Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2701-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-2701-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Dye tracing to determine flow properties of hydrocarbon-polluted Rabots glaciär, Kebnekaise, Sweden
C. C. Clason
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
C. Coch
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
J. Jarsjö
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
K. Brugger
Geology Discipline, University of Minnesota-Morris, Morris, MN 56267, USA
P. Jansson
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
G. Rosqvist
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
Related authors
Sally Rangecroft, Caroline Clason, Rosa Maria Dextre, Isabel Richter, Claire Kelly, Cecilia Turin, Claudia V. Grados-Bueno, Beatriz Fuentealba, Mirtha Camacho Hernandez, Sergio Morera Julca, John Martin, and John Adam Guy
Geosci. Commun., 7, 145–150, https://doi.org/10.5194/gc-7-145-2024, https://doi.org/10.5194/gc-7-145-2024, 2024
Short summary
Short summary
The Nuestro Rio project (2021–22) developed a digital app to collect local perspectives on water quality in the Santa River basin, Peru. Here we share four key lessons from the project, discussing the importance and challenges of engaging local participants, the use of technology for data collection, and the need to integrate local perspectives with scientific observations. This article provides insights for researchers considering developing similar technological tools for environmental issues.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, https://doi.org/10.5194/tc-9-123-2015, 2015
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-324, https://doi.org/10.5194/hess-2024-324, 2024
Preprint under review for HESS
Short summary
Short summary
The hydrology of cold regions in the human population is poorly understood due to complex motion and limited data, hindering streamflow analysis. Using existing models, we compared runoff from an extended model with snowmelt and frozen ground, validating its reliability and integration. This study focuses on the effects of snowmelt and frozen ground on runoff, affecting precipitation type, surface-groundwater partitioning, and evapotranspiration.
Sally Rangecroft, Caroline Clason, Rosa Maria Dextre, Isabel Richter, Claire Kelly, Cecilia Turin, Claudia V. Grados-Bueno, Beatriz Fuentealba, Mirtha Camacho Hernandez, Sergio Morera Julca, John Martin, and John Adam Guy
Geosci. Commun., 7, 145–150, https://doi.org/10.5194/gc-7-145-2024, https://doi.org/10.5194/gc-7-145-2024, 2024
Short summary
Short summary
The Nuestro Rio project (2021–22) developed a digital app to collect local perspectives on water quality in the Santa River basin, Peru. Here we share four key lessons from the project, discussing the importance and challenges of engaging local participants, the use of technology for data collection, and the need to integrate local perspectives with scientific observations. This article provides insights for researchers considering developing similar technological tools for environmental issues.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.
Karin Ebert, Karin Ekstedt, and Jerker Jarsjö
Nat. Hazards Earth Syst. Sci., 16, 1571–1582, https://doi.org/10.5194/nhess-16-1571-2016, https://doi.org/10.5194/nhess-16-1571-2016, 2016
Short summary
Short summary
Future sea level rise is inevitable. We investigate the effects of 2 m sea level rise on the island of Gotland, Sweden. In a multi-criteria analysis we analyze the quantity of infrastructure that will be inundated, and the effect of saltwater intrusion in wells. Almost 100 km2 (3 %) of Gotland's land area will be inundated. Important touristic and nature values will be strongest affected. Well salinization will greatly increase. Administrative planning is needed to prepare for changes.
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, https://doi.org/10.5194/tc-9-123-2015, 2015
K. Lindbäck, R. Pettersson, S. H. Doyle, C. Helanow, P. Jansson, S. S. Kristensen, L. Stenseng, R. Forsberg, and A. L. Hubbard
Earth Syst. Sci. Data, 6, 331–338, https://doi.org/10.5194/essd-6-331-2014, https://doi.org/10.5194/essd-6-331-2014, 2014
J. Thorslund, J. Jarsjö, T. Wällstedt, C. M. Mörth, M. Y. Lychagin, and S. R. Chalov
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-9715-2014, https://doi.org/10.5194/hessd-11-9715-2014, 2014
Preprint withdrawn
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Instruments and observation techniques
How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada
Climatology of snow depth and water equivalent measurements in the Italian Alps (1967–2020)
Contribution of rock glacier discharge to late summer and fall streamflow in the Uinta Mountains, Utah, USA
Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events
Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia
Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions
The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment
Soil erosion by snow gliding – a first quantification attempt in a subalpine area in Switzerland
Spatial distribution of stable water isotopes in alpine snow cover
From observation to the quantification of snow processes with a time-lapse camera network
Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy)
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024, https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Short summary
Observations and simulations from an exceptionally low-snow and warm winter, which may become the new norm in the boreal forest of eastern Canada, show an earlier and slower snowmelt, reduced soil temperature, stronger vertical temperature gradients in the snowpack, and a significantly lower spring streamflow. The magnitude of these effects is either amplified or reduced with regard to the complex structure of the canopy.
