-Hwan Park, Aaron Berg, Michael H. Cosh, Andreas Colliander, Andreas Behrendt, Hida Manns, Jinkyu Hong, Johan Lee, Runze Zhang, and Volker Wulfmeyer
Hydrol. Earth Syst. Sci., 25, 6407–6420, https://doi.org/10.5194/hess-25-6407-2021, https://doi.org/10.5194/hess-25-6407-2021, 2021
Short summary
Short summary
In this study, we proposed an inversion of the dielectric mixing model for a 50 Hz soil sensor for agricultural organic soil. This model can reflect the variability of soil organic matter (SOM) in wilting point and porosity, which play a critical role in improving the accuracy of SM estimation, using a dielectric-based soil sensor. The results of statistical analyses demonstrated a higher performance of the new model than the factory setting probe algorithm.
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021, https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Short summary
We took aerial photos of a grassland area using an unoccupied aerial vehicle and used the images to estimate soil moisture via machine learning. We were able to estimate soil moisture with high accuracy. Furthermore, by analyzing the machine learning models we developed, we learned how different factors drive the distribution of moisture across the landscape. Among the factors, rainfall, evapotranspiration, and topography were most important in controlling surface soil moisture distribution.
Hélène Dewaele, Simon Munier, Clément Albergel, Carole Planque, Nabil Laanaia, Dominique Carrer, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017, https://doi.org/10.5194/hess-21-4861-2017, 2017
Short summary
Short summary
Soil maximum available water content (MaxAWC) is a key parameter in land surface models. Being difficult to measure, this parameter is usually unavailable. A 15-year time series of satellite-derived observations of leaf area index (LAI) is used to retrieve MaxAWC for rainfed straw cereals over France. Disaggregated LAI is sequentially assimilated into the ISBA LSM. MaxAWC is estimated minimising LAI analyses increments. Annual maximum LAI observations correlate with the MaxAWC estimates.
Kenneth J. Tobin, Roberto Torres, Wade T. Crow, and Marvin E. Bennett
Hydrol. Earth Syst. Sci., 21, 4403–4417, https://doi.org/10.5194/hess-21-4403-2017, https://doi.org/10.5194/hess-21-4403-2017, 2017
Short summary
Short summary
This study applied the exponential filter to produce an estimate of root-zone soil moisture at 20 to 25 cm depths. Four types of microwave, surface satellite soil moisture were used. The study focused on the continental United States, and in situ data were used from the International Soil Moisture Network for comparison. This study spans almost two decades (1997 to 2014). Root mean square error was close to 0.04, which is the baseline value for accuracy designated for many satellite missions.
F. Schlenz, J. T. dall'Amico, W. Mauser, and A. Loew
Hydrol. Earth Syst. Sci., 16, 3517–3533, https://doi.org/10.5194/hess-16-3517-2012, https://doi.org/10.5194/hess-16-3517-2012, 2012
Y. Y. Liu, R. M. Parinussa, W. A. Dorigo, R. A. M. De Jeu, W. Wagner, A. I. J. M. van Dijk, M. F. McCabe, and J. P. Evans
Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, https://doi.org/10.5194/hess-15-425-2011, 2011
Y. Y. Liu, J. P. Evans, M. F. McCabe, R. A. M. de Jeu, A. I. J. M. van Dijk, and H. Su
Hydrol. Earth Syst. Sci., 14, 979–990, https://doi.org/10.5194/hess-14-979-2010, https://doi.org/10.5194/hess-14-979-2010, 2010
Cited articles
Bella, P.: The issue of genesis of the levels in the Domica cave, Aragonit, 5, 3–6, 2000.
Bella, P.: Geomorphological settings of the Domica Cave, Aragonit, 3, 5–11, 2001.
Bella, P. and Bosák, P.: Ceiling erosion in caves: early studies and Zdeněk Roth as author of the concept, Acta Carsologica, 44, 139–144, 2015.
Bella, P., Braucher, R., Holec, J., and Veselský, M.: Cosmogenic nuclide dating of the burial of quartz gravel in the upper level of the Domica Cave, Slovak Karst, Slovenský kras: Acta Carsologica Slovaca, 52, 15–24, 2014.
Bosák, P., Hercman, H., Kadlec, J., Móga, J., and Pruner, P.: Palaeomagnetic and U-series dating of cave sediments in Baradla Cave, Hungary, Acta Carsologica, 33, 219–238, 2004.
Brodu, N. and Lague, D.: 3-D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology, ISPRS J. Photogram. Remote Sens., 68, 121–134, https://doi.org/10.1016/j.isprsjprs.2012.01.006, 2012.
