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Abstract. This paper describes the design and use of a recur-
sive ensemble Kalman filter (REnKF) to assimilate stream-
flow data in an operational flow forecasting system of seven
catchments in New Zealand. The REnKF iteratively updates
past and present model states (soil water, aquifer and sur-
face storages), with lags up to the concentration time of the
catchment, to improve model initial conditions and hence
flow forecasts. We found the REnKF overcame instabilities
in the standard EnKF, which were associated with the natu-
ral lag time between upstream catchment wetness and flow at
the gauging locations. The forecast system performance was
correspondingly improved in terms of Nash–Sutcliffe score,
persistence index and bounding of the measured flow by the
model ensemble. We present descriptions of filter design pa-
rameters and explanations and examples of filter behaviour,
as an information source for other groups wishing to assimi-
late discharge observations for operational forecasting.

1 Introduction

Many river systems are susceptible to floods that occur
rapidly after rainfall events; meaning that effective flood
warning systems must use numerical weather prediction
(NWP) forecasts to provide sufficient warning time. By cou-
pling NWP and hydrological models, river flows may be
forecast several days into the future. When hydrological
models are used in such a capacity, forecast errors may oc-
cur due to uncertainties in model structure (e.g. unmodelled
processes), model parameters, initial conditions (e.g. catch-
ment wetness state determined from previous model runs)
and input data (e.g. rainfall and temperature forecasts). Error

accumulation can be reduced by data assimilation, a generic
technique to combine model predictions with observations,
balancing the uncertainty in each, to make the best estimate
of the current system state. In hydrology, the difference be-
tween modelled and observed flows, together with a quan-
tification of the errors in each, can be used to determine an
optimal update to model states and hence to improve future
forecasts.

Data assimilation in hydrological models is a relatively re-
cent advance, but one which has been enthusiastically taken
up, with various approaches being used: refer to recent re-
views by Reichle (2008) and Liu et al. (2012), and refer-
ences therein. The observations used to update model states
can include river flows (Seo et al., 2003), soil moisture
(Brocca et al., 2010; Flores et al., 2012), snow-covered area
and snow water equivalent (Clark et al., 2006; Zaitchik and
Rodell, 2009; Andreadis and Lettenmaier, 2006), and satel-
lite observations of discharge (Neal et al., 2009; Andreadis
et al., 2007). Sequential use of different observation types is
also possible. For example, Aubert et al. (2003) assimilated
streamflow and soil moisture observations. The model states
that are updated include in-channel water volume (Ricci et
al., 2011), soil water (Lee et al., 2011), groundwater (Zhou
et al., 2011; Clark et al., 2008) and snow water equivalent
(De Lannoy et al., 2012; Slater and Clark, 2006).

Data assimilation methods used in hydrology include the
Kalman filter (and its variants), particle filters and varia-
tional methods. These alternative methods and the assump-
tions required for their optimality are reviewed by Liu and
Gupta (2007) and Liu et al. (2012). Kalman filters are the
most common: their method alternates a “prediction step”
where the model is advanced one step forward in time, and
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an “update step” where the current observation(s) is assimi-
lated. The Kalman filter assumes that the model is linear, and
uses the relative covariances of model state errors and obser-
vation errors to define an optimal “Kalman gain” by which
the model is shifted towards the observations. The method
is optimal if model states and observations are multivariate
normal, and processes are linear. Many extensions have been
proposed to support nonlinear processes. These include the
extended Kalman filter, which replaces the linearised model
with a series of local linear approximations; but this approach
may be inaccurate if higher-order model derivatives are sig-
nificant. The ensemble Kalman filter (EnKF; Evensen, 1994)
replaces the linearised model with an ensemble of model
realisations. This both allows for nonlinear models and re-
moves the need to propagate the error covariances, which
are replaced by sample covariances direct from the ensem-
ble. However, linearisation is still assumed during the update
step. The EnKF has found favour in hydrology, where highly
nonlinear problems are common.

Particle filters are similar to ensemble Kalman filters in
that they rely on an ensemble of model realisations (“par-
ticles”). However, instead of updating system states in the
particles, the filter merely changes the weights assigned to
each particle. This approach makes few assumptions, requir-
ing neither linearisation in prediction or update steps, nor as-
sumptions of Gaussian errors common to Kalman filter ap-
proaches. The limitation of particle filters is that a very large
number of particles is needed if the model state is high di-
mensional. Variational approaches are less common in hy-
drology, as they generally require an adjoint model, which
is difficult to derive, but have the potential to be much less
computationally expensive than Kalman filter methods for
complex systems. Variational approaches allow for nonlin-
earity through a series of local, linear approximations, re-
quiring similar assumptions to the extended Kalman filter.

In practice, strict criteria such as local linearity or Gaus-
sian errors may not be met, but filtering algorithms can still
be applied successfully. For example, Weerts and El Ser-
afy (2006) compared the performance of the EnKF and par-
ticle filter, and found that the EnKF was most robust in cases
of high uncertainties in model structure or inputs, or low
number of ensemble members. Regularisation or heuristic
methods are frequently employed to improve filter perfor-
mance in suboptimal conditions, and can often be framed
as a Bayesian update, whereby prior knowledge of the sys-
tem is taken into account. For example, Kalman gains may
be smoothed or approximated by a constant (Sorenson and
Madsen, 2004); reducing the spatial support of updates is
also common (Houtekamer and Mitchell, 1998, 2001). Par-
ticle filters often suffer from degeneracy (i.e. many particles
have negligible weights), and various re-sampling or regular-
isation methods may be used to preserve the particle distri-
bution (e.g. Liu and Gupta, 2007; Noh et al., 2011).

Data assimilation is being incorporated into operational
flow forecast systems. In France, Mét́eo-France runs an

ensemble streamflow prediction system that assimilates
streamflow data to update soil moisture in a distributed
model. The system uses the best linear unbiased estima-
tor (BLUE) (Thirel et al., 2010a,b). The same weather en-
semble prediction system is used to drive a lumped soil-
moisture-accounting type rainfall-runoff model at Cemagref
(now Irstea), which uses discharge to update the routing store
(Randrianasolo et al., 2010). Komma et al. (2008) showed
how the EnKF could be applied operationally in the Kamp
catchment in Austria. Their system updated runoff directly,
with soil moisture and storage reservoirs updated using a
heuristic similarity method. Seo et al. (2009) report on the
operational procedure used at the US National Weather Ser-
vice where data assimilation is carried out using a variational
method. Generic data assimilation tools including EnKF are
also available, which have been coupled with some popular
hydrological models such as HBV and SOBEK (Weerts et
al., 2010).

