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Abstract. Over the past decade, various methods for bias adjustment of precipitation occurrence or intensity have been pro-

posed. However, the performance of combined methods has not yet been thoroughly evaluated, especially in a hydrological and

climate change context. In this study, four occurrence-bias-adjusting methods are combined with one univariate and one mul-

tivariate intensity-bias-adjusting method. The occurrence-bias-adjusting methods include thresholding, Stochastic Singularity

Removal, Triangular Distribution Adjustment, and are compared with the intensity-bias-adjusting methods without specific5

adjustment as a baseline. These combined methods are compared with respect to precipitation amount, precipitation occur-

rence and discharge. This comparison, summarized in terms of the residual bias relative to both the observations and the model

bias, shows significant differences in performance. Occurrence-bias-adjusting methods that add stochasticity perform worse,

an effect that is reinforced by multivariate intensity-bias-adjusting methods. The use of simpler methods is thus advised until

the uncertainty caused by combining methods is better understood.10

1 Introduction

Climate change is one of the largest threats currently faced by society, with impacts on many (eco)systems. These impacts

are caused by the increase in naturally occurring hazards, such as droughts, wildfires, hurricanes and floods (IPCC, 2012).

To assess how these hazards are influenced by climate change conditions, a modeling chain consisting of Global Circulation15

Models (GCMs), Regional Climate Models (RCMs) and local impact models is commonly used (Maraun et al., 2010). The

GCMs are applied to generate global future time series (Eyring et al., 2016). However, their scale is too coarse to be used

directly in local impact models. This is especially true in hydrology, where local meteorological variables such as precipitation

can differ substantially within a watershed. Therefore, RCMs are used to downscale the global data to a local scale. This

is conducted by physically simulating the local climate, using the GCM’s output as boundary conditions. RCMs with a grid20

resolution of 10 km are commonly used, enhancing the amount of available information (Jacob et al., 2014). Nevertheless, some

systematic errors still occur in these models, due to imperfect parametrization, discretization and spatial averaging (Teutschbein
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and Seibert, 2012). These errors lead to the presence of biases, most often in precipitation (Kotlarski et al., 2014). Recently,

convection-permitting models, which have a grid resolution of up to 1 km have become available (Prein et al., 2015; Kendon

et al., 2017; Helsen et al., 2019). However, these models have a high computational demand and their implementation is25

therefore no common practice yet in impact studies. The biases in coarser RCMs are generally described as "a systematic

difference between a simulated climate statistic and the corresponding real-world climate statistic" (Maraun, 2016), though

there is some debate on the use of the term ‘bias’ (Ehret et al., 2012). Biases increase the uncertainty in the last step of the

modeling chain, i.e. the local impact modelling, thus entailing the necessity to adjust them (Fowler et al., 2007; Christensen

et al., 2008; Maraun, 2016). Until recently, the term ‘bias correction’ was prominently used, but to emphasize that most of30

these methods cannot completely remove the bias, the term ‘bias adjustment’ has gained popularity. In this paper, we follow

this recent trend (Vrac et al., 2016; Maraun et al., 2017; Vrac, 2018; Räty et al., 2018; Zscheischler et al., 2019) and thus refer

to ’bias adjustment’.

During the last 15 years, many methods have been developed to overcome the above-mentioned bias problem (see Teutschbein

and Seibert (2012); Gutiérrez et al. (2019) for recent overviews). These methods, which adjust the mean, variance and/or the35

full distribution of the variable under consideration, are well-studied for hydrological impact studies (e.g. Addor and Seibert

(2014); Räty et al. (2018)) and use a ‘transfer function’ to transfer the information from the observations to the simulations.

