Research article
10 Jan 2013
Research article | 10 Jan 2013
Operational hydrological data assimilation with the recursive ensemble Kalman filter
H. K. McMillan et al.
Related authors
mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Uncertainty in hydrological signatures
I. K. Westerberg and H. K. McMillan
Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015,https://doi.org/10.5194/hess-19-3951-2015, 2015
Short summary
mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Uncertainty in hydrological signatures
I. K. Westerberg and H. K. McMillan
Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015,https://doi.org/10.5194/hess-19-3951-2015, 2015
Short summary
Related subject area
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020,https://doi.org/10.5194/hess-24-3111-2020, 2020
On the shape of forward transit time distributions in low-order catchments
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020,https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao
Hydrol. Earth Syst. Sci., 24, 2343–2363, https://doi.org/10.5194/hess-24-2343-2020,https://doi.org/10.5194/hess-24-2343-2020, 2020
Short summary
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020
On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020,https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany
Daniel Rasche, Christian Reinhardt-Imjela, Achim Schulte, and Robert Wenzel
Hydrol. Earth Syst. Sci., 23, 4349–4365, https://doi.org/10.5194/hess-23-4349-2019,https://doi.org/10.5194/hess-23-4349-2019, 2019
Short summary
Niger discharge from radar altimetry: bridging gaps between gauge and altimetry time series
Stefan Schröder, Anne Springer, Jürgen Kusche, Bernd Uebbing, Luciana Fenoglio-Marc, Bernd Diekkrüger, and Thomas Poméon
Hydrol. Earth Syst. Sci., 23, 4113–4128, https://doi.org/10.5194/hess-23-4113-2019,https://doi.org/10.5194/hess-23-4113-2019, 2019
Short summary
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019,https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues
Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud
Hydrol. Earth Syst. Sci., 23, 3969–3996, https://doi.org/10.5194/hess-23-3969-2019,https://doi.org/10.5194/hess-23-3969-2019, 2019
Short summary
Global sinusoidal seasonality in precipitation isotopes
Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 3423–3436, https://doi.org/10.5194/hess-23-3423-2019,https://doi.org/10.5194/hess-23-3423-2019, 2019
Short summary
Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework
Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng
Hydrol. Earth Syst. Sci., 23, 3405–3421, https://doi.org/10.5194/hess-23-3405-2019,https://doi.org/10.5194/hess-23-3405-2019, 2019
Short summary
A multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought reconstruction
Katie A. Smith, Lucy J. Barker, Maliko Tanguy, Simon Parry, Shaun Harrigan, Tim P. Legg, Christel Prudhomme, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019,https://doi.org/10.5194/hess-23-3247-2019, 2019
Short summary
Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715–2734, https://doi.org/10.5194/hess-23-2715-2019,https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary
Distributive rainfall–runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa
Andrew Watson, Jodie Miller, Manfred Fink, Sven Kralisch, Melanie Fleischer, and Willem de Clercq
Hydrol. Earth Syst. Sci., 23, 2679–2697, https://doi.org/10.5194/hess-23-2679-2019,https://doi.org/10.5194/hess-23-2679-2019, 2019
Short summary
Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics
Brigitta Szabó, Gábor Szatmári, Katalin Takács, Annamária Laborczi, András Makó, Kálmán Rajkai, and László Pásztor
Hydrol. Earth Syst. Sci., 23, 2615–2635, https://doi.org/10.5194/hess-23-2615-2019,https://doi.org/10.5194/hess-23-2615-2019, 2019
Short summary
Cited articles
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006.
Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., and Alsdorf, D. E.: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model, Geophys. Res. Lett., 34, L10403, https://doi.org/10.1029/2007gl029721, 2007.
Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model, J. Hydrol., 280, 145–161, https://doi.org/10.1016/s0022-1694(03)00229-4, 2003.
Bandaragoda, C., Tarboton, D. G., and Woods, R.: Application of TOPNET in the distributed model intercomparison project, J. Hydrol., 298, 178–201, https://doi.org/10.1016/j.jhydrol.2004.03.038, 2004.
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters, Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008.
Berthet, L., Andréassian, V., Perrin, C., and Javelle, P.: How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments, Hydrol. Earth Syst. Sci., 13, 819–831, https://doi.org/10.5194/hess-13-819-2009, 2009.
Beven, K. J., Lamb, R., Quinn, P., Romanowicz, R., and Freer, J.: TOPMODEL, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resour. Publ., Highlands Ranch, Colorado, 627–668, 1995.
Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., and Hasenauer, S.: Improving runoff prediction through the assimilation of the ASCAT soil moisture product, Hydrol. Earth Syst. Sci., 14, 1881–1893, https://doi.org/10.5194/hess-14-1881-2010, 2010.
Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J., Rajagopalan, B., and Leavesley, G. H.: Assimilation of snow covered area information into hydrologic and land-surface models, Adv. Water Resour., 29, 1209–1221, https://doi.org/10.1016/j.advwatres.2005.10.001, 2006.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008.
