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 1 

Abstract 2 

This study discusses the effect of empirical-statistical bias correction methods like quantile 3 

mapping (QM) on the temperature change signals of climate simulations. We show that QM 4 

regionally alters the mean temperature climate change signal (CCS) derived from the 5 

ENSEMBLES multi-model dataset by up to 15 %. Such modification is currently strongly 6 

discussed and is often regarded as deficiency of bias correction methods. However, an 7 

analytical analysis reveals that this modification corresponds to the effect of intensity-8 

dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM 9 

removes these intensity-dependent errors and can therefore potentially lead to an improved 10 

CCS. A similar analysis as for the multi-model mean CCS has been conducted for the 11 

variance of CCSs in the multi-model ensemble. It shows that this indicator for model 12 

uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM has 13 

also the potential to serve as an empirical constraint on model uncertainty in climate 14 

projections. However, any improvement of simulated CCSs by empirical-statistical bias 15 

correction methods can only be realized, if the model error characteristics are sufficiently 16 

time-invariant. 17 

 18 

1 Introduction 19 

Society is increasingly demanding reliable projections of future climate change to analyse 20 

adaptation options and costs, to explore climate change mitigation benefits, and to support 21 

political decisions. Such climate projections are usually generated with general circulation 22 

models (GCMs) of rather coarse spatial resolution, which are refined by dynamical or 23 

statistical downscaling methods (e.g., Giorgi and Mearns, 1991; Fowler et al., 2007). 24 

Currently, an increasing number of climate change impact investigations rely on dynamical 25 

downscaling methods, i.e. the use of regional climate models (RCMs, e.g., Giorgi and 26 

Mearns, 1991; 1999; Wang et al., 2004; Rummukainen, 2010). However, even the newest 27 

generation of RCMs features considerable systematic errors (e.g., Kotlarski et al, 2014), 28 

which complicates the direct application of RCM results in climate change impact research. 29 

RCM output is therefore usually post-processed with empirical-statistical ―bias correction‖ 30 

methods (e.g., Déqué, 2007; Themeßl et al., 2011) before it is used as input for impact 31 
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models, such as hydrological models. Bias correction methods have been demonstrated to 1 

successfully reduce systematic model errors (i.e. the difference between historical model 2 

output and meteorological observations), but the knowledge about how they influence the 3 

climate change signal (CCS; i.e. the long-term average difference between a future and a past 4 

climate simulation) is very limited so far.  5 

A relation between model errors and CCS has been discussed by Christensen et al. (2008), 6 

who found that monthly temperature errors of RCMs over Europe often depend on the 7 

observed monthly mean temperature and that in warmer months errors are often larger than in 8 

colder months (or vice versa). Such ―intensity-dependent‖ errors can be shown to alter the 9 

temperature CCS (Christensen et al., 2008; Themeßl et al., 2012; Boberg and Christensen, 10 

2012).  11 

Bias correction methods like quantile mapping (QM) modify the CCS. E.g., Themeßl et al. 12 

(2012) and Dosio et al. (2012) showed that QM modifies the CCS of RCMs operated over 13 

Europe in some regions and seasons and found a lower summer temperature CCS in Eastern 14 

Europe as well as a higher winter temperature CCS in Scandinavia after bias correction with 15 

QM. Currently, such modifications are often regarded as an undesired deficiency of bias 16 

correction methods (e.g., Hempel et al., 2013). However, Maurer and Pierce (2014) recently 17 

claimed that QM may have no negative effect on the quality of the CCS and demonstrated 18 

that QM doesn’t deteriorate the multi-model mean precipitation CCS in a GCM ensemble.  19 

In this paper we go a step further and argue that, under the assumption of time-invariant 20 

model error characteristics, the modification of the CCS by QM can be interpreted as 21 

improvement, rather than as deterioration, since it is capable of mitigating intensity-dependent 22 

model errors. To support this hypothesis, we develop a linearized analytical description of the 23 

effect of intensity-dependent model errors on the CCS. This framework allows to investigate 24 

the impact of such errors not only on the multi-model mean CCSs in an ensemble of climate 25 

simulations, but also on the inter-model variability, which is often used as a measure of 26 

uncertainty in climate projections (e.g., Hawkins and Sutton 2009; 2011; Prein et al., 2011). 27 

Furthermore, we compare the analytical correction of the CCS to the correction by QM. 28 

In Sect. 2, the QM method is described and its effect on the temperature CCS of the 29 

ENSEMBLES multi-model dataset is demonstrated. In Sect. 3, the error characteristics of the 30 

ENSEMBLES models are analysed and in Sect. 4 we present an analytical formulation of 31 

intensity-dependent model errors and their effects on the CCS. In Sect. 5 these effects are 32 
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compared to the effects of QM on CCSs and in Sect. 6 a summary is given and conclusions 1 

are drawn. 2 

2 Quantile mapping and its effect on climate change signals over Europe 3 

2.1 Quantile mapping 4 

The basic assumption of QM is that model errors depend on the value of the simulated 5 

variable. This concept of intensity-dependent errors is a rough simplification of actual model 6 

error characteristics, since model errors are influenced not only by the local value of the 7 

simulated variable. However, we will demonstrate that errors and local values correlate well 8 

in many cases (Sect. 3). The concept is simple yet powerful, since it separates, e.g., cold from 9 

hot regimes, or drizzling from heavy precipitation regimes and therefore accounts for 10 