Buchroithner, M. F.: Mountaincartography `down under' – Speleological 3-D Mapping, Wiener Schriften zur Geographie und Kartographie, Wien, 21, 93–204, 2015.
Buchroithner, M. F., Milius, J., and Petters, C.: 3-D Surveying and Visualization of the Biggest Ice Cave on Earth, in: Proceedings of 25th International Cartographic Conference, 8–11 July, Paris, France, 2011.
Callieri, M., Dellepiane, M., Cignoni, P., and Scopigno, R.: Processing Sampled 3-D Data: Reconstruction and Visualization Techniques, in: Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks, edited by: Stanco, F., Battiato, S., and Gallo, G., Boca-Raton, UK, CRC Press, 105–136, 2011.
Canevese, E. P., Tedeschi, R., and Forti, P.: The caves of Naica: laser scanning in extreme underground environments, American Surveyor, 6, 8–19, 2009.
Cignoni, P. and Ranzuglia, G.: MeshLab. Visual Computing Lab – ISTI – CNR, http://meshlab.sourceforge.net/ (last access: 3 February 2016), 2014.
Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F. and Scopigno, R.: Batched multi triangulation, in: IEEE Visualization, 2005, VIS 05, 23–28 October 2005, Minneapolis, Minnesota, USA, 207–214, https://doi.org/10.1109/VISUAL.2005.1532797, 2005.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.: MeshLab: an Open-Source Mesh Processing Tool, in: Eurographics Italian Chapter Conference, Salerno, Italy, 129–136, 2008.
Cosso, T., Ferrando, I., and Orlando, A.: Surveying and mapping a cave using 3-D laser scanner: The open challenge with free and open source software, in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5: ISPRS Technical Commission V Symposium, 23–25 June 2014, Riva del Garda, 181–186, https://doi.org/10.5194/isprsarchives-XL-5-181-2014, 2014.
De Waele, J., Plan, L., and Audra, P.: Recent developments in surface and subsurface karst geomorphology: An introduction, Geomorphology, 106, 1–8, https://doi.org/10.1016/j.geomorph.2008.09.023, 2009.
Droppa, A.: Contribution to the evolution of the Domica cave, Československý kras, 22, 65–72, 1972.
ESRI: ArcGIS 3-D analyst, http://www.esri.com/software/arcgis/extensions/3-Danalyst (last access: 2 February 2016), 2015.
Evans, A., Romeo, M., Bahrehmand, A., Agenjo, J., and Blat, J.: 3-D graphics on the web: A survey, Comput. Graphics, 41, 43–61, https://doi.org/10.1016/j.cag.2014.02.002, 2014.
Evans, I. S.: General geomorphometry. derivatives of altitude and descriptive statistic, in: Spatial analysis in Geomorphology, edited by: Chorley, R. J., Methuen, London, 17–90, 1972.
Farrant, A. R. and Smart, P.: Role of sediments in speleogenesis; sedimentation and paragenesis, Geomorphology, 134, 79–93, https://doi.org/10.1016/j.geomorph.2011.06.006, 2011.
Ford, D. and Williams, P.: Karst Hydrogeology and Geomorphology, Chichester, UK, Wiley, 576 pp., 2007.
Gaál, L. and Vlček, L.: Tectonics of the Domica cave (Slovak Karst), Aragonit, 16, 3–11, 2011.
Gaalova, B., Donauerova, A., Seman, M., and Bujdakova, H.: Identification and ß-lactam resistance in aquatic isolates of Enterobacter cloacae and their status in microbiota of Domica Cave in Slovak Karst (Slovakia), Int. J. Speleol., 43, 69–77, https://doi.org/10.5038/1827-806X.43.1.7, 2014.
Gallay, M., Kaňuk, J., Hochmuth, Z., Meneely, J., Hofierka, J., and Sedlák, V.: Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: a case study of the Domica Cave. Slovakia, Int. J. Speleol., 44, 277–291, https://doi.org/10.5038/1827-806X.44.3.6, 2015a.
Gallay, M., Kaňuk, J., Hofierka, J., Hochmuth, Z., and Meneely, J.: Mapping and geomorphometric analysis of 3-D cave surfaces: a case study of the Domica Cave, Slovakia, in: Geomorphometry for Geosciences, edited by: Jasiewicz, J., Zwoliński, Z., Mitasova, H., and Hengl, T., Bogucki Wydawnictwo Naukowe, Adam Mickiewicz University in Poznań, Institute of Geoecology and Geoinformation, Poznań, 69–73, 2015b.