However, an overlooked aspect in many of these methods is the adjustment of rainfall occurrence. Climate models often sim-

ulate too many rainy days, the so-called drizzle effect (Gutowski et al., 2003; Argüeso et al., 2013) and sometimes too many

dry days (Themeßl et al., 2012). This has since long been acknowledged to be a problem, especially when the intermittence40

of rainfall is important (Ines and Hansen, 2006), as is the case for hydrological impact assessment. A rainy day may cause

an increase in soil moisture. As a consequence, the infiltration capacity decreases, leading to more runoff and riverflow, and

possibly leading to flooding. Though most bias-adjusting methods implement some basic form of frequency correction before

adjusting the bias in intensity, there is limited research on the effect of these methods. One of the earliest studies on the per-

formance of bias adjustment with respect to transition probabilities was published by Rajczak et al. (2016), while Vrac et al.45

(2016) published one of the first studies on the comparison of occurrence-bias-adjusting methods. The latter proposed a new

occurrence-bias-adjusting method, named Stochastic Singularity Removal (SSR). This method was shown to perform well,

but has only been compared with few other methods. As various other occurrence-bias-adjusting methods are also available

and seem to perform well, the goal of this paper is to compare a selection of these methods and study how they interact with

the subsequent intensity-bias-adjusting methods. Most of the common bias-adjusting methods, and therefore also the methods50

used in this comparison, stem from the quantile-mapping-method family (Panofsky et al., 1958). Quantile mapping was found

to be the best-performing method, especially with respect to the simulation of hydrological time series (Rojas et al., 2011;

Gudmundsson et al., 2012). This method adjusts the full distribution of the variable’s future simulations on the basis of cumu-

lative distribution functions (CDFs) of the historical simulations (hs) and the historical observations (ho). A transfer function

is composed from these CDFs, resulting in an adjusted future simulation (fa) for a day i in the time series:55

xfa
i = F−1

xho

(
Fxhs

(
xfs

i

))
, (1)
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with fs the index of the uncorrected future simulations, F a CDF, and Fx the corresponding CDF value for a certain quantile

value x. This process is shown in Fig. 1.

Figure 1. Conceptualization of the quantile mapping method. Every xfs (star) is replaced by a xfa (circle) following Eq. (1), nudging the

future simulations closer to the supposed future observations.

Various extensions and variants of the standard quantile mapping have been proposed. A recent variant is Quantile Delta

Mapping (QDM) (Li et al., 2010; Wang and Chen, 2014; Cannon et al., 2015). It was introduced to better retain the trends60

of the climate model and though being critized (Switanek et al., 2017), it is increasingly used (Mehrotra and Sharma, 2016;

Nguyen et al., 2016; Cannon, 2018). Older quantile mapping methods are also still in use, such as CDF-t (Michelangeli et al.

(2009), used in e.g. Vrac (2018)), and standard empirical quantile mapping, used in e.g. Räty et al. (2018), Zscheischler et al.

(2019). Nevertheless, given its generally good performance, QDM was chosen as the intensity-bias-adjusting method in this

comparison study.65
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During the last few years, multivariate intensity-bias-adjusting methods have received considerable attention. The devel-

opment of these methods became important after some authors began to question the inability of univariate methods such as

QDM to adjust biases in the inter-variable correlation of climate models (Hagemann et al., 2011; Wilcke et al., 2013; He-

witson et al., 2014). Subsequently, many multivariate methods have been proposed (e.g. Li et al. (2014); Mao et al. (2015);

Vrac and Friederichs (2015); Mehrotra and Sharma (2016); Dekens et al. (2017); Cannon (2018); Nguyen et al. (2018)). As70

these methods have increased the complexity of bias adjustment, there is a growing need to study the combined effect of an

occurrence-bias-adjusting method and a subsequent multivariate intensity-bias-adjusting method. To the authors’ knowledge,

the combination of occurrence-bias-adjusting and multivariate intensity-bias-adjusting methods has not yet been investigated.