potentially very different model errors under the associated regimes. It should be emphasized 11 

that intensity-dependent model errors are equivalent to a miss-representation of variability, 12 

i.e. to differences between the observed and modelled width of the density distribution. Fig. 1 13 

demonstrates that intensity-dependent error characteristics with a positive slope correspond to 14 

overestimated variability, if the model error is defined as the difference between the inverse 15 

modelled and observed empirical cumulative density functions (ECDF). Similarly, a negative 16 

error slope corresponds to underestimation of variability.  17 

Fig. 1 18 

QM is a distribution-based bias correction method (e.g., Panofsky and Brier, 1958; Wood et 19 

al., 2004) that maps a modelled historical ECDF to an observed ECDF, with the mapping 20 

function shown in Fig. 1c for an artificial example. It is a well-established method to prepare 21 

climate model output as input for hydrological models (e.g., Déqué 2007; Maraun et al. 2010; 22 

Themeßl et al., 2011) and has been successfully applied to daily precipitation sum and air 23 

temperature of RCMs and GCMs by Dobler and Ahrens (2008), Piani et al. (2010a; 2010b), 24 

Dosio and Parulo (2011), Dosio et al. (2012), Maurer and Pierce (2014) and others. 25 

Furthermore, Themeßl et al. (2011) showed for daily precipitation sums that QM outperforms 26 

six other prominent bias correction techniques. 27 

In our study, a non-parametric version of QM is used (Themeßl et al., 2011; 2012; Wilcke et 28 

al., 2013), as suggested by Gudmundsson et al. (2012). The ECDFs are constructed from 930 29 

values for each day of the year based on modelled and observed data of a 30 year reference 30 

period (1961 – 1990) and a 31 day moving window centred on the day under consideration. 31 
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Our implementation of QM is not restricted to the range of observed values in the reference 1 

period, since the correction is extrapolated beyond the calibration range by using the 2 

correction term of the highest and lowest quantile, respectively. Please note, that this implies 3 

constant (not intensity-dependent) error characteristics outside the calibration range. As 4 

discussed by Bellprat et al. (2013), such constant error at high temperatures outside the 5 

calibration range may be more realistic in many cases than a linear extrapolation.  6 

Some restrictions apply to the application of QM on climate scenarios: As pointed out by 7 

Eden et al. (2012), internal variability causes differences between a GCM simulation and 8 

observations, which cannot be separated from actual model errors, if QM is applied to GCM-9 

driven RCMs, as in our case (see Sect. 2.2). By using rather long calibration periods (30 10 

years) and by focusing on temperature, which is less affected by natural variability than, e.g., 11 

precipitation, we try to minimize this effect. In addition, our multi-model approach further 12 

reduces dependence on natural variability. However, in the interpretation of the results, some 13 

noise due to natural variability has to be taken into account. Similar to all empirical-statistical 14 

downscaling and bias correction methods, the application of QM on future climate 15 

simulations is based on the assumption of time-invariant model error characteristics. This 16 

stationarity assumption can obviously not be directly assessed for future periods and it can be 17 

expected to be violated to some degree. However, several studies demonstrate the skill of 18 

empirical-statistical bias correction methods either for past periods independent of the 19 

calibration period under on-going climate change (e.g., Piani et al., 2010a; Themeßl et al. 20 

2012; Gudmundsson et al. 2012; Wilcke et al., 2013) or for future periods using a pseudo-21 

reality approach (Maraun, 2012). Furthermore, Teutschbein and Seibert (2013) show that 22 

correction methods like QM perform better under non-stationary conditions than widely used 23 

linear transformations or the delta-change approaches. This gives confidence that empirical-24 

statistical bias correction with QM is useful not only for historical simulations, but also, 25 

though with degraded performance, for future climate simulations. However, in a strict 26 

interpretation, the results and conclusions of this study are only valid under the assumption of 27 

time-invariant model errors and it is still issue to further investigation to determine the 28 

severity of this restriction. Although such investigation is outside the scope of our study, we 29 

want to mention that the new centennial re-analyses of ECMWF (ERA-20C) and NOAA-30 

CIRES (V2c) offer a promising new test-bed for the investigation of the long-term stability of 31 

model error characteristics.    32 
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 1 

2.2 Model and observational data 2 

We apply QM to a set of 15 GCM-driven regional climate simulations for Europe from the 3 

ENSEMBLES multi-model dataset (van der Linden and Mitchell, 2009). The ENSEMBLES 4 

models are operated on a 25 km grid and reach until 2100. In the following, we show the 5 

results for daily mean temperature, but the analysis of daily minimum and maximum 6 

temperatures gives very similar results. The application of our analysis to other parameters 7 

like, e.g., precipitation is basically straight forward, but the linearization applied in section 4 8 

can be expected to be less appropriate for precipitation than for temperature. Further 9 

investigation is needed to fully reveal the effect of QM on the precipitation CCS. The major 10 

motivation for focusing on temperature here is its relatively simple error characteristic and its 11 

significant climate trend, which facilitates the demonstration of the effect of QM on the CCS.  12 

As observational reference, the ENSEMBLES gridded observational dataset (E-OBS, 13 

Haylock et al. (2008)) is used. It is a European land-only daily high-resolution (25 km grid 14 

spacing) dataset for 5 meteorological parameters, including daily mean temperature. 15 