Roberto Ranzi, Paolo Colosio, and Giorgio Galeati
Hydrol. Earth Syst. Sci., 28, 2555–2578, https://doi.org/10.5194/hess-28-2555-2024, https://doi.org/10.5194/hess-28-2555-2024, 2024
Short summary
Short summary
We studied temporal trends and variability of snow depth and snow water equivalent (SWE) in six regions of the Italian Alps. We applied different statistical analyses to a dataset of homogeneous and continuous measurements of snow depth and SWE, temporally spanning from 1967 to 2020, and discussed the results with meteo-climatic data. Our results quantify the decrease of SWE in the study area, confirming the impacts of climate modifications on the cryosphere in the Alps.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Andrea Rücker, Stefan Boss, James W. Kirchner, and Jana von Freyberg
Hydrol. Earth Syst. Sci., 23, 2983–3005, https://doi.org/10.5194/hess-23-2983-2019, https://doi.org/10.5194/hess-23-2983-2019, 2019
Short summary
Short summary
To better understand how rain-on-snow (ROS) events affect snowpack outflow volumes and streamflow generation, we measured snowpack outflow volumes and isotopic composition during 10 ROS events with automated snowmelt lysimeters at three locations in a pre-Alpine catchment. We quantified the spatio-temporal variability of snowpack outflow and its relative contribution to streamflow, and identified rainfall characteristics and initial snow depth as major controls on snow hydrological processes.
Enrique Morán-Tejeda, Jorge Luis Ceballos, Katherine Peña, Jorge Lorenzo-Lacruz, and Juan Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 5445–5461, https://doi.org/10.5194/hess-22-5445-2018, https://doi.org/10.5194/hess-22-5445-2018, 2018
Short summary
Short summary
We studied the recent evolution of a small glacier in the Colombian Andes that is close to extinction, focusing on the water release from the glacier. For this we used hydro-climatological data collected at the the glacier surroundings at an hourly resolution. Our results indicate that water from glacier melt increased as a consequence of accelerated glacier retreat, but up to a certain point (mid-2016) it started to decrease, with glacier melt becoming decreasingly important.
Roman Juras, Sebastian Würzer, Jirka Pavlásek, Tomáš Vitvar, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, https://doi.org/10.5194/hess-21-4973-2017, 2017
Short summary
Short summary
This research investigates the rainwater dynamics in the snowpack under artificial rain-on-snow events. Deuterium-enriched water was sprayed on the isolated snowpack and rainwater was further identified in the runoff. We found that runoff from cold snowpack was created faster than from the ripe snowpack. Runoff from the cold snowpack also contained more rainwater compared to the ripe snowpack. These results are valuable for further snowpack runoff forecasting.
Jan Schmieder, Florian Hanzer, Thomas Marke, Jakob Garvelmann, Michael Warscher, Harald Kunstmann, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 20, 5015–5033, https://doi.org/10.5194/hess-20-5015-2016, https://doi.org/10.5194/hess-20-5015-2016, 2016
Short summary
Short summary
We present novel research on the spatiotemporal variability of snowmelt isotopic content in a high-elevation catchment with complex terrain
to improve the isotope-based hydrograph separation method. A modelling approach was used to weight the plot-scale snowmelt isotopic content
with melt rates for the north- and south-facing slope. The investigations showed that it is important to sample at least north- and south-facing slopes,
because of distinct isotopic differences between both slopes.
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, A. Walter, and C. Alewell
Hydrol. Earth Syst. Sci., 18, 3763–3775, https://doi.org/10.5194/hess-18-3763-2014, https://doi.org/10.5194/hess-18-3763-2014, 2014
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
E. Ceaglio, K. Meusburger, M. Freppaz, E. Zanini, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 517–528, https://doi.org/10.5194/hess-16-517-2012, https://doi.org/10.5194/hess-16-517-2012, 2012
Cited articles
Bingham, R. G., Nienow, P., Sharp, M. J., and Boon, S.: Subglacial drainage processes at a High Arctic polythermal valley glacier, J. Glaciol., 51, 15–24, https://doi.org/10.3189/172756505781829520, 2005.
Bjornsson, H.: Radio-echo sounding maps of Storglaciären, Isfallsglaciären and Rabots glaciär, northern Sweden, Geogr. Ann. A, 63, 225–231, 1981.
Brugger, K. A.: The non-synchronous response of Rabots Glaciär and Storglaciären, northern Sweden, to recent climate change: a comparative study, Ann. Glaciol., 46, 275–282, https://doi.org/10.3189/172756407782871369, 2007.