To make an initial assessment, one multivariate method is chosen to be combined with the different occurrence-bias-adjusting

techniques, namely the Multivariate Bias Correction in n dimensions (MBCn) method (Cannon, 2018). This method is chosen75

as it is one of the more commonly implemented multivariate bias-adjusting methods (Räty et al., 2018; Meyer et al., 2019;

Zscheischler et al., 2019). Additionally, it only differs from the QDM method in the final step, where a rank-based shuffling is

applied. All differences in performance may thus be linked to this step.

The use of both a univariate and a multivariate intensity-bias-adjusting method will facilitate a more complete comparison

of the occurrence-bias-adjusting methods and their interaction with other methods. The methods compared in this paper in-80

clude the combination of three occurrence-bias-adjusting methods with respectively a classic univariate intensity-bias-adjusting

method, i.e. QDM, and a multivariate intensity-bias-adjusting method, i.e. MBCn. The three occurrence-bias-adjusting meth-

ods include an extended thresholding method, a stochastic thresholding method using the triangular distribution, and the SSR

method. These can all be considered more advanced methods. Simpler methods, such as the ‘positive correction’ (Mao et al.,

2015) and the ‘threshold adaptation’ method (Schmidli et al., 2006) were proven to be outperformed by SSR (Vrac et al., 2016).85

To enable a baseline comparison, the intensity-bias-adjusting methods are also applied without any specific occurrence-bias-

adjustment, which corresponds to the direct approach as also implemented in Vrac et al. (2016). The intensity-bias-adjusting

methods used here inherently apply a basic occurrence-bias-adjustment: if the observations have more dry days than the sim-

ulations, the days with the lowest precipitation amounts are automatically mapped to zero precipitation due to the quantile

mapping. It also works the other way around: if the observations have less dry days, then days with a low precipitation depth90

are mapped to a higher precipitation amount.

The comparison in this paper is performed by calibrating on historical time series and validating on recent past time series. In

order to perform a robust calibration and validation, the time series used has to be long enough (Berg et al., 2012). In Belgium,

the Royal Meteorological Institute collects precipitation measurements in Uccle since the late 19th century. This time series

has been used in multiple studies (Verhoest et al., 1997; De Jongh et al., 2006; Verstraeten et al., 2006; Vandenberghe et al.,95

2011; Willems, 2013) and will also be used in this study. All the combined methods will be compared using this rainfall time

series as observations (Demarée, 2003) to adjust EURO-CORDEX RCM simulations (Jacob et al., 2014). The time series is

used for the period 1970-1989 for calibration and for the period 1998-2017 for validation. This allows for the assessment of

the effect of climate change trends on bias adjustment, as there is a visible impact in the validation time window (IPCC, 2013).

If the data are used in this way, it is possible to gain understanding of how the bias-adjusting methods will perform under100
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real future conditions, e.g. from 2070-2100, a period that is often used to study future conditions. To evaluate the precipitation

adjustment thoroughly, indices have been chosen for the precipitation amount, its occurrence and the resulting discharge. The

use of these indices permits a clear comparison of the combined methods and their performance.

To summarize, the goal of this study is to compare the performance and hydrological impact of eight different combina-

tions of occurrence- and intensity-bias-adjusting methods in a climate change context. This paper is structured as follows. In105

Section 2, the observational data and climate model simulations are addressed. In Section 3, the occurrence- and intensity-

bias-adjusting methods are explained together with the evaluation and calculation set-up. In Section 4, a novel visualisation

method, based on residual biases is explained and used to present the results, with a discussion in Section 5 and a conclusion

in Section 6.

2 Data110

2.1 Observations

The observational data used were obtained from the Belgian Royal Meteorological Institute (RMI) Uccle observatory. The

most important time series used is the 10-min precipitation amount, gauged with a Hellmann-Fuess pluviograph, from 1898 to

2018. An earlier version of this precipitation dataset was described by Demarée (2003) and analyzed in De Jongh et al. (2006).

The 10-min precipitation time series was aggregated to daily level to be comparable with the other time series used. As the last115

complete year was 2017, the data were used from 1901 to 2017, amounting to 117 years of daily data.