2.3 The effect of QM on the CCS in ENSEMBLES 16 

Subsequently, we show the effect of QM on the multi-model mean CCS and on the standard 17 

deviation of CCSs for the periods 2021 – 2050 and 2070 – 2099, both compared with the 18 

reference period 1971 – 2000. In Fig. 2 the spatial patterns of the difference between the 19 

uncorrected and the corrected multi-model mean temperature CCS is shown for different 20 

seasons in the mid (left) and end (right) of the 21st century. In the end of the century 21 

differences exceed +0.5 K in summer (JJA) in larger parts of South-Eastern Europe, France, 22 

and the Iberian Peninsula and –0.5 K and in larger regions in Scandinavia, which roughly 23 

corresponds to 15% of the uncorrected CCS. These results are consistent with the analyses of 24 

Boberg and Christensen (2012) and Dosio et al. (2012) and indicate that summer warming in 25 

South-Eastern Europe is projected to be less severe and warming in Scandinavia is projected 26 

to be more severe after bias correction with QM. However, the differences remain in the order 27 

of 10 % the uncorrected CCS and the basic pattern of temperature change is not strongly 28 

altered by QM. 29 

Fig. 2 30 
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Fig. 3 shows the spatial pattern of the difference between the uncorrected and the corrected 1 

standard deviation of CCSs as a measure of model uncertainty. In most regions, model 2 

uncertainty is larger in the uncorrected model ensemble (orange colors), particularly in 3 

regions where the CCS is overestimated (see Fig. 2). The overestimation locally peaks at 0.5 4 

K. However, in some regions (e.g., Scandinavia) and periods (e.g., late 21st century winter) 5 

model uncertainty is smaller in the uncorrected model ensemble, locally peaking at about -0.4 6 

K. 7 

Fig. 3 8 

After having demonstrated and quantified the effects of QM on the CCS and the model 9 

uncertainty in the ENSEMBLES multi-model ensemble, the rest of this paper is devoted to 10 

the explanation of these effects. 11 

3 Intensity-dependent model errors in the ENSEMBLES multi-model dataset 12 

Since intensity-dependent model errors are the main suspects to cause the demonstrated effect 13 

of QM on the CCS, we investigate whether such errors exist in the ENSEMBLES RCMs. Due 14 

to their contrasting error characteristics, two of the RCMs are discussed in more detail: The 15 

HadRM3Q3 (driven by the HadCM3Q3 global climate model) operated by the Hadley Centre 16 

(HC) and the RCA (driven by run 3 of the ECHAM5 global climate model) operated by the 17 

Swedish Meteorological Service (SMHI). Since model error characteristics are known to be 18 

regionally very variable, Europe is separated into 8 sub-regions following Rockel and Woth 19 

(2007), which are marked in Figs. 2 and 3: The British Islands (BI), France (FR), Central 20 

Europe (ME), Scandinavia  (SC), Iberian Peninsula (IP), Mediterranean (MD), Alps (AL) and 21 

Eastern Europe (EA).  22 

The following characterization of model errors is based on daily mean temperature ECDFs, 23 

which are averaged over each month and sub-region. For each model, only the range between 24 

the 10th and 90th percentiles is used in order to avoid the noisy tails of empirical 25 

distributions. The ECDFs of the grid points in each sub-region are sampled over this range on 26 

a daily basis and the daily model error characteristics are derived for each grid point by 27 

subtracting the inverse observed from the inverse modelled ECDF (see Fig. 1). Further, the 28 

grid point error characteristics are averaged over each sub-region and each month of the year. 29 

Fig. 4 exemplarily shows the daily temperature error characteristics of the HC and SMHI 30 

models. 31 
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Fig. 4 1 

Both models are affected by strongly intensity-dependent errors, but the error characteristics 2 

of the two models differ substantially. While the HC model features positive error slopes (up 3 

to 0.5) in most seasons and regions, the SMHI model has mainly negative slopes (up to -0.7). 4 

Both models are rather extreme examples within the ENSEMBLES multi-model dataset and 5 

most other models feature smaller slopes of about +/- 0.1 (Figs. S1 to S8 in the supplementary 6 

material).  7 

In order to analyse whether such single-model error slopes cancel out in the multi-model 8 

ensemble, the ensemble average error characteristics (bold lines) in SC and EA are shown in 9 

Fig. 5 together with those of all 15 individual models (light lines). In SC, a considerable 10 

negative multi-model average slope exists in most parts of the year (minimum:   in July). 11 

Contrary, positive slopes can be found in EA in summer (maximum:   in July). Several other 12 

regions, like AL, feature only minor multi-model average slopes, but in turn larger slope 13 

variability (see supplementary material, Figs. S9 to S12). 14 

Fig. 5 15 

4 Analytical description of the effect of intensity-dependent model errors on 16 

the CCS 17 

Having shown and quantified the intensity-dependence of model errors in the ENSEMBLES 18 

multi-model dataset, we subsequently give a simplified analytical description to highlight the 19 

mechanism how such errors act on the CCS in a multi-model ensemble. 20 

4.1 CCS of a single climate simulation 21 

Let i

jy  be the value of a meteorological variable (e.g., temperature, precipitation sum, or any 22 

other simulated variable) on day j simulated by model i. 
iy is the 30 year average for a 23 

specific time of the year, e.g., for a month or a season. It can be expressed as a combination of 24 

the observed average value x  and the deviation of the model from this value due to errors 25 

