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Abstract. This study discusses the effect of empirical-

statistical bias correction methods like quantile mapping

(QM) on the temperature change signals of climate simula-

tions. We show that QM regionally alters the mean tempera-

ture climate change signal (CCS) derived from the ENSEM-

BLES multi-model data set by up to 15 %. Such modifica-

tion is currently strongly discussed and is often regarded as

deficiency of bias correction methods. However, an analyti-

cal analysis reveals that this modification corresponds to the

effect of intensity-dependent model errors on the CCS. Such

errors cause, if uncorrected, biases in the CCS. QM removes

these intensity-dependent errors and can therefore potentially

lead to an improved CCS. A similar analysis as for the multi-

model mean CCS has been conducted for the variance of

CCSs in the multi-model ensemble. It shows that this indica-

tor for model uncertainty is artificially inflated by intensity-

dependent model errors. Therefore, QM also has the poten-

tial to serve as an empirical constraint on model uncertainty

in climate projections. However, any improvement of sim-

ulated CCSs by empirical-statistical bias correction methods

can only be realized if the model error characteristics are suf-

ficiently time-invariant.

1 Introduction

Society is increasingly demanding reliable projections of fu-

ture climate change to analyze adaptation options and costs,

to explore climate change mitigation benefits, and to sup-

port political decisions. Such climate projections are usu-

ally generated with general circulation models (GCMs) of

rather coarse spatial resolution, which are refined by dy-

namical or statistical downscaling methods (e.g., Giorgi and

Mearns, 1991; Fowler et al., 2007). Currently, an increasing

number of climate change impact investigations rely on dy-

namical downscaling methods, i.e., the use of regional cli-

mate models (RCMs, e.g., Giorgi and Mearns, 1991, 1999;

Wang et al., 2004; Rummukainen, 2010). However, even the

newest generation of RCMs features considerable systematic

errors (e.g., Kotlarski et al., 2014), which complicates the di-

rect application of RCM results in climate change impact re-

search. RCM output is therefore usually post-processed with

empirical-statistical “bias correction” methods (e.g., Déqué,

2007; Themeßl et al., 2011) before it is used as input for

impact models, such as hydrological models. Bias correc-

tion methods have been demonstrated to successfully reduce

systematic model errors (i.e., the difference between histor-

ical model output and meteorological observations), but the

knowledge about how they influence the climate change sig-

nal (CCS; i.e., the long-term average difference between a

future and a past climate simulation) is very limited so far.

A relation between model errors and CCS has been dis-

cussed by Christensen et al. (2008), who found that monthly

temperature errors of RCMs over Europe often depend on

the observed monthly mean temperature and that in warmer

months, errors are often larger than in colder months (or

vice versa). Such “intensity-dependent” errors can be shown

to alter the temperature CCS (Christensen et al., 2008; The-

meßl et al., 2012; Boberg and Christensen, 2012).

Bias correction methods like quantile mapping (QM) mod-

ify the CCS. For example, Themeßl et al. (2012) and Dosio et

al. (2012) showed that QM modifies the CCS of RCMs in op-
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eration over Europe in some regions and seasons, and found

a lower summer temperature CCS in eastern Europe as well

as a higher winter temperature CCS in Scandinavia after bias

correction with QM. Currently, such modifications are often

regarded as an undesired deficiency of bias correction meth-

ods (e.g., Hempel et al., 2013). However, Maurer and Pierce

(2014) recently claimed that QM may have no negative effect

on the quality of the CCS and demonstrated that QM does

not deteriorate the multi-model mean precipitation CCS in a

GCM ensemble.

In this paper we go a step further and argue that, under

the assumption of time-invariant model error characteristics,

the modification of the CCS by QM can be interpreted as

improvement, rather than as deterioration, since it is capable

of mitigating intensity-dependent model errors. To support

this hypothesis, we develop a linearized analytical descrip-

tion of the effect of intensity-dependent model errors on the

CCS. This framework allows the impact of such errors to be

investigated, not only on the multi-model mean CCSs in an

ensemble of climate simulations, but also on the inter-model

variability, which is often used as a measure of uncertainty in

climate projections (e.g., Hawkins and Sutton, 2009, 2011;

Prein et al., 2011). Furthermore, we compare the analytical

correction of the CCS to the correction by QM.

In Sect. 2, the QM method is described and its effect

on the temperature CCS of the ENSEMBLES multi-model

data set is demonstrated. In Sect. 3, the error characteris-

tics of the ENSEMBLES models are analyzed, and in Sect. 4

we present an analytical formulation of intensity-dependent

model errors and their effects on the CCS. In Sect. 5 these

effects are compared to the effects of QM on CCSs, and in

Sect. 6 a summary is given and conclusions are drawn.