For the multivariate method, the precipitation time series was combined with a 2 meter air temperature and potential evapo-

ration time series. The daily potential evaporation was calculated by the RMI from 1901 to 2019, using the Penman formula for

a grass reference surface (Penman, 1948) with variables measured at the Uccle observatory. Daily average temperatures were

obtained using measurements from 1901 to 2019. Limited by the length of the precipitation time series, the same 117 years of120

data as for the univariate method were used.

2.2 Climate simulations

For the simulations, data from the EURO-CORDEX project (Jacob et al., 2014) were used. The Rosby Centre regional climate

model RCA4 was used (Strandberg et al., 2015) as it is one of the few RCMs with potential evaporation as an output variable.

This RCM was forced with boundary conditions from the MPI-ESM-LR GCM (Popke et al., 2013). Historical data and scenario125

data for the grid cell comprising Uccle were respectively obtained for 1970-2005 and 2006-2100. The former time frame is

limited by the earliest available data from the RCM. The latter time frame was only used until 2017, in accordance with the

observational data. As climate change scenario, an RCP4.5 forcing was used in this paper (Van Vuuren et al., 2011). Since only

‘near future’ (from the model point of view) data were used, the choice of forcing does not have a large impact. However, when

studying scenarios in a time frame further away from the present, using an ensemble of forcings is more relevant to be aware130

of the uncertainty regarding future climate change impact. Evaluations of the RCA4 model have shown that there is a bias in
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precipitation, especially in winter (Strandberg et al., 2015), but this bias is in line with the biases from other EURO-CORDEX

models (Kotlarski et al., 2014).

As Uccle (near Brussels) is situated in a region with small topographic differences, it is assumed that the conditions in Uccle

can be applied anywhere within the climate model grid cell and the variance within this cell is about the same. This assumption135

can be made as long as the resulting adjusted data are not used for extremely localized studies, such as urban hydrology impact

assessment.

3 Bias-adjusting methods

3.1 Thresholding

Thresholding is one of the most common occurrence-bias-adjusting methods and has been in use for many years (e.g. Hay and140

Clark (2003); Schmidli et al. (2006); Ines and Hansen (2006)). This method assumes more wet days in the simulations than in

the observations (Vrac et al., 2016; Themeßl et al., 2012), an idea based on the drizzle effect of RCMs (Gutowski et al., 2003).

For Belgium, this assumption holds: the drizzle effect generally occurs in RCMs in north-western Europe (Themeßl et al.,

2012). The simplest form of thresholding transforms all values in the climate model simulations below a certain threshold

to 0. A more advanced method, used e.g. in Switanek et al. (2017), ensures that the number of days below the threshold in the145

observed and simulated time series is the same.

To adjust the number of wet and dry days, the frequency of dry days in the observations and in the simulations is calculated.

The difference between the two frequencies, ∆N , is the number of days of the simulation time series that has to be adapted.

This adaption is done by sorting the wet days in increasing order of precipitation amount and thus only changing the ∆N

lowest days of the simulation time series by setting them to 0.150

In this advanced version of thresholding, some considerations are made. First, a day is considered wet if its simulated

precipitation amount is above 0.1 mm, to account for measurement errors in the observations. Second, the adjustment is done

on a monthly basis, to withhold a realistic temporal structure. This implies that to correct the number of wet days in month

m, all days of month m of the time series are selected. Third, both historical and future simulations are adjusted at the same

moment, to ensure a sound comparison during the intensity phase of the adjustment. If only either the historical or future time155

series would have been adjusted, the assumption that the bias can be transferred from the historical to the future time period

would be impaired. The thresholding method is summarized in Algorithm 1.
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Algorithm 1 Thresholding

Input:

Historical observations Xho

Historical simulations Xhs

Future simulations X fs

Output:

