Articles | Volume 19, issue 1
https://doi.org/10.5194/hess-19-631-2015
https://doi.org/10.5194/hess-19-631-2015
Research article
 | 
30 Jan 2015
Research article |  | 30 Jan 2015

Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

A. Md Ali, D. P. Solomatine, and G. Di Baldassarre

Related authors

Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023,https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Machine Learning and Committee Models for Improving ECMWF Subseasonal to Seasonal (S2S) Precipitation Forecast
Mohamed Elneel Elshaikh Eltayeb Elbasheer, Gerald Augusto Corzo, Dimitri Solomatine, and Emmanouil Varouchakis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-98,https://doi.org/10.5194/hess-2023-98, 2023
Preprint under review for HESS
Short summary
Multivariate regression trees as an ‘explainable machine learning’ approach to exploring relationships between hydroclimatic characteristics and agricultural and hydrological drought severity
Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-50,https://doi.org/10.5194/nhess-2023-50, 2023
Revised manuscript accepted for NHESS
Short summary
Machine Learning and Committee Models for Improving ECMWF Subseasonal to Seasonal (S2S) Precipitation Forecast
Mohamed Elneel Elshaikh Eltayeb Elbasheer, Gerald Augusto Corzo, Dimitri Solomatine, and Emmanouil Varouchakis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-348,https://doi.org/10.5194/hess-2022-348, 2022
Manuscript not accepted for further review
Short summary
Spatiotemporal changes of drought area as input for a machine-learning approach for crop yield prediction
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-252,https://doi.org/10.5194/hess-2022-252, 2022
Preprint withdrawn
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Remote Sensing and GIS
Inundation analysis of metro systems with the storm water management model incorporated into a geographical information system: a case study in Shanghai
Hai-Min Lyu, Shui-Long Shen, Jun Yang, and Zhen-Yu Yin
Hydrol. Earth Syst. Sci., 23, 4293–4307, https://doi.org/10.5194/hess-23-4293-2019,https://doi.org/10.5194/hess-23-4293-2019, 2019
Short summary
A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data
A. Casas, S. N. Lane, D. Yu, and G. Benito
Hydrol. Earth Syst. Sci., 14, 1567–1579, https://doi.org/10.5194/hess-14-1567-2010,https://doi.org/10.5194/hess-14-1567-2010, 2010

Cited articles

Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 5237–5257, 2003.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Bates, P. D.: Integrating remote sensing data with flood inundation models: how far have we got?, Hydrol. Process., 26, 2515–2521, https://doi.org/10.1002/hyp.9374, 2012.
Berry, P. A. M., Garlick, J. D., and Smith, R. G.: Near-global validation of the SRTM DEM using satellite radar altimetry, Remote Sens. Environ., 106, 17–27, https://doi.org/10.1016/j.rse.2006.07.011, 2007.
Download