2 Quantile mapping and its effect on climate change

signals over Europe

2.1 Quantile mapping

The basic assumption of QM is that model errors depend on

the value of the simulated variable. This concept of intensity-

dependent errors is a rough simplification of actual model

error characteristics, since model errors are not only influ-

enced by the local value of the simulated variable. How-

ever, we will demonstrate that errors and local values cor-

relate well in many cases (Sect. 3). The concept is simple yet

powerful, since it separates, e.g., cold from hot regimes, or

drizzling from heavy precipitation regimes and therefore ac-

counts for potentially very different model errors under the

associated regimes. It should be emphasized that intensity-

dependent model errors are equivalent to a misrepresentation

of variability, i.e., to differences between the observed and

modeled width of the density distribution. Figure 1 demon-

strates that intensity-dependent error characteristics with a

positive slope correspond to overestimated variability, if the

model error is defined as the difference between the inverse

modeled and observed empirical cumulative density func-

tions (ECDF). Similarly, a negative error slope corresponds

to underestimation of variability.

QM is a distribution-based bias correction method (e.g.,

Panofsky and Brier, 1958; Wood et al., 2004) that maps a

modeled historical ECDF to an observed ECDF, with the

mapping function shown in Fig. 1c for an artificial example.

It is a well-established method to prepare climate model out-

put as input for hydrological models (e.g., Déqué, 2007; Ma-

raun et al., 2010; Themeßl et al., 2011) and has been success-

fully applied to the sum of daily precipitation and air tem-

perature of RCMs and GCMs by Dobler and Ahrens (2008),

Piani et al. (2010a, b), Dosio and Parulo (2011), Dosio et

al. (2012), Maurer and Pierce (2014) and others. Further-

more, Themeßl et al. (2011) showed for daily precipitation

sums that QM outperforms six other prominent bias correc-

tion techniques.

In our study, a non-parametric version of QM is used (The-

meßl et al., 2011, 2012; Wilcke et al., 2013), as suggested

by Gudmundsson et al. (2012). The ECDFs are constructed

from 930 values for each day of the year based on modeled

and observed data of a 30-year reference period (1961–1990)

and a 31-day moving window, centered on the day under con-

sideration. Our implementation of QM is not restricted to

the range of observed values in the reference period, since

the correction is extrapolated beyond the calibration range

by using the correction term of the highest and lowest quan-

tile, respectively. Please note, that this implies constant (not

intensity-dependent) error characteristics outside the calibra-

tion range. As discussed by Bellprat et al. (2013), such con-

stant errors at high temperatures outside the calibration range

may be more realistic in many cases than a linear extrapola-

tion.

Some restrictions apply to the application of QM on cli-

mate scenarios: as pointed out by Eden et al. (2012), internal

variability causes differences between a GCM simulation and

observations, which cannot be separated from actual model

errors, if QM is applied to GCM-driven RCMs, as in our

case (see Sect. 2.2). By using rather long calibration periods

(30 years) and by focusing on temperature, which is less af-

fected by natural variability than, e.g., precipitation, we try to

minimize this effect. In addition, our multi-model approach

further reduces dependence on natural variability. However,

in the interpretation of the results, some noise due to nat-

ural variability has to be taken into account. Similar to all

empirical-statistical downscaling and bias correction meth-

ods, the application of QM on future climate simulations

is based on the assumption of time-invariant model error

characteristics. This stationarity assumption can obviously

not be directly assessed for future periods and it can be ex-

pected to be violated to some degree. However, several stud-

ies demonstrate the skill of empirical-statistical bias correc-

tion methods, either for past periods independent of the cal-

ibration period under ongoing climate change (e.g., Piani et
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Figure 1. Intensity-dependent model errors of a model that overestimates daily temperature variability (artificial data). (a) Modeled (red,

standard deviation of 5 ◦C) and observed (green, standard deviation of 4 ◦C) empirical density functions; (b) modeled (red) and observed

(green) ECDFs; (c) model error at different modeled values.

al., 2010a; Themeßl et al., 2012; Gudmundsson et al., 2012;

Wilcke et al., 2013), or for future periods using a pseudo-

reality approach (Maraun, 2012). Furthermore, Teutschbein

and Seibert (2013) show that correction methods like QM

perform better under non-stationary conditions than widely

used linear transformations or the delta-change approaches.

This gives confidence that empirical-statistical bias correc-

tion with QM is useful not only for historical simulations,

but also, though with degraded performance, for future cli-

mate simulations. However, in a strict interpretation, the re-

sults and conclusions of this study are only valid under the

assumption of time-invariant model errors and it is still sub-

ject to further investigation to determine the severity of this

restriction. Although such investigation is outside the scope

of our study, we want to mention that the new centennial re-

analyses of ECMWF (ERA-20C) and NOAA-CIRES (V2c)

offer a promising new test bed for the investigation of the

long-term stability of model error characteristics.