(
i

ey ) and due to natural and model internal variability (
i

vy ): 
i

v

i

e

i yyxy  . The CCS iy  26 

(
i

past

i

future

i yyy  ) can then be written as:  27 

i

v

i

e

i yyxy  .          (1) 28 
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x denotes the deterministic part of the error-free CCS, 
i

ey  the effect of model errors, and 1 

i

vy  the random effect of internal variability. In many studies, the model error term is 2 

neglected (―delta change approach‖), since errors are expected to be time-invariant and to 3 

cancel out in the CCS. We demonstrate that this is not the case, even for time-invariant error 4 

characteristics, if they are intensity-dependent and the CCS is non-zero. The daily intensity-5 

dependent errors can be written as a function of the meteorological variable under 6 

consideration: )(,

i

j

i

je yfy  . For the sake of simplicity, we assume a linear error function with 7 

a constant bias ib , error slope is , and residual i

j : 8 

i

j

i

j

iii

je ysby , .          (2)  9 

This linear error function is a good approximation of the error characteristics of the 10 

ENSEMBLES multi-model dataset in most cases, since the median coefficient of 11 

determination of the linear regression to the error characteristics shown in Sect. 3 is high (R² = 12 

0.91). However, it is not always suitable as, e.g., in the case of the HC model in SC in winter 13 

and the SMHI model in IP in summer (Fig. 4).  14 

Averaging over 30 years, taking the difference between a future and a past period, and 15 

neglecting the residual yields the linearized effect of the intensity-dependent model error on 16 

the CCS:   17 

iii

e ysy  .           (3)  18 

The bias cancels out, since it is assumed to be time-invariant and not intensity-dependent. 19 

From Eqs. (1) and (3) the simulated CCS can be written as: 20 

i

i

vi

s

yx
y






1
.          (4)   21 

Eq. (4) shows that intensity-dependent model errors lead to a modeled CCS that is 22 

proportional to the error free CCS (
i

vyx  ) and a factor determined by the error slope 23 

( )1/(1 is ). Fig. 6a illustrates this effect in relative terms: Positive error slopes lead to an 24 

exaggeration of the error-free CCS and negative slopes dampen it, but to a smaller extent. 25 

E.g., for slopes of 0.1 and -0.1 the error would amount to about 11 % and -9 %, respectively. 26 

The depicted range of error slopes from -0.7 to 0.5 has been selected according to temperature 27 

error slopes found in the ENSEMBLES multi-model dataset (see Sect. 5). 28 
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Fig. 6 1 

4.2 Multi-model mean CCS 2 

For a multi-model ensemble, the ensemble mean CCS and the multi-model variance of the 3 

CCS is relevant. To derive the effect of intensity-dependent errors on these quantities, the 4 

error slope can be written as the sum of the ensemble mean error slope ( s ) and a model 5 

specific residuum error slope ( is ). Combining this separation with the expanded form of Eq. 6 

(4) yields: 7 

i

v

iii yyssxy  )( .        (5) 8 

Accordingly, the multi-model mean CCS is:  9 

),cov( iiii ysysxy  . 
       (6)

 10 

In Eq. 6 we could disregard the internal variability 
i

vy  since it has the expectation zero 11 

(assuming a large number of models n). In addition, the expectation of the product 12 

ii ys  equals the covariance of both terms, since the expectation of is  is zero under the 13 

assumption of normally distributed error slopes. However, it is not independent from 
iy as 14 

the error slope influences the CCS according to Eq. (4). In a similar form as Eq. (4), Eq. (6) 15 

reads:  16 

s

ysx
y

ii
i






1

),cov(
.         (7) 17 

Eq. (7) shows that intensity-dependent errors influence the multi-model mean CCS via two 18 

terms: Firstly, the error slope term, which scales with the error-free CCS ( x ) just like in the 19 

single-model case, and secondly the covariance term, which adds an offset. Fig. 6b visualizes 20 

the corresponding error in the CCS in relative terms: Positive multi-model mean error slopes 21 

lead to an exaggeration of the CCS and negative slopes dampen it, just like in the single 22 

model case (black line). The depicted range of multi-model error slopes from –0.16 to +0.13 23 

has been selected according to the multi-model mean temperature error slopes of the 24 

ENSEMBLES multi-model dataset (see Sect. 5). Positive and negative covariance terms 25 

create positive and negative offsets, respectively. Following Eq. (3), it can be expected that 26 

single model error slopes and CCSs are generally positively correlated and that the covariance 27 
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term is consequently positive. The depicted range of covariance terms corresponds to values 1 

found in the analysis of temperature errors of the ENSEMBLES multi-model dataset, ranging 2 

from -0.02 (blue colors) to +0.21 (pink colors) (Sect. 5) and confirms this expectation. The 3 

absolute effect of the covariance term (Eq. (7)) is independent from the error-free CCS and 4 

thus gets smaller with higher CCS in relative terms, which is indicated by lighter (small CCS) 5 

and darker colors (large CCS). 6 

4.3 Variance of CCSs in a multi-model ensemble 7 

The effect of intensity-dependent errors on the second important quantity in a multi-model 8 

ensemble, the variance of CCSs (which is often interpreted as a measure of uncertainty), can 9 

be described with the linearized model as well. Using Eqs. (5) and (6), the variance can be 10 

expressed as: 11 

 
2

11

2 ),cov()(
1

][
1

)var( 



n

i

iii

v

iiii
n

i

iii ysyysyys
n

yy
n

y .   (8) 12 

Expanding and simplifying Eq. (8) gives (see supplementary material for a detailed 13 

derivation): 14 

),cov(2)var()var()var()var( 2 iiiiiiii ysysysysyy  

.   (9) 

