Articles | Volume 19, issue 10
https://doi.org/10.5194/hess-19-4055-2015
https://doi.org/10.5194/hess-19-4055-2015
Research article
 | 
06 Oct 2015
Research article |  | 06 Oct 2015

The effect of empirical-statistical correction of intensity-dependent model errors on the temperature climate change signal

A. Gobiet, M. Suklitsch, and G. Heinrich

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (26 Aug 2015) by Ludovic Oudin
AR by Andreas Gobiet on behalf of the Authors (04 Sep 2015)  Author's response   Manuscript 
ED: Publish as is (10 Sep 2015) by Ludovic Oudin
AR by Andreas Gobiet on behalf of the Authors (11 Sep 2015)
Download
Short summary
The effect of empirical-statistical bias correction methods, like quantile mapping (QM), on the simulated climate change signals (CCS) is currently strongly discussed and is often regarded as deficiency of bias correction methods. We demonstrate that, quite the contrary, QM can lead to an improved CCS and also has the potential to serve as an empirical constraint on model uncertainty in climate projections.