Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-913-2015
https://doi.org/10.5194/hess-19-913-2015
Research article
 | 
12 Feb 2015
Research article |  | 12 Feb 2015

Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes

K. Vormoor, D. Lawrence, M. Heistermann, and A. Bronstert

Abstract. Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach to simulate daily discharge for a reference (1961–1990) and a future (2071–2099) period, we analysed the projected changes in flood seasonality and generation processes in six catchments with mixed snowmelt/rainfall regimes under the current climate in Norway. The multi-model/multi-parameter ensemble consists of (i) eight combinations of global and regional climate models, (ii) two methods for adjusting the climate model output to the catchment scale, and (iii) one conceptual hydrological model with 25 calibrated parameter sets. Results indicate that autumn/winter events become more frequent in all catchments considered, which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in the two catchments located in northern and south-eastern Norway. The changes in flood regimes result from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP primarily due to increasing temperature. We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias correction tend to be the largest contributors. The relative role of hydrological parameter uncertainty, however, is highest for those catchments showing the largest changes in flood seasonality, which confirms the lack of robustness in hydrological model parameterization for simulations under transient hydrometeorological conditions.

Download
Short summary
Projected shifts towards more dominant autumn/winter events during a future climate correspond to an increasing relevance of rainfall as a flood generating process in six Norwegian catchments. The relative role of hydrological model parameter uncertainty, compared to other uncertainty sources from our applied ensemble, is highest in those catchments showing the largest shifts in flood seasonality which indicates a lack in parameter robustness under non-stationary hydroclimatological conditions.