Adjusted historical Xhs
out and future simulations X fs

out

Initialization

for m= 1 : 12 do

Select data for month m: Xho
m , Xhs

m and X fs
m {Loop over months}

Calculate the percentage of dry days in month m for the historical observations

Calculate the percentage of dry days in month m for the historical simulations

Calculate ∆N for month m

{Adjustment of historical simulated time series}

Select and sort the wet days

Set the ∆N wet days with the lowest precipitation amount to 0

Restore the original order of the wet days of month m

Restore the full historical time series for month m

{Adjustment of future simulated time series}

Select and sort the wet days

Set the ∆N wet days with the lowest precipitation amount to 0

Restore the original order of the wet days of month m

Restore the full future time series for month m

{Reconstruction}

Replace the data in Xhs
out with the adjusted data for month m

Replace the data in X fs
out with the adjusted data for month m

end for

3.2 Stochastic Singularity Removal

To overcome the assumption that the simulated time series has to have more wet days than the observations, Vrac et al. (2016)

proposed the Stochastic Singularity Removal (SSR) method. This method temporarily removes the zeroes from all time series160

and reintroduces the zeroes after the bias adjustment is done, based on the frequency method mentioned in Cannon et al. (2015)

and a method used to alter temperature data in Zhang et al. (2009).
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The removal of zeroes is done by calculating the lowest amount of rain Pmin in any of the time series used, including the

historical observations, historical simulations and future simulations. If days with a precipitation amount below 0.1 mm are

considered to be dry days (based on the measurement error, see Section 3.1), Pmin is the lowest amount of precipitation above165

0.1 mm. As Vrac et al. (2016) mention, the use of a precipitation threshold for dry days does not have any implications, but is

implemented here to be in line with other implementations of the measurement error. For all days with rainfall amounts below

Pmin, a new rainfall depth Pnew is randomly drawn from a uniform distribution on [0.1,Pmin]. The random simulation also

adds a stochastic element to this form of bias adjustment, which some authors have noted to be necessary (Maraun, 2013; Mao

et al., 2015; Vrac, 2018). By using this method, the subsequent intensity-bias adjustment will be applied on all days, as if they170

were all wet days. There are thus no longer dry days, or singularities, in the time series, hence the method’s name. After the

application of the intensity-bias adjustment, a last post-processing step is applied: all days of X fs with a rainfall amount below

Pmin are set to zero. The full procedure is summarized in Algorithm 2.

Algorithm 2 SSR

Input:

Historical observations Xho

Historical simulations Xhs

Future simulations X fs

Output:

Adjusted historical Xhs
out and future simulations X fs

out

{Before the intensity-bias adjustment}

Determine the length of the time series Ndays

Determine Pmin based on Xho, Xhs and X fs

for i= 1 : Ndays do

if Xho(i)< Pmin then

Simulate a new value

end if

if Xhs(i)< Pmin then

Simulate a new value

end if

if X fs(i)< Pmin then

Simulate a new value

end if

end for

{After the intensity-bias adjustment}

Set all X fs < Pmin to 0
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3.3 Triangular Distribution Adjustment

The Triangular Distribution Adjustment method (TDA), as developed by Pham (2016), is a more complex method. In the first175

step, the number of days to be removed from or added to the future time series is calculated using the ratio of the historical

observation and simulation dry day frequency respectively fho and fhs. This ratio is assumed to be the same for the future

scenarios such that it can be used to calculate a corrected future dry day frequency, f fa, which is in turn used to calculate the

number of days ∆N to be removed or added.

To make sure that the removal or addition of dry days does not change the extremes and adds stochasticity (noted to be180

necessary by Maraun (2013); Mao et al. (2015); Vrac (2018)), the triangular distribution, hence the method’s name, is used.

The general idea of this method is given in Figure 2. The CDF of the triangular distribution is given by

T (x) =





1− (b−x)2

b2 if 0≤ x < b

1 if b≤ x
(2)

The single parameter of this triangular distribution, b, is based on a threshold value xthr, to ensure that extreme values are not

removed, and is calculated as follows:185

b= Fxfs (xthr | x > 0.1) , (3)

with Fxfs (x | x > 0.1) the CDF of the precipitation of wet days.