2.2 Model and observational data

We apply QM to a set of 15 GCM-driven regional climate

simulations for Europe from the ENSEMBLES multi-model

data set (van der Linden and Mitchell, 2009). The ENSEM-

BLES models are operated on a 25 km grid and reach until

2100. In the following, we show the results for daily mean

temperature, but the analysis of daily minimum and maxi-

mum temperatures gives very similar results. The application

of our analysis to other parameters like, e.g., precipitation

is basically straight forward, but the linearization applied in

Sect. 4 can be expected to be less appropriate for precipita-

tion than for temperature. Further investigation is needed to

fully reveal the effect of QM on the precipitation CCS. The

major motivation for focusing on temperature here is its rel-

atively simple error characteristic and its significant climate

trend, which facilitates the demonstration of the effect of QM

on the CCS.

As observational reference, the ENSEMBLES gridded ob-

servational data set (E-OBS, Haylock et al., 2008) is used.

It is a European land-only daily high-resolution (25 km grid

spacing) data set for five meteorological parameters, includ-

ing daily mean temperature.

2.3 The effect of QM on the CCS in ENSEMBLES

Subsequently, we show the effect of QM on the multi-model

mean CCS and on the standard deviation of CCSs for the pe-

riods 2021–2050 and 2070–2099, both compared with the

reference period 1971–2000. In Fig. 2 the spatial patterns

of the difference between the uncorrected and the corrected

multi-model mean temperature CCS is shown for different

seasons in the middle (left) and end (right) of the 21st cen-

tury. In the end of the century, differences exceed +0.5 K in

summer (JJA) in larger parts of southeastern Europe, France,

and the Iberian Peninsula and −0.5 K in larger regions in

Scandinavia, which roughly corresponds to 15 % of the un-

corrected CCS. These results are consistent with the analyses

of Boberg and Christensen (2012) and Dosio et al. (2012)

and indicate that summer warming in southeastern Europe is

projected to be less severe, and warming in Scandinavia is

projected to be more severe, after bias correction with QM.

However, the differences remain in the order of 10 % of the

uncorrected CCS and the basic pattern of temperature change

is not strongly altered by QM.

Figure 3 shows the spatial pattern of the difference be-

tween the uncorrected and the corrected standard deviation

of CCSs as a measure of model uncertainty. In most regions,

model uncertainty is larger in the uncorrected model ensem-

ble (orange colors), particularly in regions where the CCS is

overestimated (see Fig. 2). The overestimation locally peaks

at 0.5 K. However, in some regions (e.g., Scandinavia) and

periods (e.g., late 21st century winter) model uncertainty is

smaller in the uncorrected model ensemble, locally peaking

at about −0.4 K.

After having demonstrated and quantified the effects of

QM on the CCS and the model uncertainty in the ENSEM-

BLES multi-model ensemble, the rest of this paper is devoted

to the explanation of these effects.
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Figure 2. Differences between uncorrected and corrected (QM) multi-model mean temperature CCS. The reference period is 1971–2000.

The left panels refer to CCSs in the mid-21st century (2021–2050), the right panels to the end of the 21st century (2070–2099). Blue colors

indicate areas where the uncorrected model is colder than the corrected model; red colors vice versa.

Figure 3. Differences between uncorrected and corrected (QM) multi-model standard deviation. The reference period is 1971–2000. The left

panels refer to CCSs in the mid-21st century (2021–2050), the right panels to the end of the 21st century (2070–2099). Blue colors indicate

areas where the uncorrected ensemble features a smaller standard deviation; orange colors vice versa.

3 Intensity-dependent model errors in the

ENSEMBLES multi-model data set

Since intensity-dependent model errors are the main suspects

which cause the demonstrated effect of QM on the CCS, we

investigate whether such errors exist in the ENSEMBLES

RCMs. Due to their contrasting error characteristics, two

of the RCMs are discussed in more detail: the HadRM3Q3

(driven by the HadCM3Q3 global climate model) operated

by the Hadley Centre (HC), and the RCA (driven by run 3 of

the ECHAM5 global climate model) operated by the Swedish

Meteorological Service (SMHI). Since model error charac-

teristics are known to be regionally very variable, Europe is

separated into eight subregions following Rockel and Woth

(2007), which are marked in Figs. 2 and 3: the British Islands

(BI), France (FR), central Europe (ME), Scandinavia (SC),

Iberian Peninsula (IP), Mediterranean (MD), Alps (AL) and

eastern Europe (EA).