Brugger, K. A. and Pankratz, L.: Changes in the Geometry and Volume of Rabots glaciär, Sweden, 2003–2011: Recent Accelerated Volume Loss Linked to More Negative Summer Balances, Geogr. Ann. A, https://doi.org/10.1111/geoa.12062, 2014.
Brugman, M. M.: Water flow at the base of a surging glacier, PhD thesis, California Institute of Technology, 1986, unpublished.
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A., Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen, S. and Hubbard, A.: Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198, 2013.
Cowton, T., Nienow, P., Bartholomew, I., Sole, A., and Mair, D.: Rapid erosion beneath the Greenland ice sheet, Geology, 40, 343–346, 2012.
Cowton, T., Nienow, P., Sole, A., Wadham, J., Lis, G., Bartholomew, I., Mair, D., and Chandler, D.: Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier, J. Geophys. Res., 118, 1–13, https://doi.org/10.1029/2012JF002540, 2013.
Darracq, A., Destouni, G., Persson, K., Prieto, C., and Jarsjö, J.: Quantification of advective solute travel times and mass transport through hydrological catchments, Environ. Fluid Mech., 10, 103–120, 2010.
Destouni, G., Persson, K., Prieto, C., and Jarsjö, J.: General quantification of catchment-scale nutrient and pollutant transport through the subsurface to surface and coastal waters, Environ. Sci. Technol., 44, 2048–2055, 2010.
Fountain, A. G.: Geometry and flow conditions of subglacial water at South cascade glacier, Washington state, USA; an analysis of tracer injections, J. Glaciol., 30, 180–187, 1993.
Fountain, A. G., Jacobel, R. W., Schlichting, R., and Jansson, P.: Fractures as the main pathways of water flow in temperate glaciers, Nature, 433, 618–621, 2005.
Glasser, N. F., Hambrey, M. J., Etienne, J. L., Jansson, P., and Pettersson, R.: The origin and significance of debris-charged ridges at the surface of Storglaciären, northern Sweden, Geogr. Ann. A, 85, 127–147, 2003.
Hock, R. and Hooke, R. L.: Evolution of the internal drainage system in the lower part of the ablation area of Storglaciären, Sweden, Geol. Soc. Am. Bull., 105, 537–546, https://doi.org/10.1130/0016-7606(1993)105<0537:EOTIDS> 2.3.CO;2, 1993.
Hodgkins, R.: Seasonal trend in suspended-sediment transport from an Arctic glacier, and implications for drainage-system structure, Ann. Glaciol., 22, 147–151, 1996.
Holmlund, P.: Internal geometry and evolution of moulins, Storglaciären, Sweden, J. Glaciol., 34, 242–248, 1988.
Hooke, R. LeB., Miller, S. B., and Kohler, J.: Character of the englacial and subglacial drainage system in the upper part of the ablation area of Storglaciaren, Sweden, J. Glaciol., 34, 228–231, 1988.
Hubbard, B. and Nienow, P.: Alpine subglacial hydrology, Quaternary Sci. Rev., 16, 939–955, 1997.
Jansson, P.: Dynamics and hydrology of a small polythermal valley glacier, Geogr. Ann. A, 78, 171–180, 1996.
Jarsjö, J., Destouni, G., and Yaron, B.: Retention and volatilisation of kerosene: laboratory experiments on glacial and post glacial soils, J. Contam. Hydrol., 17, 167–185, 1994.
Jarsjö, J., Bayer-Raich, M., and Ptak, T.: Monitoring groundwater contamination and delineating source zones at industrial sites: Uncertainty analyses using integral pumping tests, J. Contam. Hydrol., 79, 107–134, 2005.
Karlén, W.: Holocene glacier and climatic variations, Kebnekaise mountains, Swedish Lapland, Geogr. Ann. A, 55, 29–63, 1973.
Kohler, J.: Determining the extent of pressurized flow beneath Storglaciären, Sweden, using results of tracer experiments and measurements of input and output discharge, J. Glaciol., 41, 217–231, 1995.
Leopold, L. B. and Maddock, T. J.: The hydraulic geometry of stream channels and some physiographic implications, USGS Professional Paper, 252 pp., 1954.
Nienow, P. W.: Dye tracer investigations of glacier hydrological systems, PhD thesis, Cambridge University, UK, 1993.
Nienow, P.: Dye Tracer Investigations of Glacier Hydrology, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., in: Encyclopedia of Snow, Ice and Glaciers, Springer, Netherlands. 242–245, https://doi.org/10.1007/978-90-481-2642-2_126, 2011.