Dry days are added as follows:

1. For every wet day to be removed, chose a day t (with precipitation xt > 0.1) randomly from the wet day time series.

This day has a corresponding cumulative probability of ξ = Fxfs (xt | x > 0.1).190

2. Sample k from a uniform distribution on [0,1]. If T (ξ)< k, then draw xt from a uniform distribution on [0,0.1] to

replace a rainy day with a dry day. x is drawn randomly, to take into account that model simulations hardly have zero

values.

3. If T (ξ)> k, then repeat from step 1.

If dry days need to be removed, this is done using the value of ξ, which is calculated using Eq. (2):195

T (ξ) = 1− (b− ξ)2
b2

from which ξ = b
(

1−
√

1−T (ξ)
)
. (4)

In this case, there is no restriction on the choice of days, except that they have to be dry. Thus ∆N dry days will be randomly

selected from the time series and removed, without considering the temporal structure of the time series. The process of dry

day removal is given as follows:

9

https://doi.org/10.5194/hess-2020-83
Preprint. Discussion started: 6 April 2020
c© Author(s) 2020. CC BY 4.0 License.



1. For every dry day to be removed, choose a dry day t randomly from the dry day time series (with xt < 0.1) and sample200

k from a uniform distribution on [0,1].

2. T (ξ) = k and thus ξ = b
(
1−
√

1− k
)
.

3. Then set xt = F−1
xfs (ξ) = F−1

xfs

(
b
(
1−
√

1− k
)
| x > 0.1

)
.

Figure 2. Overview of the distributions used in TDA: (a) CDF of the precipitation of the wet days in the future simulation, (b) CDF of the

triangular distribution. Adapted from Pham (2016).

As in thresholding, this method is applied on a monthly basis and for both historical and future simulations, which results in

Algorithm 3.205
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Algorithm 3 Triangular Distribution Adjustment

Input:

Historical observations Xho

Historical simulations Xhs

Future simulations X fs

Output:

Adjusted future simulations X fs
out

Initialization

for m= 1 : 12 do

Select data for month m: Xho
m , Xhs

m and X fs
m {Loop over months}

Calculate fhs, fho and f fs {Begins dry day frequency calculation}

Calculate f fa = f fs · fho/fhs

Calculate the difference in dry days ∆N

Select the wet days for month m {Empirical CDF}

Select the dry days for month m

Calculate the empirical CDF Fxfs for the wet days

{Adjustment}

if ∆N > 0 then

{Begins addition of dry days} while counter ≤ ∆N do

Randomly select a day t

Calculate ξ using xt

Select a random value k

if T (ξ)< k then

Randomly replace the value of day t with a value on [0,0.1]

Add 1 to the counter

end if

end while

else if ∆N < 0 then

{Begins Removal of dry days} Set counter to 1 while counter ≤ |∆N | do

Randomly select a day t

Calculate ξ

Calculate xt

Add 1 to the counter

end while

end if

Recombine the wet and dry day time series in the original order for the month m

Reintroduce the adjusted data for month m in the original time series

end for
11
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Note that Algorithm 3 is easily adapted for historical simulations by calculating ∆N using only fhs and fho, in the same

way as in Algorithm 1. The parameter b was set to 0.9, as this ensures that the highest extremes are never changed to dry days,

while not restricting the choice of days.