A significant challenge for data assimilation in hydrol-
ogy is the natural time lag between catchment state and
river flow (i.e. the time of concentration), especially in large
catchments. This means that an update of distributed model
states at the same time as the flow observations may not be
physically realistic and can lead to under- or over-shoot in
flow correction at later timesteps (Mendoza et al., 2012).
This problem led some authors to reject updates to model
states having this characteristic, e.g. groundwater stores, in
favour of fast flow pathways such as surface runoff or in-
channel water volume (Randrianasolo et al., 2010; Berthet et
al., 2009). Rakovec et al. (2012) apply the EnKF and allow
both routing stores and distributed states to be updated, but
only consider the instantaneous covariances, which leads to
significant updates only to the routing stores. In the Ovens
River catchment, Australia, Li et al. (2011) found that up-
dating soil moisture states resulted in a lagged response in
discharge leading to a poorer model performance, but also
slower degradation of the forecast accuracy.

A number of solutions have been proposed to account for
catchment time lag. These typically build on the standard
data assimilation methods listed previously. Noh et al. (2011)
propose a lagged regularised particle filter (LRPF), which
propagates particles forward over an extended time period
to aggregate model response prior to the observation. Stan-
dard particle filter methods are then used to update the parti-
cles and weights at a pre-determined, fixed lag time. Tests
using the distributed Water and Energy transfer Processes
model showed that the LRPF performed similarly to a non-
lagged particle filter, but was less sensitive to assumptions
regarding process noise. Smoothing methods are defined as
those which “batch-process” a set of observations, to find the
model states that minimise aggregated error over the time
window. Smoothing methods are used in reanalysis prob-
lems, where availability of “future” data (past the analysis
time) is assumed, and implicitly incorporate the relationship
between observations and historical model states. Refer to
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McLaughlin (2002) and Liu and Gupta (2007) for further
discussion of smoothing vs. filtering problems. Smoothing
methods include the ensemble Kalman smoother (Evensen
and van Leeuwen, 2000; Ravela and McLaughlin, 2007), the
fixed lag Kalman smoother (Cohn et al., 1994; a more ef-
ficient version of the smoother, which limits historical data
to a fixed interval prior to the observation time), and vari-
ational methods, e.g. Seo et al. (2009) who test a fixed-lag
variational method to update states in the Sacramento soil
moisture accounting model.

Pauwels and De Lannoy (2006) developed an extension
to the EnKF, the retrospective ensemble Kalman filter, which
updates model states preceding an observation. The approach
was designed for a model with unit hydrograph routing, and
allows updates to all states contributing to the present ob-
servation via the unit hydrograph. Their application of this
approach to discharge assimilation using the HBV model
(Pauwels and De Lannoy, 2009) showed that only a marginal
improvement in results was obtained over a non-assimilating
model. This was because the method requires the hydrolog-
ical model to be re-initialised at the observation time minus
the lag time, which allowed model error to accumulate, and
override the benefits of the updated initial conditions.

In this paper, we build on the concept from Pauwels and
De Lannoy (2006) that flow observations can be used, within
an EnKF framework, to update model states prior to the
observation. This approach allows for the natural lag time
of the catchment. However, our method is designed to up-
date model states, from the maximum lag time up to the
time of latest observation, through iterative application of the
EnKF. This method differs from that of Pauwels and De Lan-
noy (2006, 2009) who use a single update of the model state
vector that has been augmented with all model states during
the lag period. Our aim is to address the problem of model
error accumulation by providing updated states as close as
possible to the start of the forecast period. We named this
method the recursive ensemble Kalman filter (REnKF).

This paper describes an implementation of the REnKF
at NIWA (National Institute of Water and Atmospheric Re-
search) for operational flood forecasting in New Zealand, us-
ing the distributed model TopNet running over a variety of
catchments. The aim of this paper is to present (1) a thor-
ough exploration of the filter algorithm, set up decisions and
parameter choices, (2) quantification of the performance of
the REnKF in a variety of catchments, including compari-
son with the EnKF and (3) investigation of filter behaviour
including error parameter sensitivity, ensemble spread, per-
turbation size and magnitude of updates by lag time, loca-
tion and model state. Our intention is that, by describing our
filtering method and assessing its performance in an opera-
tional setting, we will provide an information source for other
groups wishing to assimilate discharge observations for op-
erational forecasting.

Fig. 1. Schematic showing REnKF algorithm to assimilate an ob-
servation at timet .

2 REnKF implementation

2.1 Algorithm

Our implementation of the REnKF runs as a wrapper around
the EnKF as implemented by Clark et al. (2008). Following
Clark et al. (2008), we allow the filter to update distributed
states of soil storage, aquifer storage and surface (routing)
storage. The REnKF cycles through prior model states and
updates each one based on a streamflow observation at the
current timestep. In this iterative approach, the earliest states
(greatest time before the observation time) are updated first,
and the model is re-run to calculate the updated streamflow
predictions; then the states one timestep closer to the cur-
rent are updated, and the model again re-run, etc. Complete
details of the algorithm are given in Appendix A, and the
algorithm is represented as a schematic in Fig. 1.

As a recursive application of the EnKF, the REnKF is
optimal under the same conditions as the EnKF, i.e. linear
approximation of the update step, and Gaussian distribu-
tions of the model and observation errors. Following Clark
et al. (2008) we process flow observations in log space, to
improve the Gaussian approximation of errors. By construc-
tion, the distributions of model and observation errors are
not independent after the first EnKF iteration for each ob-
servation time (because some information from the observa-
tion is propagated via the model during the prediction step).
However, as with other regularisation strategies, we aim for
a practical method that addresses the problems with exces-
sive correction in filter implementations that occur when the
catchment lag time is not considered.

2.2 Assimilation parameters

The REnKF requires a number of parameters in order to ex-
ecute the EnKF updating step: these are described here. Re-
fer to Sect. 4 (System results) for details on the choice of
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parameter values. As with all data assimilation schemes, the
EnKF optimises the model behaviour according to the trade-
off between errors in the model and errors in the observed
data. Therefore specification of the magnitude of these two
error sources is necessary for the statistical optimality of the
filter.