15 

Since )var( 
iy  is the effect of natural variability, it can be interpreted as the variance of an 16 

error-free model ensemble. Compared to that, the variance of a model ensemble with 17 

intensity-dependent errors is always exaggerated by a positive offset )var(2 iys  . E.g., an 18 

ensemble mean error slope of ±0.1 results in about 1 % bias in variance. In addition, the 19 

positive additive term )var( ii ys  , which represents the variability of the individual model’s 20 

error slopes times CCSs, further increases the positive bias. The last term ),cov(2 iii ysys   21 

is positive for positive slopes and negative for negative slopes, assuming a positive correlation 22 

of the simulated CCS and the residual error slope. It is difficult to estimate the relative 23 

importance of the different terms and in particular to judge if the possibly negative covariance 24 

term can counterbalance the otherwise positive terms, so all terms of Eq. (9) are quantified 25 

and analyzed for the ENSEMBLES multi-model ensemble in Sect. 5. 26 
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4.4 Linearized correction 1 

The linearized error characterization leads to a simple way to correct the CCS of single 2 

models following Eq. (3), the multi-model mean CCS following Eq. (6), and the multi-model 3 

variance of CCS following Eq. (9). Error slopes, climate change signals, their variability, and 4 

their covariance are calculated based on the comparison of historical simulations with 5 

observations and applied to results of future simulations. Such correction assumes not only a 6 

linear error-slope, but also time-invariant error characteristics. The linearly corrected multi-7 

model mean temperature CCS is listed in Table 1 ( LCx ) and the variance of the CCSs in 8 

Table 2 ( LCx)var( ). They are discussed in the following Section. 9 

5 Correction of the CCS and its uncertainty 10 

In Table 1 the terms contributing to errors in the multi model mean CCS (see Eq. (6)) are 11 

listed for all sub-regions and seasons. Multi model mean error slopes ( s ) are mostly negative 12 

in DJF and MAM, mostly positive in JJA and SON, and range from –0.16 in SC in MAM to 13 

0.13 in EA in JJA. Accordingly, they inflate (positive slopes) or dampen (negative slopes) the 14 

CCS, depending on season and sub-region. The errors stemming from the slope term )( ys  15 

range from –0.25 K to 0.20 K in the mid-century and from –0.57 K to 0.45 K at the end of the 16 

century. Contrary, the covariance-term ( ),cov( ii ys  ) is, with very few exceptions, positive 17 

and increases the CCS. It amounts 0.04 K on average, ranges from –0.02 K to 0.21 K in both 18 

periods, but usually does not exceed 0.10 K. Compared to the slope term, the covariance term 19 

is smaller in most cases, but cannot be neglected, as it sometimes equals or even exceeds the 20 

slope term. Table 1 also lists the uncorrected ( y ) and corrected multi-model mean CCS 21 

(linearized correction: LCx ; quantile mapping: QMx ) for each season and sub-region. The 22 

difference between uncorrected and corrected CCS averaged over all seasons and regions is 23 

small (0.01 K), but can reach up to about 0.5 K (about 15% of the uncorrected CCS) in 24 

specific regions and seasons. Fig. 7 displays this estimated error in the multi-model mean 25 

temperature CCS. With few exceptions, both correction methods feature the similar sign of 26 

correction and agree reasonably well in their magnitude. Major differences are found in the 27 

later period, when QM often indicates smaller errors than LC. This can be probably explained 28 

by the fact that LC extrapolates intensity-dependent errors, while our implementation of QM 29 

keeps the error constant outside the calibration range (see Sect. 2.1). This dampens the error 30 

slope under severe warming (i.e. at the end of the 21
st
 century) when daily temperatures 31 
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outside the calibration range frequently occur. Further discrepancies between QM and LC can 1 

be explained by the linear approximation of LC. Both correction methods agree that the 2 

uncorrected CCS is regionally biased up to +0.5 K in EA and FR in summer and about –0.5 K 3 

in SC. The qualitative agreement of QM with LC can be interpreted as a confirmation that the 4 

correction of intensity-dependent errors is the main reason of the modification of the CCS by 5 

QM. 6 

Table 1 7 

Fig. 7 8 

In Table 2, the terms contributing to errors in the estimated variance of a multi-model 9 

ensemble (Eq. (9)) are listed: Two positive offset terms )var(2 iys   and )var( ii ys  , and the 10 

term ),cov(2 iii ysys  , which generally has the same sign as the error slope due to the 11 

positive correlation between single model CCS and error slope.  While )var(2 iys   is very 12 

small in both periods (smaller than 0.01 K² in most cases), )var( ii ys   amounts to 0.041 K² 13 

on average (range: 0.006 K² – 0.128 K²) in the earlier period and to 0.223 K² on average 14 

(range: 0.026 K² – 0.697 K²) in the later period. Given a modeled average variance of 0.342 15 

K² in the earlier and 1.028 K² in the later period, this means that this term leads to an 16 

overestimation of variance by 12 % and 22 % on average, respectively. In specific regions and 17 

seasons, the overestimation can amount 50 % and more (e.g., SC in the later period). The 18 

average covariance term ),cov(2 iii ysys  is very small in both periods (–0.002 K² and 19 