Cohn, S. E., Sivakumaran, N. S., and Todling, R.: A fixed-lag Kalman Smoother for retrospective data assimilation, Mon. Weather Rev., 122, 2838–2867, https://doi.org/10.1175/1520-0493(1994)122<2838:aflksf>2.0.co;2, 1994.
Crow, W. T. and Van Loon, E.: Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture, J. Hydrometeorol., 7, 421–432, https://doi.org/10.1175/jhm499.1, 2006.
De Lannoy, G. J. M., Reichle, R. H., Arsenault, K. R., Houser, P. R., Kumar, S., Verhoest, N. E. C., and Pauwels, V. R. N.: Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado, Water Resour. Res., 48, W01522, https://doi.org/10.1029/2011wr010588, 2012.
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using monte-carlo methods to forecast error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162, https://doi.org/10.1029/94jc00572, 1994.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Evensen, G. and van Leeuwen, P. J.: An ensemble Kalman smoother for nonlinear dynamics, Mon. Weather Rev., 128, 1852–1867, https://doi.org/10.1175/1520-0493(2000)128<1852:aeksfn>2.0.co;2, 2000.
Flores, A. N., Bras, R. L., and Entekhabi, D.: Hydrologic data assimilation with a hillslope-scale-resolving model and L band radar observations: Synthetic experiments with the ensemble Kalman filter, Water Resour. Res., 48, W08509, https://doi.org/10.1029/2011WR011500, 2012.
Goring, D. G.: Kinematic shocks and monoclinal waves in the Waimakariri, a steep, braided, gravel-bed river, in: Proceedings of the International Symposium on waves: Physical and numerical modelling, University of British Columbia, Vancouver, Canada, 336–345, 1994.
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2, 2001.
Ibbitt, R. P. and Woods, R.: Towards rainfall-runoff models that do not need calibration to flow data, in: Friend 2002 – Regional Hydrology: Bridging the Gap Between Research and Practice, edited by: van Lanen, H. A. J. and Demuth, S., IAHS Publ., 274, 189–196, 2002.
Kitanidis, P. K. and Bras, R. L.: Real-time forecasting with a conceptual hydrologic model, 2. Application and results, Water Resour. Res., 16, 1034–1044, 1980.
Komma, J., Bloschl, G., and Reszler, C.: Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting, J. Hydrol., 357, 228–242, https://doi.org/10.1016/j.jhydrol.2008.05.020, 2008.
Lee, H., Seo, D. J., and Koren, V.: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states, Adv. Water Resour., 34, 1597–1615, https://doi.org/10.1016/j.advwatres.2011.08.012, 2011.
Li, Y., Ryu, D., Wang, Q. J., Pagano, T., Western, A., Hapuarachchi, P., and Toscas, P.: Assimilation of streamflow discharge into a continuous flood forecasting model, in: Risk in Water Resources Management, edited by: Bloschl, G., Takeuchi, K., Jain, S., Farnleitner, A., and Schumann, A., IAHS Publ., 107–113, 2011.
Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006wr005756, 2007.
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012.
Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J., and Saunders, F. W.: The Met. Office global three-dimensional variational data assimilation scheme, Q. J. Roy. Meteorol. Soc., 126, 2991–3012, https://doi.org/10.1256/smsqj.57001, 2000.
McLaughlin, D.: An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering, Adv. Water Resour., 25, 1275–1286, https://doi.org/10.1016/s0309-1708(02)00055-6, 2002.
McMillan, H., Freer, J., Pappenberger, F., Krueger, T., and Clark, M.: Impacts of uncertain flow data on rainfall-runoff model calibration and discharge predictions, Hydrol. Process., 24, 1270–1284, https://doi.org/10.1002/hyp.7587, 2010.
McMillan, H., Jackson, B., Clark, M., Kavetski, D., and Woods, R.: Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., 400, 83–94, https://doi.org/10.1016/j.jhydrol.2011.01.026, 2011.
Mendoza, P. A., McPhee, J., and Vargas, X.: Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment, Water Resour. Res., 48, W09532, https://doi.org/10.1029/2011wr011089, 2012.
Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135–147, https://doi.org/10.1016/j.advwatres.2004.09.002, 2005.
Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., and Pappenberger, F.: A data assimilation approach to discharge estimation from space, Hydrol. Process., 23, 3641–3649, https://doi.org/10.1002/hyp.7518, 2009.
Newsome, P. F. J., Wilde, R. H., and Willoughby, E. J.: Land Resource Information System Spatial Data Layers, Technical Report, Palmerston North, Landcare Research NZ Ltd., New Zealand, 2000.
Noh, S. J., Tachikawa, Y., Shiiba, M., and Kim, S.: Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization, Hydrol. Earth Syst. Sci., 15, 3237–3251, https://doi.org/10.5194/hess-15-3237-2011, 2011.
Pauwels, V. R. N. and De Lannoy, G. J. M.: Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge, J. Hydrometeorol., 7, 458–477, https://doi.org/10.1175/jhm490.1, 2006.
