Articles | Volume 16, issue 10
https://doi.org/10.5194/hess-16-3517-2012
https://doi.org/10.5194/hess-16-3517-2012
Research article
 | 
05 Oct 2012
Research article |  | 05 Oct 2012

Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany

F. Schlenz, J. T. dall'Amico, W. Mauser, and A. Loew

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Remote Sensing and GIS
A robust gap-filling approach for European Space Agency Climate Change Initiative (ESA CCI) soil moisture integrating satellite observations, model-driven knowledge, and spatiotemporal machine learning
Kai Liu, Xueke Li, Shudong Wang, and Hongyan Zhang
Hydrol. Earth Syst. Sci., 27, 577–598, https://doi.org/10.5194/hess-27-577-2023,https://doi.org/10.5194/hess-27-577-2023, 2023
Short summary
Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil moisture beyond the 1 km scale
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022,https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
An inverse dielectric mixing model at 50 MHz that considers soil organic carbon
Chang-Hwan Park, Aaron Berg, Michael H. Cosh, Andreas Colliander, Andreas Behrendt, Hida Manns, Jinkyu Hong, Johan Lee, Runze Zhang, and Volker Wulfmeyer
Hydrol. Earth Syst. Sci., 25, 6407–6420, https://doi.org/10.5194/hess-25-6407-2021,https://doi.org/10.5194/hess-25-6407-2021, 2021
Short summary
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021,https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Parameter optimisation for a better representation of drought by LSMs: inverse modelling vs. sequential data assimilation
Hélène Dewaele, Simon Munier, Clément Albergel, Carole Planque, Nabil Laanaia, Dominique Carrer, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017,https://doi.org/10.5194/hess-21-4861-2017, 2017
Short summary

Cited articles

Albergel, C., Calvet, J.-C., de Rosnay, P., Balsamo, G., Wagner, W., Hasenauer, S., Naeimi, V., Martin, E., Bazile, E., Bouyssel, F., and Mahfouf, J.-F.: Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France, Hydrol. Earth Syst. Sci., 14, 2177–2191, https://doi.org/10.5194/hess-14-2177-2010, 2010.
Albergel, C., Zakharova, E., Calvet, J.-C., Zribi, M., Pardé, M., Wigneron, J.-P., Novello, N., Kerr, Y., Mialon, A., and Fritz, N.-E.-D.: A first assessment of the SMOS data in southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign, Remote Sens. Environ., 115, 2718–2728, https://doi.org/10.1016/j.rse.2011.06.012, 2011.
Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226, https://doi.org/10.1016/j.rse.2011.11.017, 2012.
Bach, H. and Mauser, W.: Methods and examples for remote sensing data assimilation in land surface process modeling, IEEE T. Geosci. Remote Sens., 41, 1629–1637, 2003.
Bach, H., Braun, M., Lampart, G., and Mauser, W.: Use of remote sensing for hydrological parameterisation of Alpine catchments, Hydrol. Earth Syst. Sci., 7, 862–876, https://doi.org/10.5194/hess-7-862-2003, 2003.