+0.002 K², respectively) and ranges from –0.028 K² to 0.136 K². In summary, the positive 20 

variability term )var( ii ys   dominates and is mostly even enhanced by the covariance term. 21 

This leads to a general overestimation of ensemble variance. 22 

Table 2 23 

Fig. 8 24 

Table 2 also lists the uncorrected ( )var( iy ) and corrected variance of the CCSs in the multi-25 

model ensemble (LC: )var( LCx ; QM: )var( QMx ) for each season and sub-region. The 26 

average difference between uncorrected and corrected variance over all seasons and regions 27 

does not cancel out as in the case of the mean CCS, but amounts on average to 17 % in the 28 

case of LC and to 12 % in the case of QM. This demonstrates that time-invariant intensity-29 

dependent errors inflate model uncertainty in multi-model ensembles. In Fig. 8 this error is 30 
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expressed as standard deviation, which is overestimated by up to 0.4 K at the end of the 1 

century. This is particularly the case in regions where the mean CCS is overestimated like in 2 

EA in summer. However, the two correction methods disagree in some cases as, e.g., in SC in 3 

winter at the end of the century. These discrepancies are currently not fully understood and 4 

require further analysis. They could, e.g., be caused by the linearity assumption of LC, by the 5 

constant (not intensity-dependent) correction outside the calibration range of QM, or by time-6 

variant model errors. 7 

6 Summary and Conclusions 8 

The knowledge about the influence of empirical-statistical bias correction methods like QM 9 

on the CCS of climate simulations is very limited so far. For the ENSEMBLES multi-model 10 

dataset it has been demonstrated that QM dampens projected summer warming in South-11 

Eastern Europe and France by about 0.5 K and enhances projected warming in Scandinavia 12 

by about the same amount. This corresponds to about 15 % of the uncorrected CCS. Such 13 

modification is currently strongly discussed and is often regarded as deficiency of bias 14 

correction methods. However, we argue that under the assumption of time-invariant model 15 

errors, QM should generally lead to an improvement of the simulated CCS rather than 16 

deterioration.  17 

To support this hypothesis, we analytically formulated the effect of intensity-dependent model 18 

errors on the CCS and showed that they erroneously modify the CCS. Positive error slopes 19 

lead to an exaggeration of the CCS and negative slopes dampen it. This is the case for a single 20 

model’s CCS as well as for the multi-model mean CCS in a model ensemble, which is 21 

additionally exaggerated by high variability amongst the single model’s CCSs. A comparison 22 

of this analytically determined error and the effect of QM on the mean CCS in the 23 

ENSEMBLES multi-model dataset leads to largely similar results. This confirms that the 24 

effect of QM on the CCS is mainly caused by the correction of intensity-dependent errors and 25 

that such modification can be regarded as improvement, if roughly time-invariant model error 26 

characteristics can be assumed. 27 

With regard to the variance of the CCSs in a multi-model ensemble, the analytical description 28 

reveals that intensity-dependent model errors lead to an overestimation of variance. Since 29 

variability of CCSs in a multi-model ensemble is often used as indicator for model 30 

uncertainty, intensity-dependent model errors can be regarded to be responsible for parts of 31 

the model uncertainty in the CCS. This further implies that the correction of intensity-32 
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dependent errors by QM should lead to a smaller variance and therefore constitute an 1 

empirical constraint on climate model uncertainty. However, we could only partly 2 

demonstrate this very desirable effect by the application of QM on the ENSEMBLES dataset. 3 

In most regions and seasons the analytical correction as well as QM reduce the variance as 4 

expected, but particularly in the winter season of longer term simulations QM often increases 5 

it, which could not be fully explained so far and needs further investigation.  6 

Generally, our results indicate that empirical-statistical bias correction methods that correct 7 

for intensity-dependence in model errors can lead to improved estimates of future climate 8 

change. The improvements primarily refer to the mean CCS, but also an empirical constraint 9 

on uncertainty in multi-model climate projections seems to be feasible. A restriction to these 10 

results is the fact that any potential improvement can only be realized if the assumption of 11 

time-invariant model error characteristics sufficiently holds. It is still issue to further 12 

investigation to determine the severity of this restriction.    13 
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Table 1. Multi model mean temperature error slopes ( s ), multi-model mean CCSs ( iy ), 1 

covariance error terms ( ),cov( ii ys  ), linearly corrected CCSs ( LCx ), and non-linearly 2 

corrected CCSs ( QMx ) for the periods 2021 – 2050 (left) and 2070 – 2099 (right) [K].  3 

mid-century (2021-2050) end-century (2070-2099)