Pauwels, V. R. N. and De Lannoy, G. J. M.: Ensemble-based assimilation of discharge into rainfall-runoff models: A comparison of approaches to mapping observational information to state space, Water Resour. Res., 45, W08428, https://doi.org/10.1029/2008wr007590, 2009.
Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci., 16, 3435–3449, https://doi.org/10.5194/hess-16-3435-2012, 2012.
Randrianasolo, A., Ramos, M. H., Thirel, G., Andreassian, V., and Martin, E.: Comparing the scores of hydrological ensemble forecasts issued by two different hydrological models, Atmos. Sci. Lett., 11, 100–107, https://doi.org/10.1002/asl.259, 2010.
Reichle, R. H.: Data assimilation methods in the Earth sciences, Adv. Water Res., 31, 1411–1418, https://doi.org/10.1016/j.advwatres.2008.01.001, 2008.
Reichle, R. H., Walker, J. P., Koster, R. D., and Houser, P. R.: Extended versus ensemble Kalman filtering for land data assimilation, J. Hydrometeorol., 3, 728–740, https://doi.org/10.1175/1525-7541(2002)003<0728:evekff>2.0.co;2, 2002.
Ricci, S., Piacentini, A., Thual, O., Le Pape, E., and Jonville, G.: Correction of upstream flow and hydraulic state with data assimilation in the context of flood forecasting, Hydrol. Earth Syst. Sci., 15, 3555–3575, https://doi.org/10.5194/hess-15-3555-2011, 2011.
Seo, D. J., Koren, V., and Cajina, N.: Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting, J. Hydrometeorol., 4, 627–641, https://doi.org/10.1175/1525-7541(2003)004<0627:rvaoha>2.0.co;2, 2003.
Seo, D. J., Cajina, L., Corby, R., and Howieson, T.: Automatic state updating for operational streamflow forecasting via variational data assimilation, J. Hydrol., 367, 255–275, https://doi.org/10.1016/j.jhydrol.2009.01.019, 2009.
Slater, A. G. and Clark, M. P.: Snow data assimilation via an ensemble Kalman filter, J. Hydrometeorol., 7, 478–493, https://doi.org/10.1175/jhm505.1, 2006.
Snelder, T. H. and Biggs, B. J. F.: Multiscale River Environment Classification for water resources management, J. Am. Water Resour. Assoc., 38, 1225–1239, https://doi.org/10.1111/j.1752-1688.2002.tb04344.x, 2002.
Sorensen, J. V. T. and Madsen, H.: Efficient Kalman filter techniques for the assimilation of tide gauge data in three-dimensional modeling of the North Sea and Baltic Sea system, J. Geophys. Res.-Oceans, 109, C03017, https://doi.org/10.1029/2003jc002144, 2004.
Tait, A., Henderson, R., Turner, R., and Zheng, X.: Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface, Int. J. Climatol., 26, 2097–2115, https://doi.org/10.1002/joc.1350, 2006.
Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., and Habets, F.: A past discharges assimilation system for ensemble streamflow forecasts over France – Part 1: Description and validation of the assimilation system, Hydrol. Earth Syst. Sci., 14, 1623–1637, https://doi.org/10.5194/hess-14-1623-2010, 2010a.
Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., Regimbeau, F., and Habets, F.: A past discharge assimilation system for ensemble streamflow forecasts over France – Part 2: Impact on the ensemble streamflow forecasts, Hydrol. Earth Syst. Sci., 14, 1639–1653, https://doi.org/10.5194/hess-14-1639-2010, 2010b.
Uddstrom, M.: Environmental prediction and innovation, New Zealand Sci. Rev., 68, 37–41, 2011.
Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, https://doi.org/10.1029/2005wr004093, 2006.
Weerts, A. H., El Serafy, G. Y., Hummel, S., Dhondia, J., and Gerritsen, H.: Application of generic data assimilation tools (DATools) for flood forecasting purposes, Comput. Geosci., 36, 453–463, https://doi.org/10.1016/j.cageo.2009.07.009, 2010.
Westerberg, I., Guerrero, J. L., Seibert, J., Beven, K. J., and Halldin, S.: Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River, Honduras, Hydrol. Process., 25, 603–613, https://doi.org/10.1002/hyp.7848, 2011.
Woods, R., Hendrikx, J., Henderson, R. D., and Tait, A.: Estimating mean flow of New Zealand rivers, J. Hydrol. (NZ), 45, 95–100, 2006.
Zaitchik, B. F. and Rodell, M.: Forward-Looking Assimilation of MODIS-Derived Snow-Covered Area into a Land Surface Model, J. Hydrometeorol., 10, 130–148, https://doi.org/10.1175/2008jhm1042.1, 2009.
Zhou, H. Y., Gomez-Hernandez, J. J., Franssen, H. J. H., and Li, L. P.: An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering, Adv. Water Resour., 34, 844–864, https://doi.org/10.1016/j.advwatres.2011.04.014, 2011.