Girardeau-Montaut, D.: Detection de Changement sur des Données Géométriques 3-D, PhD thesis, Signal and Image processing, Telecom, Paris, France, 184 pp., 2006.
Girardeau-Montaut, D.: CloudCompare, version 2.6.2, GPL software, http://www.cloudcompare.org/ (last access: 2 February 2016), 2015.
Guennebaud, G. and Gross, M.: Algebraic point set surfaces, in: Proceedings of ACM SIGGRAPH 2007, San Diego, CA, USA, 5–7 August 2007, 26/3, Article 23, 2007.
Gulden, B.: World's longest caves, http://www.caverbob.com/wlong.htm, last access: 30 January 2016.
Hardin, E., Kurum, M. O., Mitasova, H., and Overton, M. F.: Least Cost Path Extraction of Topographic Features for Storm Impact Scale Mapping, J. Coast Res., 28, 970–978, https://doi.org/10.2112/JCOASTRES-D-11-00126.1, 2012.
Haviarová, D. and Gruber, P.: The newest results of monitoring the water component of the underground marsh Domica-Baradla, in: Výskum, využívanie a ochrana jaskýň 5, 26–29 September 2005, Demänovská dolina, Slovakia, http://www.ssj.sk/sk/user_files/Z05_21.pdf (last access: 10 February 2016), 2005.
Hengl, T. and MacMillan, R. A.: Chapter 19 Geomorphometry – A Key to Landscape Mapping and Modelling, in: Developments in Soil Science, edited by: Hengl, T. and Reuter, H. I., Elsevier, 433–460, https://doi.org/10.1016/S0166-2481(08)00019-6, 2009.
Hengl, T. and Reuter, H. I.: Geomorphometry: Concepts, Software, Applications, in: Developments in Soil Science, Amsterdam, the Netherlands, Elsevier, 772 pp., https://doi.org/10.1016/S0166-2481(08)00036-6, 2009.
Hinks, T., Carr, H., Gharibi, H., and Laefer, D. F.: Visualisation of urban airborne laser scanning data with occlusion images, ISPRS J. Photogram. Remote Sens., 104, 77–87, 2015.
Hoffmeister, D., Zellmann, S., Pastoors, A., Kehl, M., Cantalejo, P., Ramos, J., Weniger, G.-C., and Bareth, G.: The investigation of the Ardales Cave. Spain – 3-D documentation. topographic analyses. and lighting simulations based on terrestrial laser scanning, Archaeol. Prospect., https://doi.org/10.1002/arp.1519, in press, 2015.
Hofierka, J. and Zlocha, M.: Application of Surface and Volume Geometry Analysis in Geosciences, Geologica Carpathica, 44, 94–94, 1993.
Hofierka, J., Gallay, M., Kaňuk, J., and Šašak, J.: Modelling karst landscape with massive airborne and terrestrial laser scanning data. in: Proceedings of GIS Ostrava 2016 – The Rise of Big Spatial Data, 16–18 March 2016, Ostrava, Czech Republic, 2016.
Idrees, M. O. and Pradhan, B.: A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development, Int. J. Speleol., 45, 71–88, https://doi.org/10.5038/1827-806X.45.1.1923, 2016.
Isenburg, M.: LAStools – efficient LiDAR processing software, version 141017, unlicensed, http://rapidlasso.com/LAStools (last access: 2 February 2016), 2014.
Jaillet, S., Sadier, B., Hajri, S., Ployon, E., and Delannoy, J.-J.: Une analyse 3-D de l'endokarst : applications lasergrammétriques sur l'aven d'Orgnac (Ardèche. France), Géomorphologie, 4, 379–394, https://doi.org/10.4000/geomorphologie.9594, 2013.
Jasiewicz, J. and Stepinski, T. F.: Geomorphons – a pattern recognition approach to classification and mapping of landforms, Geomorphology, 182, 147–156, https://doi.org/10.1016/j.geomorph.2012.11.005, 2013.
Kazhdan, M. M., Bolitho, M., and Hoppe, H.: Poisson surface reconstruction, in: Symposium on Geometry Processing, ser. ACM International Conference Proceeding Series, Eurogr. Assoc., 256, 61–70, 2006.
Krcho, J.: Morphometric analysis of relief on the basis of geometric aspect of field theory, Acta Geographica Universitatis Comenianae, Geographia Physica, Bratislava, Slovakia, 11–233, 1973.
Kunský, J.: Karst and caves, Přírodovedecké nakladatelství, Prague, Czech Republic, 200 pp., 1950.