2.2.1 Observation error

Errors in streamflow observations derive from errors in river
stage measurement, and errors in the rating curve used
to transform stage to discharge. The latter include errors
in stage and velocity gaugings, assumption of a particular
form of stage–discharge relationship, extrapolation beyond
the maximum gauging and cross-section change (McMillan
et al., 2010; Di Baldassarre and Montanari, 2009; Wester-
berg et al., 2011). The EnKF assumes that errors in stream-
flow are normally distributed. We follow Clark et al. (2008)
who improved filter performance by transforming observed
and modelled streamflow to log space before computing the
Kalman gain. Hence, the standard deviation of the observed
error is assumed proportional to the log discharge, with a pro-
portionality constantεobs that must be specified (Eq. 1):[
log (qtrue) − log (qobs)

]
∼ N

(
0,

[
εobs · log (qobs)

]2
)
. (1)

In addition, the ensemble square root filter variant of the
EnKF is used, which uses a modified Kalman gain to remove
the need to perturb the observations (for further details see
Clark et al., 2008). This is advantageous as the observation
perturbation magnitude was found to be a very sensitive pa-
rameter (Moradkhani et al., 2005).

2.2.2 Model error

The EnKF quantifies model error by using the variance of
streamflow predictions from an ensemble of model realisa-
tions. Model errors can be caused by uncertainties in model
inputs, model structure and parameter values. The number
of ensemble members must be specified, and depends on the
number of states to be updated: we used 50 members, which
was found to be sufficient using the same model structure in a
catchment larger than any tested here (Clark et al., 2008). The
ensemble is created using stochastic perturbations of forcing
and state variables: in this case we perturb the forcing precip-
itation depth and state variables for soil moisture and depth
to the water table. For a detailed description of the approach
to perturbing the ensemble, refer to Clark et al. (2008).

The perturbations are parameterized as fractional error pa-
rameters for precipitation (εp), change in soil moisture be-
tween subsequent timesteps (εs), and baseflow (εz). Errors
are assumed to follow a uniform distributionU [−εi · qi ,
+εi · qi] whereεi is the error parameter corresponding to
flux qi . The derived errors are then applied to the precipi-
tation depth, soil moisture state variable, and depth to water
table (by inverting the baseflow equation in the latter case):

p′
∼ p + U

[
−εp · p, + εp · p

]
(2a)

s′
t ∼ st + U

[
−εs · (st − st−1) , + εs · (st − st−1)

]
(2b)

z′
∼ −m

{
log

[
qb + U

[
−εz · qb, + εz · qb

]
K0 · m

]
+ λ

}
. (2c)

By specifying the perturbations in this way, model errors are
permitted to be large when model fluxes are large (e.g. dur-
ing storm events) and small when model fluxes are small
(e.g. during drier periods). This approach differs from some
previous studies where error variances are defined to be tem-
porally constant (Reichle et al., 2002; Crow and Van Loon,
2006), but corresponds more closely to the modeller’s con-
ceptualization of error magnitudes, for example that rainfall
errors can be approximated by a multiplicative error term
(McMillan et al., 2011).

2.2.3 Spatial and temporal correlation of model error

In our application of the REnKF, stochastic perturbations are
applied in each subcatchment of the watershed model, and
at each model timestep. The perturbations are correlated in
space and time to represent spatial dependency of forcing er-
rors and temporal persistence of model errors. The correla-
tion is introduced by using Gaussian random fields parame-
terised by the decorrelation timeτ and the correlation length
L: these parameters are required for each perturbation (rain-
fall, soil moisture, depth to water table). The method is de-
scribed by Clark et al. (2008) and uses techniques from Clark
and Slater (2006) and Evensen (2003). Figure 2 shows an
example of the precipitation perturbation patterns from the
Grey catchment where the spatial correlation length is set to
10 km vs. 65 km. Details of correlation parameter choices for
all the test catchments are given in Sect. 4.1.

The perturbation correlations play a part in controlling the
spread of the flow ensemble at the catchment outlet. Where
perturbations are sustained in time, the ensemble spread is in-
creased due to the memory of the catchment. Where spatial
correlation length is large compared to the catchment size,
many subcatchments undergo perturbations of the same sign,
which increases ensemble spread. The last effect is also in-
fluenced by the geometry of the river network.

2.2.4 Lag time

The lag time is an REnKF-specific parameter that determines
the maximum timestep difference between a streamflow ob-
servation and a prior model state that can be updated during
the assimilation of that observation. Lag time can be concep-
tualised as the time of concentration of the catchment, i.e. the
maximum time taken for rainfall occurring at the headwaters
to affect streamflow at the gauging site. An initial estimate
of the lag time could therefore be made a priori, although
our experience showed that similar lag times performed well
across a wide variety of catchments (refer to Sect. 4.1).
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Fig. 2. Example maps of fractional precipitation perturbation across the Grey catchments with spatial error correlation of 10 km (left panel)
and 65 km (right panel).

Fig. 3.Schematic representation of the water balance component of TopNet (adapted with permission from Bandaragoda et al., 2004).

3 NZ operational system for NWP and flood forecasting

The aim of this work was to develop and evaluate an op-
erational system for flood forecasting, with streamflow data
assimilation provided by the REnKF. The system requires a
regional NWP model for New Zealand (NZ) coupled to a
hydrological model. An overview of this system is provided
here.

3.1 Numerical weather prediction

The regional NWP model NZLAM (NZ Local Area Model)
forecasts the atmospheric state over New Zealand for 48 h
ahead. NZLAM is a local implementation of the UK Met Of-
fice Unified Model System, and derives its lateral boundary
conditions from the global Unified Model. NZLAM is warm
cycled on a 6 h basis, using initial conditions from previous
runs. The model resolution is currently 12 km, using a ro-
tated lat/long grid with 324× 324 points in the horizontal
and 70 levels in the vertical, up to 80 km height. NZLAM

incorporates a full 3DVAR data assimilation system (Lorenc
et al., 2000) of observations from land, ship, and upper air
stations, drifting buoys, aircraft, and satellites. Model fore-
casts of meteorological variables including precipitation and
temperature are provided at an hourly time step.