Nienow, P. W., Sharp, M., and Willis, I. C.: Sampling-rate effects on the properties of dye breakthrough curves from glaciers, J. Glaciol., 42, 184–189, 1996.
Nienow, P., Sharp, M., and Willis, I.: Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d'Arolla, Switzerland, Earth Surf. Proc. Land., 23, 825–843, https://doi.org/10.1002/(SICI)1096-9837(199809)23:9< 825::AID-ESP893> 3.0.CO;2-2, 1998.
Nilsson, J. and Sundblad, B.: The internal drainage of Storglaciären and Isfallsglaciären described by an autoregressive model, Geogr. Ann. A, 57, 73–98, 1975.
Pietrón, J., Jarsjö, J., Romanchenko, A. O., and Chalov, S. R.: Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops, J. Hydrol., 527, 576–589, 2015.
Pohjola, V. A.: TV-video observations of englacial voids in Storglaciären, Sweden, J. Glaciol., 40, 231–240, 1994.
Riihimaki, C. A., MacGregor, K. R., Anderson, R. S., Anderson, S. P., and Loso, M. G.: Sediment evacuation and glacial erosion rates at a small alpine glacier, J. Geophys. Res., 110, F03003, https://doi.org/10.1029/2004JF000189, 2005.
Rosqvist, G., Jarsjö, J., and Clason, C.: Redovisning av 2013 års övervakning av utveckling och spridning av flygbränsle och oljeföroreningar i Kebnekaise efter Herculesolyckan 15 mars 2012, Tarfala Research Station report, 26 pp., 2014.
Schneider, T.: Water movement in the firn of Storglaciären, Sweden, J. Glaciol., 45, 286–294, https://doi.org/10.3189/002214399793377211, 1999.
Schuler, T.: Investigation of water drainage through an alpine glacier by tracer experiments and numerical modelling, PhD thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 2002.
Schuler, T., Fischer, U. H., and Gudmundsson, G. H.: Diurnal variability of subglacial drainage conditions as revealed by tracer experiments, J. Geophys. Res., 109, F02008, https://doi.org/10.1029/2003JF000082, 2004.
Schwille, F.: Groundwater pollution in porous-media by fluids immiscible with water, Sci. Total Environ., 21, 173–185, 1981.
Schytt, V.: The net mass balance of Storglaciaren, Kebnekaise, Sweden, related to the height of the equilibrium line and to the height of the 500 mb surface, Geogr. Ann. A, 63, 219–223, 1981.
Seaberg, S. Z., Seaberg, J. Z., Hooke, LeB, R., and Wiberg, D. W.: Character of the englacial and subglacial drainage system in the lower part of the ablation area of Storglaciären, Sweden, as revealed by dye-trace studies, J. Glaciol., 34, 217–227, 1988.
Singh, P., Haritashya, U. K., Ramasastri, K. S., and Kumar, N.: Diurnal variations in discharge and suspended sediment concentration, including runoff-delaying characteristics, of the Gangotri Glacier in the Garhwal Himalayas, Hydrol. Process., 19, 1445–1457, 2005.
Stenborg, T.: Problems concerning winter run-off from glaciers. Geog. Ann. A., Phys. Geogr., 47, 141–184, 1965.
Stenborg, T.: Studies of the internal drainage of glaciers, Geog. Ann. A., 51, 13–41, 1969.
Stenborg, T.: Some viewpoints on the internal drainage of glaciers, Symposium on the Hydrology of Glaciers, Cambridge, 7–13 September 1969, organized by the Glaciological society, IAHS Publication 95, 117–130, 1973.
Theakstone, W. H. and Knudsen, N. T.: Dye tracer tests of water movement at the glacier Austre Okstindbreen, Norway, Norsk Geograf. Tidsskr., 35, 21–28, https://doi.org/10.1080/00291958108621970, 1981.
Willis, I. C., Sharp, M. J., and Richards, K. S.: Configuration of the drainage system of Midtdalsbreen, Norway, as indicated by dye-tracing experiments, J. Glaciol., 36, 89–101, 1990.
Willis, I. C., Lawson, W., Owens, I., Jacobel, B., and Autridge, J.: Subglacial drainage system structure and morphology of Brewster Glacier, New Zealand, Hydrol. Process., 23, 384–396, https://doi.org/10.1002/hyp.7146, 2009.
Willis, I. C., Fitzsimmons, C. D., Melvold, K., Andreassen, L. M., and Giesen, R. H.: Structure, morphology and water flux of a subglacial drainage system, Midtdalsbreen, Norway, Hydrol. Process., 26, 3810–3829, https://doi.org/10.1002/hyp.8431, 2012.