Lai, P., Samson, C., and Bose, P.: Surface roughness of rock faces through the curvature of triangulated meshes, Comput. Geosci., 70, 229–237, https://doi.org/10.1016/j.cageo.2014.05.010, 2014.
Lauritzen, S. E.: The paleocurrents and morphology of Pikhåggrottene. Svartisen, North Norway, Norsk Geografisk Tidsskrift, 36, 183–209, https://doi.org/10.1080/00291958208552082, 1982.
Lauritzen, S. E. and Lauritsen, A.: Differential diagnosis of paragenetic and vadose canyons, Cave Karst Sci., 21, 55–59, 1995.
Lundberg, L. and McFarlane, D. A.: Post-speleogenetic biogenic modification of Gomantong Caves, Sabah, Borneo, Geomorphology, 157–158, 153–168, https://doi.org/10.1016/j.geomorph.2011.04.043, 2012.
Mahmud, K., Mariethoz, G., Treble, P. C., and Baker, A.: Terrestrial LiDAR Survey and Morphological Analysis to Identify Infiltration Properties in the Tamala Limestone. Western Australia, IEEE J. Select. Top. Appl. Earth Obs. Rem. Sens., 8, 4871–4881, https://doi.org/10.1109/JSTARS.2015.2451088, 2015.
Mahmud, K., Mariethoz, G., Baker, A., Treble, P. C., Markowska, M., and McGuire, E.: Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data, Hydrol. Earth Syst. Sci., 20, 359–373, https://doi.org/10.5194/hess-20-359-2016, 2016.
Mattes, J.: Underground fieldwork – A cultural and social history of cave cartography and surveying instruments in the 19th and at the beginning of the 20th century, Int. J. Speleol., 44, 251–266, https://doi.org/10.5038/1827-806X.44.3.4, 2015.
McFarlane, D. A., Roberts, W., Buchroithner, M., Van Rentergem, G., Lundberg, J., and Hautz. S.: Terrestrial LiDAR-based automated counting of swiftlet nests in the caves of Gomantong. Sabah. Borneo, Int. J. Speleol., 44, 191–195, https://doi.org/10.5038/1827-806X.44.2.8, 2015.
Mihailović, D. T., Krmar, M., Mimić, G., Nikolić-Đorić, E., Smetanová, I., Holý, K., Zelinka, J., and Omelka, J.: A complexity analysis of 222Rn concentration variation: A case study for Domica cave. Slovakia for the period June 2010–June 2011, Radiat. Phys. Chem., 106, 88–94, https://doi.org/10.1016/j.radphyschem.2014.06.016, 2015.
Minár, J., Evans, I. S., and Krcho, J.: Geomorphometry: quantitative land surface analysis, in: Treatise on Geomorphology, Methods in Geomorphology, edited by: Shroder, J., Switzer, A. D., and Kennedy, D. M., Academic Press, San Diego, CA, USA, 22–34, https://doi.org/10.1016/B978-0-12-374739-6.00370-5, 2013.
Mitas, L. and Mitasova, H.: Spatial interpolation, in: Geographical Information Systems: Principles, Techniques, Management and Applications, edited by: Longley, P., Goodchild, M., Maguire, D., and Rhind, D., Wiley, London, UK, 481–492, 1999.
Neteler, M. and Mitasova, H.: Open Source GIS: A GRASS GIS Approach, 3rd Edn., Springer Verlag, New York, 420 pp., 2008.
Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS GIS: A multi-purpose open source GIS, Environ. Model. Softw., 31, 124–130, https://doi.org/10.1016/j.envsoft.2011.11.014, 2012.
Nováková, A.: Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review, Int. J. Speleol., 38, 71–82, https://doi.org/10.5038/1827-806X.38.1.8, 2009.
Novoveský: Technická správa, Domica 111-I-13, Geologický prieskum, n.p., Geologická služba podniku, geologická oblasť Rožňava (Technical report), folder of scans SK_1219_32427_0023_00050, Slovak Museum of Nature Protection and Caving, Liptovský Mikuláš, Slovakia, 355 pp., 1975.
Papáč, V., Hudec, I., Kováč, L., Lúptáčik, P., and Mock, A.: Bezstavovce jaskyne Domica (Invertebrates of Domica), in: Jaskynný systém Domica-Baradla, Jaskyňa, ktorá nás spája, edited by: Gaál, L. and Gruber, P., Aggteleki Nemzeti Park Igazgatóság, Jósvafő, Hungary, 267–279, 2014.
Pasini, G.: A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion?, I. J. Speleol., 38, 129–138, https://doi.org/10.5038/1827-806X.38.2.4, 2009.