3.2 Hydrological model

NZLAM forecasts provide input to a hydrological model,
which simulates soil moisture, groundwater levels and river
flow over the period of the NWP forecasts. We use the
TopNet model (Fig. 3), which combines TOPMODEL con-
cepts of sub-surface storage controlling the dynamics of the
saturated contributing area and baseflow recession (Beven
and Kirkby, 1979; Beven et al., 1995) with a kinematic
wave channel routing algorithm (Goring, 1994). This ap-
proach leads to a model that can be applied over large wa-
tersheds using smaller sub-basins within the large watershed
as model elements (Ibbitt and Woods, 2002; Bandaragoda et
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al., 2004). Complete model equations are provided by Clark
et al. (2008). TopNet is routinely used for hydrological mod-
elling applications in New Zealand, and uses nationally avail-
able information on catchment topography, physical and hy-
drological properties. This information is derived from a dig-
ital river network (River Environment Classification; Snelder
and Biggs, 2002), 30 m digital elevation model, and land
cover and soil databases (Land Cover Database; Land Re-
source Inventory; Newsome et al., 2000). For the applica-
tions described here, Strahler 3 subcatchments of typical size
10 km2 are used.

TopNet uses seven calibrated parameters for each sub-
catchment. To reduce the dimensionality of the parameter
estimation problem, initial values for the parameters were
estimated from the sources described. The spatial distribu-
tion of the parameters was then preserved, and the values
were adjusted uniformly using a spatially constant set of pa-
rameter multipliers. Calibration used precipitation and cli-
mate data from Tait et al. (2006) who interpolated data from
over 500 climate stations in New Zealand across a regular
0.05◦ latitude/longitude grid (approximately 5 km× 5 km).
The precipitation data were bias-corrected using a water bal-
ance approach (Woods et al., 2006). These data are pro-
vided at daily time steps, and are disaggregated to hourly
data before use in the model. The parameter values used here
are those in current use for the operational forecasting sys-
tem. The calibration methods varied by catchment accord-
ing to the responsible hydrologist, and consisted of a semi-
automatic method using either Monte Carlo simulation (two
catchments), or the ROPE (RObust Parameter Estimation)
calibration method (Bardossy and Singh, 2008) (five catch-
ments) to obtain a small ensemble of possible parameter sets.
This was followed by review by a hydrologist to determine a
single preferred set based on visual inspection of the model
simulation results. Note that parameter values are not per-
turbed during the assimilation. Instead, we allow for model
error by perturbing the state variables.

3.3 Streamflow assimilation

The hydrological model is run on a 6 h cycle to mirror the
NWP forecast input. Each time a new NZLAM forecast be-
comes available (0, 6, 12, 18 h), the hydrological model is run
forward for 48 h to provide river flow forecasts to the end user
with as little latency as possible. Real-time hourly teleme-
tered observations of streamflow then become available to
the system. At forecast time +5 h (i.e. 5, 11, 17, 23 h), the hy-
drological model is re-run in assimilation mode. The REnKF
uses available observations to update the model states, and
hence provide optimal initial conditions ready for the next
forecast run in the 6 h cycle.

Motueka
Grey

Taramakau
Whataroa

Pomahaka

Whirinaki
Waihua

Fig. 4.Location of the seven test catchments within New Zealand.

3.4 Forecast delivery

The weather and hydrological forecasts are made available to
end users through the environmental forecasting tool “Eco-
Connect”, which includes a web delivery application (Ud-
dstrom, 2011). Graphical model output includes maps of
NWP output, and location-specific forecasts for climate vari-
ables, rainfall and flow. The flow forecasts show observed
flow up to current time, followed by predicted flow for a 48 h
future time period. Flow forecasts from previous NZLAM
cycles can be viewed to check for consistency between fore-
casts. The ensemble spread can optionally be superimposed
on the forecast, as an indication of model error.

3.5 Test catchments

The operational system currently includes seven catchments
that are not influenced by hydropower operations and hence
maintain natural flows. All these catchments were used to
test the REnKF data assimilation method. Figure 4 shows
the location of these catchments within NZ, and Fig. 5 shows
a closeup of each catchment including major rivers and el-
evation. The catchments span a diverse range of topogra-
phy, land cover and climate: these physical characteristics are
summarised in Table 1.

3.6 Summary of forecast performance tests

We performed a series of tests on the REnKF in operational
forecasting mode, using the seven catchments described in
the previous Sect. 3.5. Section 4 shows the results of these
tests, and they are summarised here for clarity. In each
case, we compared the REnKF against three benchmarks:
(1) no assimilation, (2) free-running ensemble and (3) stan-
dard EnKF. The forecasts were tested for lead times between
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Table 1.Catchment characteristics.

Name Waihua Whataroa Whirinaki Taramakau Motueka Pomahaka Grey

Area[km2
] 50 450 510 880 1760 1870 3820

Elevation range[m] 80–760 65–3090 195–1240 10–2240 70–1840 40–1480 15–1945
Average stream slope[◦] 1.31 5.67 1.12 1.97 1.41 0.49 0.84

Land cover[%]

Forest 97 34 93 43 64 9 65
Pasture 1 0 4 4 18 73 12
Scrub/tussock 2 22 3 35 17 17 18
Rock/ice/other 0 44 0 18 1 1 5

Mean annual snow water equivalent[m] 0.0 0.9 0.0 0.2 0.0 0.0 0.1
Mean annual precipitation[m] 1.83 11.4 1.61 6.29 1.67 0.96 3.95
Mean annual runoff[m] 1.14 9.35 0.90 5.72 1.07 0.49 3.17

Waihua Whirinaki Motueka Grey

Taramakau Whataroa Pomahaka

Elevation
3000 m

0 m

20
km

20
km

3
km

10
km

20
km

10
km

20
km

Fig. 5.Close-up view of each of the test catchments, with the river network and elevation shown.

0–6 and 42–48 h, in 6 h increments, and the forecast perfor-
mance was quantified in terms of Nash–Sutcliffe score, per-
sistence index, and percentage of time that the flow measure-
ment lies within the ensemble bounds. Further, we tested the
sensitivity of ensemble spread (for state variables and fore-
cast flow) and model performance to the REnKF fractional
error parameters. We then used a variety of graphical meth-
ods to investigate the update behaviour of the filter across
dimensions of space, observation time and time lag.