The following characterization of model errors is based

on daily mean temperature ECDFs, which are averaged over

each month and subregion. For each model, only the range

between the 10th and 90th percentiles is used in order to

avoid the noisy tails of empirical distributions. The ECDFs

of the grid points in each subregion are sampled over this

range on a daily basis and the daily model error character-

istics are derived for each grid point by subtracting the in-

verse observed from the inverse modeled ECDF (see Fig. 1).

Further, the grid point error characteristics are averaged over
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Figure 4. Temperature error characteristics (model minus observation) of the HC (left panels) and SMHI (right panels) RCMs in eight

subregions of Europe (sub-panels) and each month of the year.

each subregion and each month of the year. Figure 4 exem-

plarily shows the daily temperature error characteristics of

the HC and SMHI models.

Both models are affected by strongly intensity-dependent

errors, but the error characteristics of the two models dif-

fer substantially. While the HC model features positive error

slopes (up to 0.5) in most seasons and regions, the SMHI

model has mainly negative slopes (up to −0.7). Both models

are rather extreme examples within the ENSEMBLES multi-

model data set and most other models feature smaller slopes

of about +/−0.1 (Figs. S1 to S8 in the Supplement).

In order to analyze whether such single-model error slopes

cancel out in the multi-model ensemble, the ensemble aver-

age error characteristics (bold lines) in SC and EA are shown

in Fig. 5 together with those of all 15 individual models (light

lines). In SC, a considerable negative multi-model average

slope exists in most parts of the year (minimum in July). Con-

trarily, positive slopes can be found in EA in summer (max-

imum in July). Several other regions, like AL, feature only

minor multi-model average slopes, but in turn larger slope

variability (see Figs. S9 to S12).

4 Analytical description of the effect of

intensity-dependent model errors on the CCS

Having shown and quantified the intensity-dependence of

model errors in the ENSEMBLES multi-model data set, we

subsequently give a simplified analytical description to high-

light the mechanism of how such errors act on the CCS in a

multi-model ensemble.

4.1 CCS of a single climate simulation

Let yi
j be the value of a meteorological variable (e.g., tem-

perature, precipitation sum, or any other simulated variable)

on day j simulated by model i. yi is the 30-year average for

a specific time of the year, e.g., for a month or a season. It

can be expressed as a combination of the observed average

value x and the deviation of the model from this value due to

errors (yi
e) and due to natural and model internal variability

(yi
v): yi

= x+ yi
e+ yi

v. The CCS 1yi (1yi
= yi

future− yi
past)

can then be written as

1yi
=1x+1yi

e+1yi
v. (1)

1x denotes the deterministic part of the error-free CCS, 1yi
e

the effect of model errors, and 1yi
v the random effect of in-

ternal variability. In many studies, the model error term is ne-

glected (“delta-change approach”), since errors are expected

to be time-invariant and to cancel out in the CCS. We demon-

strate that this is not the case, even for time-invariant error

characteristics, if they are intensity-dependent and the CCS

is non-zero. The daily intensity-dependent errors can be writ-

ten as a function of the meteorological variable under consid-

eration: yi
e,j = f (yi

j ). For the sake of simplicity, we assume

a linear error function with a constant bias bi , error slope si ,

and residual εi
j :

yi
e,j = bi

+ siyi
j + εi

j . (2)

This linear error function is a good approximation of the er-

ror characteristics of the ENSEMBLES multi-model data set

in most cases, since the median coefficient of determination

of the linear regression to the error characteristics shown in

Sect. 3 is high (R2
= 0.91). However, it is not always suit-

able as, e.g., in the case of the HC model in SC in winter and

the SMHI model in IP in summer (Fig. 4).

www.hydrol-earth-syst-sci.net/19/4055/2015/ Hydrol. Earth Syst. Sci., 19, 4055–4066, 2015
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Figure 5. Temperature error characteristics (modeled minus observed) of the ENSEMBLES models in SC (left panels) and EA (right panels).

The light lines show the error characteristics of the individual models, the bold line shows the ensemble average. The number in the lower

right corner of each panel denotes multi-model average error slope.

Averaging over 30 years, taking the difference between a

future and a past period, and neglecting the residual, yields

the linearized effect of the intensity-dependent model error

on the CCS:

1yi
e = si1yi . (3)

The bias cancels out, since it is assumed to be time-invariant

and not intensity-dependent. From Eqs. (1) and (3) the simu-

lated CCS can be written as

1yi
=

1x+1yi
v

1− si
. (4)

Equation (4) shows that intensity-dependent model errors

lead to a modeled CCS that is proportional to the error-free

CCS (1x+1yi
v) and a factor determined by the error slope

(1/(1− si)). Figure 6a illustrates this effect in relative terms:

positive error slopes lead to an exaggeration of the error-free

CCS and negative slopes dampen it, but to a smaller extent.