Peško, M.: Results of hydrological monitoring of the Domica cave during 1999–2001, Aragonit, 8, 15–17, 2003.
Petras, V., Mitasova, H. and Petrasova, A.: Mapping gradient fields of landform migration, in: Geomorphometry for Geosciences, Bogucki Wydawnictwo Naukowe, edited by: Jaroslaw, J., Zwolinski, Z., Mitasova, H., and Hengl, T., Adam Mickiewicz University in Poznan – Institute of Geoecology and Geoinformation, Poznan, Poland, 173–176, 2015.
Pike, R. J., Evans, I. S., and Hengl, T.: Chapter 1 Geomorphometry: A Brief Guide, in: Developments in Soil Science, edited by: Hengl, T. and Reuter, H. I., Amsterdam, the Netherlands, Elsevier, 3–30, https://doi.org/10.1016/S0166-2481(08)00001-9, 2009.
Potenziani, M., Callieri, M., Dellepiane, M., Corsini, M., Ponchio, F., and Scopigno, R.: 3-DHOP: 3-D Heritage Online Presenter, Comput. Graphics, 52, 129–141, https://doi.org/10.1016/j.cag.2015.07.001, 2015.
Renault, P.: Contribution à l'etude des actions mécaniques et sédimentologiques dans la spéleogenèse, Annales de Spéléologie, 23, 529–596, 1968.
Roncat, A., Dublyansky, Y., Spotl, C., and Dorninger, P.: Full-3-D surveying of caves: A case study of Marchenhohle (Austria), in: Mathematical Geosciences at the Crossroads of Theory and Practice, Proceedings of the IAMG2011 conference, 5–9 September 2011, Salzburg, 1393–1403, https://doi.org/10.5242/iamg.2011.0000, 2011.
Roth, Z.: Evolution of the Domica cave, Bratislava, Časopis učené společnosti Šafaři-kovy, Bratislava, Slovakia, 11, 129–163, 1937.
Rüther, H., Chazan, M., Schroeder, R., Neeser, R., Held, C., Walker, S. J., Matmon, A., and Kolska Horwitz, L.: Laser scanning for conservation and research of African cultural heritage sites: the case study of Wonderwerk Cave, South Africa, J. Archaeol. Sci., 36, 1847–1856, 2009.
Silvestre, I., Rodrigues, J. I., Figueiredo, M., and Veiga-Pires C.: High-resolution digital 3-D models of Algar de Penico Chamber: limitations, challenges, and potential, Int. J. Speleol., 44, 25–35, https://doi.org/10.5038/1827-806X.44.1.3, 2015.
Starek, M. J., Mitasova, H., Wegmann, K., and Lyons, N.: Space-Time Cube Representation of Stream Bank Evolution Mapped by Terrestrial Laser Scanning, IEEE Geosci. Remote Sens. Lett., 10, 1369–1373, https://doi.org/10.1109/LGRS.2013.2241730, 2013.
Svitavská-Svobodová, H., Andreas, M., Krištůfek, V., Beneš, J., and Novák, J.: The thousand-year history of the Slovak Karst inferred from pollen in bat guano inside the Domica Cave (Slovakia), Folia Geobotanica, 50, 49–61, https://doi.org/10.1007/s12224-015-9205-0, 2015.
Tarini, M., Cignoni, P., and Montani, C.: Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization, IEEE T. Visual. Comput. Graphics, 12, 1237–1244, https://doi.org/10.1109/TVCG.2006.115, 2006.
Veselský, M., Bandura, P., Burian, L., Harciníková, T., and Bella, P.: Semi-automated recognition of planation surfaces and other flat landforms: a case study from the Aggtelek Karst, Hungary, Open Geosciences, 7, 2391–5447, https://doi.org/10.1515/geo-2015-0063, 2015.
Willmore, T. J.: An introduction to differential geometry, Mineola, NY, USA, Dover publications, 317 pp., 2012.
Zlot, R. and Bosse, M.: Three-dimensional mobile mapping of caves, J. Cave Karst Stud., 76, 191–206, https://doi.org/10.4311/2012EX0287, 2014.
Short summary
This paper presents a novel approach that provides evidence of
environmental conditions during the formation of a cave inferred from
measuring the geometry of the cave surface. We focused on winding
channels with associated cave landforms carved high up in the cave
ceiling inaccessible to direct inspection by speleologists. This was
possible by coupling 3-D laser scanning of the cave and analyzing the
cave morphology by the tools used in 3-D computer graphics and digital
terrain analysis.
This paper presents a novel approach that provides evidence of
environmental conditions during...