4 System results

4.1 Flow forecasting results

To test the REnKF flow forecasting, the system was
run in hindcast mode for the water year 1 April 2011–
31 March 2012. This relatively short time period was used
in order to limit model running time (a 1 yr run for the Grey
catchment took approximately 9 days using an Intel Xeon
CPU E5540, 2.53 GHz). The hydrological model runs on a
6 h cycle, with a 48 h forecast produced at each cycle. There-
fore to create a continuous series for performance assess-
ment, we concatenated the first 6 h of each forecast. The

system was run in three modes: (1) free running ensemble, no
assimilation, (2) EnKF assimilation and (3) REnKF assimi-
lation. As explained in Sect. 3.3, for each 6 h window the as-
similation has been completed up to the start time of the fore-
cast, but the model ensemble is free-running during the 6 h
forecast period. The results from the REnKF assimilation for
all catchments are shown in Fig. 6. The flow simulations are
shown for an example period of 2 months containing some
of the larger flow events of the water year. Rank histograms
are also given, showing the quantile location of the measured
flow value within the model ensemble. The simulation pa-
rameters are given in Table 2: parameters were kept constant
across catchments apart from correlation length, which was
adjusted with catchment size. Correlation times, lengths and
fractional errors were reduced for the Whirinaki where en-
semble spread was otherwise too great. Lag time was set at
12 h, which our experiments showed provided good results
for a wide range of catchment sizes, after comparison of lag
times from 0–24 h (not shown). The exception was in a catch-
ment with pumice soils and hence a very damped response
(not included in the seven catchments used here), where a
lag time of 24 h improved filter behaviour. This suggests that
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Table 2.REnKF model parameters used for each catchment.

Catchment Decorrelation times (h) Decorrelation lengths (km) Fractional error Lag (h)

Precip Soil Baseflow Precip Soil Baseflow Precip Soil Baseflow

Waihua 24 120 0.2 10 10 10 0.2 0.4 0.2 12
Whirinaki 1 24 0.2 2 1 1 0.2 0.4 0.05 12
Motueka 24 120 0.2 50 50 50 0.2 0.4 0.2 12
Grey 24 120 0.2 65 65 65 0.2 0.4 0.2 12
Taramakau 24 120 0.2 30 30 30 0.2 0.4 0.2 12
Whataroa 24 120 0.2 25 25 25 0.2 0.4 0.2 12
Pomahaka 24 120 0.2 75 75 75 0.2 0.4 0.2 12

Fig. 6. REnKF simulations for all catchments, showing (left pan-
els) ensemble simulations for a 2 month period 1 October 2011–
1 December 2011 (right panels) rank histograms of location of
measured flow within the model ensemble, calculated for the year
1 April 2011–31 March 2012. Dark bars at locations 0/1 show ob-
servations outside the model ensemble.

optimal lag time might be controlled by catchment soil and
geological characteristics rather than size.

The results of the simulations in terms of (1) Nash–
Sutcliffe (NS) score of ensemble median and (2) percent-
age of time the flow measurement lies within the ensemble
bounds are given in Tables 3 and 4 respectively. A graphi-
cal example of the differences between the free running en-
semble, EnKF and REnKF, and their corresponding rank his-
tograms, is given for the Pomahaka catchment in Fig. 7. The
first column (“single run”) of Table 3 shows the NS score
of each model when run deterministically. The models are
running in validation mode, i.e. outside of the time period

Fig. 7.Simulations for the Pomahaka catchments showing (left pan-
els) ensemble simulations for a 2-month period 1 October 2011–
1 December 2011, (right panels) rank histograms of location of
measured flow within the model ensemble, calculated for the year
1 April 2011–31 March 2012. Dark bars at locations 0/1 show ob-
servations outside the model ensemble. The rows represent (upper
panels) free running ensemble with no assimilation, (middle panels)
EnKF assimilation, (lower panels) REnKF assimilation.

used for calibration, and the performances vary considerably,
providing a wide and challenging range of test conditions for
the REnKF. Table 3 also shows that the NS scores for the
“ensemble” run (i.e. without assimilation) can be consider-
ably worse than the underlying “single run” model. This is
the result of drift in the free-running ensemble. We discuss
this point and its implications later in this section.

There are several points to note resulting from these simu-
lations. The performance measures in Tables 3 and 4 show
that the REnKF provides consistently good performance
across all catchments. This is true even when the original
model had poor NS performance. The consistency of the
REnKF is in contrast to the EnKF assimilation without time
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Fig. 8.Nash–Sutcliffe scores by catchment for single model run (no
assimilation), EnKF and REnKF, for lead times 6–48 h, calculated
for time period 1 April 2011–31 March 2012.

lag, which in two out of seven cases gives a higher NS score
than the REnKF, but in other cases is significantly worse. The
reasons are illustrated in Fig. 7, which shows that the EnKF
can cause spikes and instabilities in the flow ensemble. We
will return to the reason and nature of these instabilities in
Sect. 4.4. Hence, although Fig. 7 shows that the rank his-
togram is flatter for the EnKF than the REnKF (which is typ-
ical of all catchments: not shown), there is a higher percent-
age of time where the observations are outside the bounds of
the EnKF ensemble (refer to the dark outer bars of the rank
histograms in Fig. 7, and numerically for all catchments in
Table 4).

We tested the performance of each simulation for a range
of lead times. The lead times used were from 0–6 to 42–
48 h, in 6-h intervals. Additional mitigation measures may
be possible if reliable operational forecasts are available at
extended lead times. Figure 8 shows model performance

Table 3. Nash–Sutcliffe score for single model run and ensemble
median (free-running, EnKF and REnKF), calculated for time pe-
riod 1 April 2011–31 March 2012.

Catchment Single Free EnKF REnKF
run ensemble median median

median

Waihua 0.6167 0.5846 0.8973 0.8251
Whirinaki 0.4277 0.0051 0.9338 0.8307
Motueka 0.4379 0.2786 −1.1640 0.8982
Grey 0.4747 −0.5613 0.7302 0.8828
Taramakau 0.3759 −1.1020 0.7970 0.8305
Whataroa 0.1499 −0.1190 0.5353 0.6649
Pomahaka 0.0836 0.2116 0.7298 0.8583

Table 4.Percentage of time flow measurement lies within ensemble
bounds, calculated for time period 1 April 2011–31 March 2012.