For example, for slopes of 0.1 and −0.1 the error would

amount to about 11 and −9 %, respectively. The depicted

range of error slopes from −0.7 to 0.5 has been selected ac-

cording to temperature error slopes found in the ENSEM-

BLES multi-model data set (see Sect. 5).

4.2 Multi-model mean CCS

For a multi-model ensemble, the ensemble mean CCS and

the multi-model variance of the CCS is relevant. To derive the

effect of intensity-dependent errors on these quantities, the

error slope can be written as the sum of the ensemble mean

error slope (s) and a model-specific residuum error slope

(s′
i
). Combining this separation with the expanded form of

Figure 6. (a) Effect of the error slope on the single-model CCS.

(b) Effect of the error slope on the multi-model mean CCS. Black

line: covariance term of 0 K; blue lines: covariance term of−0.02 K;

pink lines: covariance term of +0.21 K. The lightest colors corre-

spond to an error-free CCS of 1 K, the darkest colors to a CCS of

4 K.

Eq. (4) yields

1yi
=1x+

(
s+ s′

i
)
1yi
+1yi

v. (5)

Accordingly, the multi-model mean CCS is

1yi =1x+ s1yi + cov
(
s′

i
,1yi

)
. (6)

In Eq. (6) we could disregard the internal variability 1yi
v

since it has the expectation zero (assuming a large number of

models n). In addition, the expectation of the product s′
i
1yi

equals the covariance of both terms, since the expectation of

s′
i

is zero under the assumption of normally distributed error

slopes. However, it is not independent from 1yi as the error

slope influences the CCS according to Eq. (4). In a similar

Hydrol. Earth Syst. Sci., 19, 4055–4066, 2015 www.hydrol-earth-syst-sci.net/19/4055/2015/
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form as Eq. (4), Eq. (6) reads

1yi =
1x+ cov(s′

i
,1yi)

1− s
. (7)

Equation (7) shows that intensity-dependent errors influence

the multi-model mean CCS via two terms: firstly, the error

slope term, which scales with the error-free CCS (1x) just

like in the single-model case, and secondly the covariance

term, which adds an offset. Figure 6b visualizes the corre-

sponding error in the CCS in relative terms: positive multi-

model mean error slopes lead to an exaggeration of the CCS,

and negative slopes dampen it, just like in the single-model

case (black line). The depicted range of multi-model error

slopes from −0.16 to +0.13 has been selected according to

the multi-model mean temperature error slopes of the EN-

SEMBLES multi-model data set (see Sect. 5). Positive and

negative covariance terms create positive and negative off-

sets, respectively. Following Eq. (3), it can be expected that

single-model error slopes and CCSs are generally positively

correlated and that the covariance term is consequently pos-

itive. The depicted range of covariance terms corresponds to

values found in the analysis of temperature errors of the EN-

SEMBLES multi-model data set, ranging from −0.02 (blue

colors) to+0.21 (pink colors) (Sect. 5), and confirms this ex-

pectation. The absolute effect of the covariance term (Eq. 7)

is independent from the error-free CCS and thus gets smaller

with higher CCS in relative terms, which is indicated by

lighter (small CCS) and darker colors (large CCS).

4.3 Variance of CCSs in a multi-model ensemble

The effect of intensity-dependent errors on the second im-

portant quantity in a multi-model ensemble, the variance of

CCSs (which is often interpreted as a measure of uncer-

tainty), can be described with the linearized model as well.

Using Eqs. (5) and (6), the variance can be expressed as

var(1yi)=
1

n

n∑
i=1

[
1yi
−1yi

]2

=
1

n

n∑
i=1

[
s
(
1yi
−1yi

)
+ s′

i
1yi
+1yi

v− cov
(
s′

i
,1yi

)]2

. (8)

Expanding and simplifying Eq. (8) gives (see the Supplement

for a detailed derivation)

var(1yi)= var(1yi
v)+ s2var(1yi)+ var(s′

i
1yi)

+ 2scov(1yi, s′
i
1yi). (9)

Since var(1yi
v) is the effect of natural variability, it can be

interpreted as the variance of an error-free model ensemble.

Compared to that, the variance of a model ensemble with

intensity-dependent errors is always exaggerated by a posi-

tive offset s2var(1yi). For example, an ensemble mean error

slope of ±0.1 results in about 1 % bias in variance. In addi-

tion, the positive additive term var(s′
i
1yi), which represents

the variability of the individual model’s error slopes multi-

plied by the CCSs, further increases the positive bias. The

last term 2scov(1yi, s′
i
1yi) is positive for positive slopes

and negative for negative slopes, assuming a positive corre-

lation of the simulated CCS and the residual error slope. It

is difficult to estimate the relative importance of the differ-

ent terms and in particular to judge if the possibly negative

covariance term can counterbalance the otherwise positive

terms, so all terms of Eq. (9) are quantified and analyzed for

the ENSEMBLES multi-model ensemble in Sect. 5.

