A conceptual, distributed snow redistribution model
Abstract. When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall–runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling–Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where the redistribution model increased the efficiency (R2) from 0.70 to 0.78 (calibration) and from 0.66 to 0.74 (validation).