region season s Δy cov(s' ,Δy) Δx LC Δx QM Δy cov(s' ,Δy) Δx LC Δx QM

BI DJF 0.07 1.05 0.03 0.96 0.97 2.18 -0.01 2.05 2.05
MAM -0.16 0.94 0.03 1.06 0.99 2.08 0.04 2.40 2.23

JJA -0.15 0.94 0.06 1.03 1.02 2.31 0.09 2.59 2.48
SON 0.02 1.10 0.02 1.06 1.11 2.47 0.02 2.41 2.50

FR DJF -0.03 1.31 0.03 1.33 1.33 2.54 -0.02 2.65 2.65
MAM -0.07 1.03 0.04 1.07 1.09 2.40 0.05 2.52 2.53

JJA 0.08 1.37 0.13 1.15 1.22 3.68 0.21 3.19 3.37
SON 0.00 1.22 0.01 1.21 1.15 3.08 0.02 3.07 2.96

ME DJF -0.03 1.49 0.03 1.50 1.50 3.01 -0.01 3.11 3.14
MAM -0.06 1.01 0.01 1.06 1.04 2.35 0.01 2.47 2.42

JJA 0.05 1.14 0.07 1.01 1.08 3.00 0.10 2.77 2.85
SON 0.02 1.23 0.01 1.20 1.16 3.01 0.01 2.95 2.82

SC DJF -0.06 1.84 0.06 1.90 1.99 4.37 0.02 4.64 4.80
MAM -0.16 1.57 0.07 1.77 1.62 3.59 0.05 4.17 3.85

JJA -0.14 1.25 0.01 1.44 1.46 2.68 0.01 3.09 3.11
SON -0.10 1.66 0.02 1.81 1.76 3.56 0.02 3.91 3.81

IP DJF -0.04 1.24 0.01 1.27 1.21 2.33 0.00 2.41 2.34
MAM -0.04 1.22 0.05 1.22 1.25 3.11 0.07 3.16 3.22

JJA 0.04 1.66 0.05 1.55 1.58 4.44 0.06 4.21 4.32
SON 0.00 1.45 0.02 1.42 1.41 3.51 0.04 3.45 3.48

MD DJF -0.08 1.36 0.02 1.45 1.38 2.78 0.02 3.00 2.96
MAM -0.05 1.27 0.05 1.29 1.33 3.04 0.08 3.14 3.20

JJA 0.00 1.85 0.05 1.80 1.87 4.35 0.09 4.26 4.47
SON -0.04 1.44 0.03 1.47 1.38 3.41 0.05 3.50 3.40

AL DJF -0.02 1.54 0.03 1.55 1.40 3.15 -0.01 3.22 2.95
MAM -0.06 1.29 0.03 1.35 1.37 3.00 0.04 3.17 3.24

JJA 0.02 1.58 0.06 1.48 1.57 4.10 0.10 3.91 4.08
SON 0.05 1.35 0.01 1.28 1.24 3.37 0.02 3.20 3.16

EA DJF -0.04 1.70 0.03 1.73 1.67 3.39 0.00 3.52 3.44
MAM -0.01 1.19 0.02 1.18 1.18 2.79 0.03 2.78 2.80

JJA 0.13 1.54 0.08 1.29 1.34 3.52 0.12 3.00 3.07
SON 0.03 1.41 0.01 1.36 1.29 3.23 0.02 3.12 2.97

Mean -0.03 1.35 0.04 1.35 1.34 3.12 0.04 3.16 3.15

s

 4 

5 
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Table 2. Multi-model variance of the temperature CCSs ( )var( iy ), error terms of the 1 

variance ( )var(2 iys  , )var( ii ys  , ),cov(2 iii ysys  ), linearly corrected variance 2 

( LCx)var( ), and QM corrected variance ( QMx)var( ) for the periods 2021 – 2050 (left) and 3 

2070 – 2099 (right) [K²]. 4 

mid-century (2021-2050) end-century (2070-2099)

region season var(y ) s ²var(y ) var(s' y ) 2s cov(y ,s' y ) var(xLC ) var(xQM ) var(y ) s ²var(y ) var(s' y ) 2s cov(y ,s' y ) var(xLC ) var(xQM )