4.4 Linearized correction

The linearized error characterization leads to a simple way

to correct the CCS of single models following Eq. (3), the

multi-model mean CCS following Eq. (6), and the multi-

model variance of CCS following Eq. (9). Error slopes, cli-

mate change signals, their variability, and their covariance

are calculated based on the comparison of historical sim-

ulations with observations and applied to results of future

simulations. Such correction assumes not only a linear error-

slope, but also time-invariant error characteristics. The lin-

early corrected multi-model mean temperature CCS is listed

in Table 1 (1xLC) and the variance of the CCSs in Table 2

(var(1x)LC). They are discussed in the following section.

5 Correction of the CCS and its uncertainty

In Table 1 the terms contributing to errors in the multi-model

mean CCS (see Eq. 6) are listed for all subregions and sea-

sons. Multi-model mean error slopes (s) are mostly nega-

tive in DJF and MAM, mostly positive in JJA and SON,

and range from −0.16 in SC in MAM to 0.13 in EA in

JJA. Accordingly, they inflate (positive slopes) or dampen

(negative slopes) the CCS, depending on season and subre-

gion. The errors stemming from the slope term (s 1y) range

from −0.25 to 0.20 K in the mid-century and from −0.57

to 0.45 K at the end of the century. Contrary, the covariance

term (cov(s′
i
,1yi)) is, with very few exceptions, positive

and increases the CCS. It amounts 0.04 K on average, ranges

from −0.02 to 0.21 K in both periods, but usually does not

exceed 0.10 K. Compared to the slope term, the covariance

term is smaller in most cases, but cannot be neglected, as it

sometimes equals or even exceeds the slope term. Table 1

also lists the uncorrected (1y) and corrected multi-model

mean CCS (linearized correction (LC): 1xLC; quantile map-

ping: 1xQM) for each season and subregion. The difference

between uncorrected and corrected CCS averaged over all

seasons and regions is small (0.01 K), but can reach up to

about 0.5 K (about 15 % of the uncorrected CCS) in specific

regions and seasons. Figure 7 displays this estimated error

in the multi-model mean temperature CCS. With few excep-

tions, both correction methods feature the similar sign of cor-

rection and agree reasonably well in their magnitude. Major

www.hydrol-earth-syst-sci.net/19/4055/2015/ Hydrol. Earth Syst. Sci., 19, 4055–4066, 2015
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Table 1. Multi-model mean temperature error slopes (s), multi-model mean CCSs (1yi ), covariance error terms (cov(s′
i
,1yi)), linearly

corrected CCSs (1xLC), and non-linearly corrected CCSs (1xQM) for the periods 2021–2050 (left) and 2070–2099 (right) (K).

Region Season s Mid-century (2021–2050) End of the century (2070–2099)