Catchment Ensemble EnKF REnKF

Waihua 0.9993 0.9961 0.9943
Whirinaki 0.9933 0.9999 0.9965
Motueka 0.9928 0.9450 0.9857
Grey 0.5295 0.8969 0.9628
Taramakau 0.3876 0.9714 0.9902
Whataroa 0.9869 0.9161 0.9826
Pomahaka 0.8878 0.9462 0.9857

(Nash–Sutcliffe score) by catchment, as a function of lead
time, using the same forecast period as previously used.
Typical results are for the REnKF to outperform both the
EnKF and no-assimilation run, up to a lead time of 24 h.
After 24 h, accumulating model errors begin to overwhelm
the REnKF advantage of improved initial conditions, and the
performances tend to converge: at these longer lead times,
the best performing methods are REnKF, three catchments;
no-assimilation, three catchments; EnKF, one catchment. As
with the 0–6 h lead time, we find that the REnKF method
is the most reliable across different catchments and different
lead times.

We also tested the model performances using the per-
sistence index (Kitanidis and Bras, 1980). Similar to the
Nash–Sutcliffe, the persistence index compares model per-
formance against a benchmark, where a score of 1 repre-
sents perfection; 0 is no better than the benchmark; scores
less than 0 are worse than the benchmark. In this case, the
benchmark is the last flow observation. Results from the
REnKF, EnKF and no-assimilation forecasts at all lead times
are given in Fig. 9. For very short lead times (e.g. 6, 12 h),
scores can be negative. This reflects the nature of data as-
similation, which produces a prediction that is a compromise
between observed and model prediction flow values, based
on their relative errors. At longer lead times, scores are pos-
itive. As with the Nash–Sutcliffe performance measure, the
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REnKF typically outperforms the EnKF and no-assimilation
run.

The spread of the ensemble clearly varies between catch-
ments. Empirically, we found a narrower spread relative to
flow magnitude was typical of larger catchments, even when
using similar assimilation parameters (Table 2). This may be
caused by the cumulative effect of perturbations in many sub-
catchments tending to be smaller than those in one subcatch-
ment, as individual perturbations cancel each other out, even
where spatially correlated perturbations are used. We also
note a trade-off in ensemble spread, where a wide spread
at low flow values is required in order that the high flow
spread is sufficiently wide to enable the filter to correct for
the large model errors that can occur. This behaviour might
be mitigated by increasing the dependence of the perturba-
tion size on the flow magnitude in the REnKF filter design.
Because our system is designed mainly for flood warning

purposes, we chose assimilation parameters that gave a good
ensemble spread during flood events. When a sufficient en-
semble spread is achieved, our results showed that this can
degrade model performance under free-running conditions.
For example, this is shown as bias in the rank histogram for
the free-running ensemble for the Pomahaka (Fig. 7, upper
row). This situation could occur where there are gaps in the
observations available for model updates. Therefore the relia-
bility of telemetered observations should be considered when
setting ensemble spread. The degradation of performance is
caused by asymmetries, thresholds or nonlinearities in the
model, which can cause ensemble drift, such as the lower
bound of zero flow, or nonlinearity of response when the wa-
ter table reaches the surface. We return to these points in
Sects. 4.2 and 4.3, where the model sensitivity and update
behaviour are discussed in more detail.

4.2 Sensitivity to error parameters

During setup of our operational flow forecasting system, we
carried out sensitivity experiments to determine the role and
preferred values for each parameter of the REnKF system.
Examples of our results are shown here to demonstrate to
the reader the significance of each parameter, and to provide
guidance for future implementations of similar systems.

The fractional error parametersεp (precipitation),εs (soil
moisture) andεz (depth to water table) control the spread of
the model ensemble in terms of state variables and hence the
ensemble spread in flow predictions (refer to Eqs. 2a–c). An
example for the Grey catchment is shown in Fig. 10.

Figure 10 shows that the change in ensemble spread is
greatest for depth to water table, and smaller for precipita-
tion and soil moisture. These results are mirrored in the ef-
fect on the flow ensemble spread. Figure 11 shows an exam-
ple where the model without assimilation (dotted line) un-
derpredicts the observed flow (solid line). Changing the soil
moisture fractional error parameterεs (left column) has little
effect on the ensemble spread (grey lines) and the model abil-
ity to correct the simulated flow values. Similarly, changing
the precipitation parameterεp has little effect (not shown).
In contrast, changing the depth to water table parameterεz

(right column) has a large effect on the ensemble spread and
consequently on the model predictive ability.

More generally, we tested the effect of the fractional er-
ror parameters on ensemble spread and model performance
over a time period of 6 months for three selected catchments
of varying size: Waihua, Grey and Pomahaka (Table 5). The
results confirm that fractional error parameters for precipi-
tation and soil moisture have negligible effect on ensemble
spread or model performance. Water table fractional error
has a substantial effect on ensemble spread: increasing the
error parameter by a factor of 4 increases the spread by a
factor in the range 2.5–3.5. The consequent effect on model
performance differs by catchment: for the Grey, the Nash–
Sutcliffe score increases with increased ensemble spread; for
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Table 5.The effect of fractional error parameters on ensemble spread and Nash–Sutcliffe performance score under the REnKF, for selected
catchments during a 6 month simulation period 31 March 2011–31 September 2011.

Catchment Precipitation fractional error Soil moisture fractional error Water table fractional error

0.1 0.2 0.4 0.1 0.2 0.4 0.05 0.1 0.2

Ensemble spread Waihua 8.1 8.4 8.2 8.1 8.2 8.4 2.4 4.3 8.4
(m3 s−1) Grey 182.4 182.3 182.7 181.5 181.6 182.3 73.5 110.3 182.3

Pomahaka 30.9 31.0 31.1 30.4 30.5 31.0 12.4 18.3 31.0

Nash–Sutcliffe Waihua 0.88 0.87 0.87 0.87 0.87 0.87 0.88 0.90 0.87
score Grey 0.91 0.91 0.91 0.91 0.91 0.91 0.85 0.89 0.91

Pomahaka 0.91 0.91 0.91 0.90 0.91 0.91 0.90 0.91 0.91
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Fig. 10.Ensemble spread during an example REnKF model run for (left panels) cumulative precipitation, (middle panels) soil moisture and
(right panels) depth to water table, with increasing fractional error parameter. Series shown for the Grey catchment, average values over all
subcatchments.

the Waihua and Pomahaka, little change is observed. We sug-
gest that these differences reflect the success of the ensemble
spread in approximating model error: where the ensemble
spread was not previously sufficient to capture all observed
values (Grey; also refer to the rank histograms in Fig. 6), an
increased spread improves the performance. Where the en-
semble spread was already sufficient (Waihua, Pomahaka),
an increased spread has little effect on the performance, or
may begin to degrade performance as the spread is further
increased.

