Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/hess-2020-83
https://doi.org/10.5194/hess-2020-83
06 Apr 2020
 | 06 Apr 2020
Status: this preprint was under review for the journal HESS but the revision was not accepted.

Comparison of occurrence-bias-adjusting methods for hydrological impact modelling

Jorn Van de Velde, Bernard De Baets, Matthias Demuzere, and Niko E. C. Verhoest

Abstract. Over the past decade, various methods for bias adjustment of precipitation occurrence or intensity have been proposed. However, the performance of combined methods has not yet been thoroughly evaluated, especially in a hydrological and climate change context. In this study, four occurrence-bias-adjusting methods are combined with one univariate and one multivariate intensity-bias-adjusting method. The occurrence-bias-adjusting methods include thresholding, Stochastic Singularity Removal, Triangular Distribution Adjustment, and are compared with the intensity-bias-adjusting methods without specific adjustment as a baseline. These combined methods are compared with respect to precipitation amount, precipitation occurrence and discharge. This comparison, summarized in terms of the residual bias relative to both the observations and the model bias,shows significant differences in performance. Occurrence-bias-adjusting methods that add stochasticity perform worse, an effect that is reinforced by multivariate intensity-bias-adjusting methods. The use of simpler methods is thus advised until the uncertainty caused by combining methods is better understood.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
Though climate models have different types of biases in comparison to the observations, most...
Share