1yi s1yi cov(s′
i
,1yi) 1xLC 1xQM 1yi s1yi cov(s′

i
,1yi) 1xLC 1xQM

BI

DJF 0.07 1.05 0.06 0.03 0.96 0.97 2.18 0.14 −0.01 2.05 2.05

MAM −0.16 0.94 −0.16 0.03 1.06 0.99 2.08 −0.35 0.04 2.40 2.23

JJA −0.15 0.94 −0.15 0.06 1.03 1.02 2.31 −0.37 0.09 2.59 2.48

SON 0.02 1.10 0.02 0.02 1.06 1.11 2.47 0.04 0.02 2.41 2.50

FR

DJF −0.03 1.31 −0.04 0.03 1.33 1.33 2.54 −0.09 −0.02 2.65 2.65

MAM −0.07 1.03 −0.07 0.04 1.07 1.09 2.40 −0.16 0.05 2.52 2.53

JJA 0.08 1.37 0.10 0.13 1.15 1.22 3.68 0.28 0.21 3.19 3.37

SON 0.00 1.22 0.00 0.01 1.21 1.15 3.08 −0.01 0.02 3.07 2.96

ME

DJF −0.03 1.49 −0.04 0.03 1.50 1.50 3.01 −0.09 −0.01 3.11 3.14

MAM −0.06 1.01 −0.06 0.01 1.06 1.04 2.35 −0.13 0.01 2.47 2.42

JJA 0.05 1.14 0.05 0.07 1.01 1.08 3.00 0.13 0.10 2.77 2.85

SON 0.02 1.23 0.02 0.01 1.20 1.16 3.01 0.05 0.01 2.95 2.82

SC

DJF −0.06 1.84 −0.12 0.06 1.90 1.99 4.37 −0.30 0.02 4.64 4.80

MAM −0.16 1.57 −0.27 0.07 1.77 1.62 3.59 −0.64 0.05 4.17 3.85

JJA −0.14 1.25 −0.20 0.01 1.44 1.46 2.68 −0.42 0.01 3.09 3.11

SON −0.10 1.66 −0.17 0.02 1.81 1.76 3.56 −0.38 0.02 3.91 3.81

IP

DJF −0.04 1.24 −0.04 0.01 1.27 1.21 2.33 −0.08 0.00 2.41 2.34

MAM −0.04 1.22 −0.05 0.05 1.22 1.25 3.11 −0.12 0.07 3.16 3.22

JJA 0.04 1.66 0.06 0.05 1.55 1.58 4.44 0.17 0.06 4.21 4.32

SON 0.00 1.45 0.01 0.02 1.42 1.41 3.51 0.01 0.04 3.45 3.48

MD

DJF −0.08 1.36 −0.11 0.02 1.45 1.38 2.78 −0.24 0.02 3.00 2.96

MAM −0.05 1.27 −0.07 0.05 1.29 1.33 3.04 −0.17 0.08 3.14 3.20

JJA 0.00 1.85 0.00 0.05 1.80 1.87 4.35 0.01 0.09 4.26 4.47

SON −0.04 1.44 −0.06 0.03 1.47 1.38 3.41 −0.14 0.05 3.50 3.40

AL

DJF −0.02 1.54 −0.03 0.03 1.55 1.40 3.15 −0.07 −0.01 3.22 2.95

MAM −0.06 1.29 −0.09 0.03 1.35 1.37 3.00 −0.21 0.04 3.17 3.24

JJA 0.02 1.58 0.03 0.06 1.48 1.57 4.10 0.09 0.10 3.91 4.08

SON 0.05 1.35 0.06 0.01 1.28 1.24 3.37 0.15 0.02 3.20 3.16

EA

DJF −0.04 1.70 −0.06 0.03 1.73 1.67 3.39 −0.12 0.00 3.52 3.44

MAM −0.01 1.19 −0.01 0.02 1.18 1.18 2.79 −0.02 0.03 2.78 2.80

JJA 0.13 1.54 0.17 0.08 1.29 1.34 3.52 0.40 0.12 3.00 3.07

SON 0.03 1.41 0.04 0.01 1.36 1.29 3.23 0.09 0.02 3.12 2.97

Mean −0.03 1.35 −0.04 0.04 1.35 1.34 3.12 −0.08 0.04 3.16 3.15

differences are found in the later period, when QM often indi-

cates smaller errors than LC. This can be probably explained

by the fact that LC extrapolates intensity-dependent errors,

while our implementation of QM keeps the error constant

outside the calibration range (see Sect. 2.1). This dampens

the error slope under severe warming (i.e., at the end of the

21st century) when daily temperatures outside the calibra-

tion range frequently occur. Further discrepancies between

QM and LC can be explained by the linear approximation of

LC. Both correction methods agree that the uncorrected CCS

is regionally biased up to +0.5 K in EA and FR in summer

and about −0.5 K in SC. The qualitative agreement of QM

with LC can be interpreted as a confirmation that the correc-

tion of intensity-dependent errors is the main reason of the

modification of the CCS by QM.

In Table 2, the terms contributing to errors in the esti-

mated variance of a multi-model ensemble (Eq. 9) are listed:

two positive offset terms, s2var(1yi) and var(s′
i
1yi), and

the term 2scov(1yi, s′
i
1yi), which generally has the same

sign as the error slope due to the positive correlation be-

tween single-model CCS and error slope. While s2var(1yi)

is very small in both periods (smaller than 0.01 K2 in most

cases), var(s′
i
1yi) amounts to 0.041 K2 on average (range:

0.006–0.128 K2) in the earlier period and to 0.223 K2 on

average (range: 0.026–0.697 K2) in the later period. Given

a modeled average variance of 0.342 K2 in the earlier and

1.028 K2 in the later period, this means that this term leads

to an overestimation of variance by 12 and 22 % on aver-

age, respectively. In specific regions and seasons, the overes-

timation can amount to 50 % and more (e.g., SC in the later

Hydrol. Earth Syst. Sci., 19, 4055–4066, 2015 www.hydrol-earth-syst-sci.net/19/4055/2015/
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Figure 7. Estimated errors in the multi-model mean CCS due to

intensity-dependent model errors. The reference period is 1971–

2000. The orange colors refer to CCSs in the mid-21st century

(2021–2050), the blue colors to the end of the 21st century (2070–

2099). Light colors correspond to the estimation of the error by QM,

dark colors to LC.

period). The average covariance term 2scov(1yi, s′
i
1yi)is

very small in both periods (−0.002 and +0.002 K2, respec-

tively) and ranges from −0.028 to 0.136 K2. In summary,

the positive variability term, var(s′
i
1yi), dominates and is

mostly even enhanced by the covariance term. This leads to

a general overestimation of ensemble variance.