Weerts and El Serafy (2006) note that specifying the er-
ror model is the most difficult part of applying a Kalman
or particle filter. Moradkhani et al. (2005) used a frac-
tional error of 0.1 for all state variables but found that the
ensemble spread was relatively insensitive to this value, com-
pared to the observed value perturbation. Clark et al. (2008)
used fractional errors of 0.2 (rainfall), 0.1 (soil moisture)
and 0.05 (depth to water table), noting that it is difficult
to attribute total model error to individual sources based

only on streamflow observations. Data assimilation applica-
tions favour over-estimation of the ensemble spread, to avoid
excessive reliance on model predictions over observed val-
ues (Crow and van Loon, 2006). This effect can be espe-
cially severe during recession periods where model predic-
tions converge.

Our results showed that, using the EnKF setup of Clark et
al. (2008), the fractional error of depth to water table is the
most sensitive parameter. We hypothesize that this is due to
the different methods used to perturb the model states: for
precipitation and soil moisture the flux is perturbed, whereas
depth to the water table is modified by perturbing the base-
flow and then inverting the baseflow equation. The latter
approach changes the store volume as well as the flux. An
additional investigation (not shown) demonstrated that if we
forced a larger soil moisture ensemble spread, model flow
predictions worsened. A possible reason is that empirical cor-
relations between model soil moisture and flow do not indi-
cate a causal relationship. Instead, they could have a common
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cause (rainfall depth), while elevated flows are controlled by
the water table depth via saturation excess flow. Crow and
Van Loon (2006) similarly found that assimilation of surface
soil moisture observations to constrain deeper root-zone soil
moisture in a land surface model could degrade model perfor-
mance when model error assumptions were not appropriate.

4.3 Update behaviour

We selected some large rainfall events to investigate the up-
date behaviour of the filter, i.e. where and when updates were
made to model states. It is difficult to visualise filter update
behaviour since it is high dimensional: two spatial dimen-
sions (subcatchment location), observation time, time lag and
update size. Each of these applies to each model state to be
updated. For clarification, the update at observation timeTO,
lag timeTL , refers to the change made to the model state at
time TO − TL as a result of the information gained from the
observation at timeTO.

By plotting the observation time against lag timeTL ,
and colouring according to update size, we can examine
(1) which flow observations lead to the greatest model state
updates and (2) at what lag times these updates occur. Fig-
ure 12 shows an example for the Pomahaka catchment, for
updates to the water table depth in two catchments: one at
the gauging site and one in the headwaters. From this figure
we see that the gauging catchment undergoes greater updates
than the headwater catchment. This can be expected since
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Fig. 12.Size of REnKF update to model state “depth to water table”
for the Pomahaka catchment, by observation time and lag time. Up-
dates are shown for the gauging station reach (upper panel) and a
selected headwater reach (middle panel). Observed and modelled
flows at the observation times are shown for comparison (lower
panel).

correlations between the water table depth in a subcatchment
and flow at the gauge will be greater where the locations of
these two measurements are closer. We also see that larger
updates are often made at the maximum time lag allowed by
the filter (12 h in this case). This reflects the design of the
filter whereby the “first pass” (at the maximum lag) removes
gross model errors, and then the model simulation is progres-
sively fine-tuned at subsequent (smaller) lag times.

The dependence of model update size on lag time was
compared in the general case for the Pomahaka catchment
(Fig. 13), by taking an average over all observation times
and all subcatchments (absolute update is used so that pos-
itive and negative updates do not cancel each other). This
confirms the pattern whereby update size increases with lag
time. However, the updates to depth to water table and routed
flow storage are relatively greater at shorter lag times than
the updates to soil moisture storage. A comparison can also
be made of the size of updates between the different model
states. The size of the soil moisture update is up to two orders
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Fig. 13. Comparison of size of REnKF update by model state and
lag time for the Pomahaka catchment, during the flood event shown
in Fig. 8. Update values shown are the mean value over time and
subcatchments.

of magnitude smaller than the updates to routed flow or wa-
ter table storages. This reflects both smaller correlations be-
tween soil moisture and streamflow, and smaller ensemble
spread. However, as noted in the section “Sensitivity to error
parameters”, increasing the ensemble spread and hence the
update size tended to degrade the model forecast. The up-
dates to the water table are greatest, and approximately three
times the magnitude of the updates to routed flow. This be-
haviour may be partly dependent on the hydrological model
structure; for example in this case the TOPMODEL formu-
lation means that water table depth controls saturation ex-
cess flow, which is an important contribution to storm flow
volumes.

To understand spatial patterns of updates, we also plotted
the size of update in each subcatchment. Figure 14 shows an
example, again from the Pomahaka, just prior to the flood
event illustrated in Fig. 12. The figure shows the updates
for different lag times (i.e. different time before observa-
tion), relating to the same observation time of 06:00 a.m. LT,
23 February 2012. Updates are typically largest at the largest
lag time, but updates are made throughout the catchment at
all lag times. At the shortest lag times, updates tend to be
concentrated along the main stem of the river network (rivers
of Strahler order 4 and above are shown on the figure). This
type of spatial organisation is consistent with our expectation
that only subcatchments able to quickly affect flow magni-
tude would be updated at short lag times.

4.4 Numerical artefacts under the EnKF

The flow forecasting results above showed that one reason
for improved performance of the REnKF over the EnKF was
due to artefacts in the model behaviour under the EnKF.
These could take the form of “spikes” in the forecast flow
(Fig. 15a), or oscillatory behaviour (Fig. 15b). Spike-type
artefacts were found by Mendoza et al. (2012), using a simi-
lar implementation of the TopNet model with EnKF data as-
similation for a Chilean basin.