BI DJF 0.283 0.001 0.008 0.004 0.269 0.198 0.719 0.003 0.050 0.002 0.664 0.883

MAM 0.178 0.004 0.018 -0.008 0.165 0.183 0.409 0.010 0.073 -0.024 0.349 0.430

JJA 0.308 0.007 0.034 -0.018 0.284 0.309 0.925 0.021 0.193 -0.059 0.770 0.784

SON 0.266 0.000 0.016 0.001 0.249 0.240 0.814 0.000 0.077 0.002 0.736 0.768

FR DJF 0.192 0.000 0.019 -0.002 0.174 0.150 0.797 0.001 0.076 0.001 0.719 1.136

MAM 0.268 0.001 0.027 -0.006 0.246 0.282 0.674 0.003 0.124 -0.020 0.567 0.636

JJA 0.540 0.004 0.058 0.028 0.451 0.307 1.641 0.011 0.697 0.137 0.796 0.829

SON 0.445 0.000 0.011 0.000 0.433 0.311 1.571 0.000 0.087 -0.001 1.484 1.063

ME DJF 0.322 0.000 0.035 -0.003 0.289 0.257 0.860 0.001 0.162 0.000 0.698 1.217

MAM 0.311 0.001 0.022 -0.002 0.290 0.340 0.651 0.002 0.110 -0.004 0.543 0.706

JJA 0.379 0.001 0.044 0.009 0.324 0.238 1.210 0.003 0.405 0.036 0.766 0.747

SON 0.319 0.000 0.012 0.000 0.307 0.264 1.374 0.000 0.083 0.002 1.288 1.092

SC DJF 0.647 0.002 0.128 -0.016 0.532 0.662 0.567 0.002 0.644 -0.015 -0.064 1.127

MAM 0.518 0.014 0.098 -0.052 0.457 0.433 0.632 0.017 0.362 -0.073 0.326 0.771

JJA 0.350 0.006 0.074 -0.002 0.271 0.449 0.775 0.014 0.231 -0.002 0.531 1.034

SON 0.151 0.001 0.099 -0.008 0.059 0.179 0.534 0.005 0.365 -0.012 0.176 0.805

IP DJF 0.170 0.000 0.006 -0.001 0.165 0.155 1.025 0.001 0.026 -0.003 1.000 1.142

MAM 0.371 0.000 0.044 -0.006 0.332 0.308 0.781 0.001 0.229 -0.019 0.569 0.574

JJA 0.354 0.001 0.028 0.004 0.322 0.267 0.858 0.001 0.274 0.016 0.566 0.739

SON 0.420 0.000 0.008 0.000 0.411 0.284 1.356 0.000 0.049 0.001 1.305 0.855

MD DJF 0.178 0.001 0.017 -0.004 0.163 0.177 1.424 0.009 0.084 -0.011 1.342 1.717

MAM 0.381 0.001 0.060 -0.009 0.329 0.323 0.885 0.003 0.264 -0.028 0.646 0.709

JJA 0.410 0.000 0.102 0.000 0.307 0.417 1.308 0.000 0.437 0.001 0.870 1.598

SON 0.272 0.000 0.014 -0.002 0.260 0.195 1.076 0.002 0.082 -0.012 1.004 0.726

AL DJF 0.304 0.000 0.023 -0.002 0.282 0.216 1.175 0.001 0.113 0.001 1.060 1.377

MAM 0.410 0.002 0.049 -0.006 0.364 0.427 0.919 0.004 0.202 -0.019 0.732 0.917

JJA 0.485 0.000 0.057 0.005 0.423 0.371 1.376 0.001 0.476 0.019 0.880 1.196

SON 0.403 0.001 0.007 0.001 0.393 0.287 1.608 0.004 0.058 0.008 1.539 1.061

EA DJF 0.332 0.000 0.080 -0.005 0.256 0.265 1.228 0.002 0.346 0.000 0.881 1.453

MAM 0.350 0.000 0.040 0.000 0.311 0.335 0.711 0.000 0.206 -0.001 0.506 0.679

JJA 0.461 0.008 0.060 0.041 0.353 0.207 1.597 0.027 0.432 0.136 1.002 0.816

SON 0.182 0.000 0.022 0.001 0.158 0.134 1.427 0.001 0.129 0.006 1.291 0.973

Mean 0.342 0.002 0.041 -0.002 0.301 0.287 1.028 0.005 0.223 0.002 0.798 0.955  5 
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Figure 1. Intensity-dependent model errors of a model that overestimates daily temperature 3 

variability (artificial data). a: modeled (red, standard deviation = 5 °C) and observed (green, 4 

standard deviation = 4 °C) empirical density functions; b: modeled (red) and observed (green) 5 

ECDFs; c: model error at different modeled values. 6 

7 
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Figure 2. Differences between uncorrected and corrected (QM) multi-model mean 3 

temperature CCS. The reference period is 1971 – 2000. The left panels refer to CCSs in the 4 

mid-21
st
 century (2021 – 2050), the right panels to the end-21

st
 century (2070 – 2099). Blue 5 

colors indicate areas where the uncorrected model is colder than the corrected, red colors 6 

vice-versa. 7 

8 
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Figure 3. Differences between uncorrected and corrected (QM) multi-model standard 3 

deviation. The reference period is 1971 – 2000. The left panels refer to CCSs in the mid-21
st
 4 

century (2021 – 2050), the right panels to the end-21
st
 century (2070 – 2099). Blue colors 5 

indicate areas where the uncorrected ensemble features a smaller standard deviation, orange 6 

colors vice-versa. 7 

8 
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Figure 4. Temperature error characteristics (model minus observation) of the HC (left panels) 3 

and SMHI (right panels) RCMs in eight sub-regions of Europe (sub-panels) and each month 4 

of the year.   5 

6 
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Figure 5. Temperature error characteristics (modeled minus observed) of the ENSEMBLES 3 

models in SC (left panels) and EA (right panels). The light lines show the error characteristics 4 

of the individual models, the bold line shows the ensemble average. The number in the lower 5 

right corner of each panel denotes multi-model average error slope.  6 

7 
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Figure 6. a: Effect of the error slope on the single model CCS. b: Effect of the error slope on 3 

the multi-model mean CCS. Black line: covariance term = 0 K; blue lines: covariance term = 4 

–0.02 K; pink lines: covariance term = +0.21 K. The lightest colors correspond to an error 5 

free CCS of 1 K, the darkest colors to a CCS of 4 K. 6 

7 
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Figure 7. Estimated errors in the multi-model mean CCS due to intensity-dependent model 3 

errors. The reference period is 1971 – 2000. The orange colors refer to CCSs in the mid-21
st
 4 

century (2021 – 2050), the blue colors to the end-21
st
 century (2070 – 2099). Light colors 5 

correspond to estimation of the error by QM, dark colors to LC. 6 

7 
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Figure 8. Estimated errors in the multi-model standard deviation of the temperature CCS due 3 

to intensity-dependent model errors. The reference period is 1971 – 2000. The orange colors 4 

refer to CCSs until the mid-21
st
 century (2021 – 2050), the blue colors until the end-21

st
 5 

century (2070 – 2099). Light colors correspond to estimation of the error by QM, dark colors 6 

to LC. 7 

 8 