Table 2 also lists the uncorrected (var(1yi)) and corrected

variance of the CCSs in the multi-model ensemble (LC:

var(1xLC); QM: var(1xQM)) for each season and subregion.

The average difference between uncorrected and corrected

variance over all seasons and regions does not cancel out as

in the case of the mean CCS, but amounts on average to 17 %

in the case of LC and to 12 % in the case of QM. This demon-

strates that time-invariant intensity-dependent errors inflate

model uncertainty in multi-model ensembles. In Fig. 8 this

error is expressed as standard deviation, which is overesti-

mated by up to 0.4 K at the end of the century. This is par-

ticularly the case in regions where the mean CCS is overes-

timated like in EA in summer. However, the two correction

methods disagree in some cases as, e.g., in SC in winter at the

end of the century. These discrepancies are currently not fully

understood and require further analysis. They could, e.g., be

caused by the linearity assumption of LC, by the constant

(not intensity-dependent) correction outside the calibration

range of QM, or by time-variant model errors.

6 Summary and conclusions

The knowledge about the influence of empirical-statistical

bias correction methods like QM on the CCS of climate sim-

ulations is very limited so far. For the ENSEMBLES multi-

model data set it has been demonstrated that QM damp-

ens projected summer warming in southeastern Europe and

France by about 0.5 K and enhances projected warming in

Figure 8. Estimated errors in the multi-model standard deviation of

the temperature CCS due to intensity-dependent model errors. The

reference period is 1971–2000. The orange colors refer to CCSs

until the mid-21st century (2021–2050), the blue colors until the

end of the 21st century (2070–2099). Light colors correspond to the

estimation of the error by QM, dark colors to LC.

Scandinavia by about the same amount. This corresponds to

about 15 % of the uncorrected CCS. Such modification is cur-

rently strongly discussed and is often regarded as deficiency

of bias correction methods. However, we argue that under the

assumption of time-invariant model errors, QM should gen-

erally lead to an improvement of the simulated CCS rather

than deterioration.

To support this hypothesis, we analytically formulated the

effect of intensity-dependent model errors on the CCS and

showed that they erroneously modify the CCS. Positive er-

ror slopes lead to an exaggeration of the CCS and negative

slopes dampen it. This is the case for a single model’s CCS

as well as for the multi-model mean CCS in a model en-

semble, which is additionally exaggerated by high variabil-

ity amongst the single model’s CCSs. A comparison of this

analytically determined error and the effect of QM on the

mean CCS in the ENSEMBLES multi-model data set leads

to largely similar results. This confirms that the effect of QM

on the CCS is mainly caused by the correction of intensity-

dependent errors and that such modification can be regarded

as improvement, if roughly time-invariant model error char-

acteristics can be assumed.

With regard to the variance of the CCSs in a multi-model

ensemble, the analytical description reveals that intensity-

dependent model errors lead to an overestimation of vari-

ance. Since variability of CCSs in a multi-model ensemble

is often used as an indicator for model uncertainty, intensity-

dependent model errors can be regarded to be responsible for

parts of the model uncertainty in the CCS. This further im-

plies that the correction of intensity-dependent errors by QM

should lead to a smaller variance and therefore constitute an

empirical constraint on climate model uncertainty. However,

we could only partly demonstrate this very desirable effect by

the application of QM on the ENSEMBLES data set. In most

regions and seasons, the analytical correction as well as QM

Hydrol. Earth Syst. Sci., 19, 4055–4066, 2015 www.hydrol-earth-syst-sci.net/19/4055/2015/
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reduce the variance as expected, but particularly in the win-

ter season of longer-term simulations, QM often increases it,

which could not be fully explained so far and needs further

investigation.

Generally, our results indicate that empirical-statistical

bias correction methods that correct for intensity-dependence

in model errors can lead to improved estimates of future cli-

mate change. The improvements primarily refer to the mean

CCS, but also an empirical constraint on uncertainty in multi-

model climate projections seems to be feasible. A restriction

to these results is the fact that any potential improvement can

only be realized if the assumption of time-invariant model er-

ror characteristics sufficiently holds. It is still subject to fur-

ther investigation to determine the severity of this restriction.

The Supplement related to this article is available online

at doi:10.5194/hess-19-4055-2015-supplement.
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