Our investigation has led us to hypothesise that the same
underlying mechanism is responsible for both such artefacts.
As described in the introduction, each catchment has a natu-
ral lag time between rainfall and the associated rise in river
flow. This means that subcatchments distant from the gaug-
ing site may have model state variables (soil moisture, depth
to water table, surface storage) that are not strongly cor-
related with the flow measured at the gauge at the same
timestep. At times the correlation can become negative, even
strongly negative, according to the random perturbations ap-
plied. Hence, for example, a model that predicts too high a
flow may try to correct that error during the filtering step by
adding, rather than subtracting, water from the groundwa-
ter store in the distant subcatchments. The additional water
causes a spike flow response in subsequent timesteps. This
is the situation shown in Fig. 15a. In less severe situations,
the correlation may be positive, but not representative of the
stronger connection between current model state in remote
subcatchments and future flow at the gauge. In this situation,
oscillatory behaviour (Fig. 15b) could be produced before
the system settles to the observed flow value. The oscillating
updates to the model state “depth to water table” that cause
this behaviour are shown in Fig. 16. In both cases, the dis-
tortion occurs because the observation data overwhelm the
update time step, and drive the update towards itself. Both
these types of behaviour are resolved by the REnKF, which
both allows for a time lag between cause (change in water
storage) and effect (change in flow), and essentially “tests”
the Kalman filter update by running the model forward in
time to recalculate the simulated flow.

5 Conclusions

In this paper we described the design of a recursive ensem-
ble Kalman filter (REnKF), which iteratively updates model
states prior to an observation. We then demonstrated how the
REnKF was implemented for an operational flow forecast-
ing system. We described the filter design decisions facing
the user, and described the filter parameters and their effect
on the filter behaviour. The performance of the system was
compared with a deterministic model, with a free-running
ensemble and with the standard EnKF, which does not ac-
count for lag times between model states and streamflow at
the catchment outlet.
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Fig. 15. (A) Spike in modelled flow for the Waihua River when using the ensemble Kalman filter.(B) Oscillations in modelled flow for the
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Fig. 16.Updates to depth to water table for each ensemble member
for a sample reach in the Motueka. Modelled and measured flow
are shown for comparison. Lags between updates and flow response
cause oscillations during this period.

Following our investigation, we can make several com-
ments and recommendations for future users of the REnKF
or similar systems in a hydrological context. For the filtering
steps we used the implementation of the EnKF described by
Clark et al. (2008), which perturbs model precipitation, soil
moisture and depth to water table. We found that, of these,
the error parameters controlling perturbations of depth to wa-
ter table were the most sensitive in terms of model ensem-
ble spread and performance. Similarly, the filter updates the
soil moisture storage, depth to water table and surface (rout-
ing) storage, and the updates to the depth to water table were
largest. Updates to the surface storage were within the same
order of magnitude. In contrast, soil moisture storage up-
dates were small, and experiments to increase the ensemble
spread and update size were shown to degrade model perfor-
mance. This result suggests that a future implementation of
the REnKF could reasonably remove the soil moisture stor-
age from the model states to be perturbed or updated. This
would increase the efficiency of the filter, and is unlikely to
reduce forecast quality.

Our results showed that, in cases where large model er-
rors could occur (including due to error in forecast rainfall),
then a large ensemble spread in modelled streamflow was re-
quired for good REnKF performance. This could be achieved
most directly by increasing the fractional error parameter or
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correlation length of the depth to water table perturbations.
The decorrelation time was less important since this time is
typically longer than the time between model updates. How-
ever, the need for a large ensemble spread during high flow
periods had to be balanced against creating too wide a spread
at low flows, and a possible deterioration of performance
where the free-running ensemble was used.

In all, we found a significant improvement in model fore-
casts when using the REnKF, which was able to overcome
the instabilities of filter behaviour found with the EnKF.
Across seven diverse catchments, the REnKF scored con-
sistently highly against the performance measures of NS
score for the ensemble median, and percentage time that the
observed flow fell within the ensemble bounds. We would
therefore recommend the REnKF concepts to other research
groups wishing to use telemetered streamflow data for assim-
ilation into a hydrological model.

Appendix A

REnKF algorithm

The main features of our implementation of the REnKF al-
gorithm involve storing prior forcing data and model states
for later retrieval during the assimilation process. The algo-
rithm also writes model states and associated fluxes to out-
put files after they have been altered for the last time, as the
model steps forward in time past the point at which those
steps could be further altered by the recursive assimilation
scheme.

An important parameter of the REnKF is the lag time,N

(refer to Sect. 2.2.5). This parameter controls the maximum
timestep difference between a streamflow observation and a
prior model state that can be updated during the assimilation
of that observation. To describe the REnKF process in more
detail, assume that a simulation has reached a timestept (t
refers to the end of the timestep interval). At this timestep, the
forcing data for the previousN timesteps have been stored in
temporary memory as well as model states at timestept − N .
The recursive assimilation process for this timestep,t , is as
follows:

1. save forcing data for current timestep in temporary
memory;

2. load model states at time stept − N from temporary
memory;

3. run model from timet − N to t to get the model estimate
of the streamflow observations at timet ;

4. set a recursive timestep counterj equal to zero, used in
the following steps;

5. load model states at timestept − (N − j );

6. assimilate streamflow observation at timet , using the
EnKF to update model states at timet − (N − j);

7. if j = 0, write model states to output files at timet − N ;

8. if j = 1, store model states to temporary memory needed
at step (ii) for next timestep;

9. run the model through one timestep from time
t − (N − j) to timet − (N − j ) + 1;

10. if j = 0, write model fluxes for timestept − (N − j ) + 1
to output files;

11. store model states at timet − (N − j ) + 1 to temporary
memory to use in the next iteration at (v);

12. run the model from timestept − (N − j ) + 1 to t to get
the model estimate of the streamflow observation att ;

13. repeat steps (v) to (xii) forj = 1, 2, ...,N − 1;

14. for j =N , repeat (vi).

REnKF assimilation for streamflow observation at timestep
t is completed. Advance model fromt to t + 1. The pro-
cess is then repeated for all remaining timesteps. This im-
plementation increases the number of model single-timestep
executions by a factor ofF(N) =N(N + 3)/2, which gives
F(12) = 90 andF(24) = 324. It is therefore clear that this im-
plementation of the REnKF is computationally intensive.
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