3.4 Quantile Delta Mapping

The Quantile Delta Mapping (QDM) method was first proposed by Li et al. (2010), with the idea of preserving the climate210

simulation trends and taking some non-stationarity into account, and was extended by Wang and Chen (2014) to be able to

handle precipitation adjustment better. A comparison with other quantile mapping methods by Cannon et al. (2015) proved

this method to outperform others with respect to the preservation of trends. Cannon et al. (2015) bundled both the methods by

Li et al. (2010) (Equidistant CDF-matching) and Wang and Chen (2014) (Equiratio CDF-matching) under the name ‘Quantile

Delta Mapping’. This name was chosen because of the link with other delta methods, as presented in Olsson et al. (2009),215

Willems and Vrac (2011) and Räty et al. (2014). Consequently, the name QDM will also be used in this paper.

Mathematically, this method can be written as

xfa
i = xfs

i +F−1
xho

(
Fxfs

(
xfs
))
−F−1

xhs

(
Fxfs

(
xfs
))

(5)

in the additive case and

xfa
i = xfs

i

F−1
xho

(
Fxfs

(
xfs
))

F−1
xhs (Fxfs (xfs))

(6)220

in the ratio or multiplicative case. In this paper, the additive version is used for temperature time series and the multiplicative for

precipitation time series. This choice is based on the work of Wang and Chen (2014), who have shown that using the additive

version for precipitation results in unrealistic precipitation values and introduced a multiplicative version.

To ensure the consistency of the time series, Themeßl et al. (2011) implemented a 61-day moving window. Here, a 91-day

moving window is opted for, as suggested by Rajczak et al. (2016) and Reiter et al. (2018). This enables the adjustment of225

each day based on 91days/year · 20years = 1820 days. These days were used to build an empirical CDF (as in Gudmundsson

et al. (2012); Gutjahr and Heinemann (2013), among others), because of the ease of application. It is also important to note

that for precipitation and evaporation, the adjustment was calculated and applied only on the days considered wet, e.g. with a

precipitation higher than 0.1 mm.

3.5 Multivariate Bias Correction in n dimensions230

About 10 years ago, it became clear that multivariate correlation adjustment was necessary, as different studies started pointing

out that univariate methods could never directly adjust the correlation bias in climate models (Hagemann et al., 2011; Wilcke

et al., 2013; Hewitson et al., 2014). This problem encouraged the publication of many studies describing multivariate bias-

adjusting methods (e.g. Li et al. (2014); Mao et al. (2015); Vrac and Friederichs (2015); Mehrotra and Sharma (2016); Dekens
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et al. (2017); Cannon (2018); Nguyen et al. (2018)). These methods all use different approaches to describe the dependence235

between variables. However, Cannon (2018) recently pointed out that many of these approaches are either too limited to adjust

dependence, as in Mehrotra and Sharma (2016) or Cannon (2016), or that they make strong stationarity assumptions, as in

Vrac and Friederichs (2015). Consequently, Cannon (2018) proposed a novel method, based on the N-dimensional probability

density function transform (N-pdft), from the field of image processing and computer vision (Pitié et al., 2005, 2007). Instead

of adjusting pixels with an RGB colour combination, this method is now used for adjusting time steps with meteorological240

variables. Combining this with the trend-preserving QDM, Cannon named this multivariate bias-adjusting method ‘Multivariate

Bias Correction in n dimension’ (MBCn). Though this paper follows the recent trend to use ‘adjust’ instead of ‘correct’, the

name ‘MBCn’ will be used for clarity and clear reference to the original method.

In brief, the method consists of three steps that are applied iteratively until convergence is reached and a fourth step to

restore the trends. These steps are applied on the different types of data: historical observations of temperature, evaporation245

and precipitation (combined in the matrix Xho), historical climate model simulations of the three variables (the matrix Xhs)

and climate model projections of the three variables (the matrix Xfs), which have to be adjusted. All these datasets are of

size T ×N , with T the number of time steps and N the number of variables. As there were no prior examples of evaporation

bias-adjustment, it was assumed that this variable could be adjusted in the same manner as precipitation, i.e. a multiplicative

adjustment was used and only ‘wet days’ (evaporation > 0.1 mm) were adjusted.250

Considering the j-th iteration of the method, denoted by the subscript [j], the first step consists of rotating the data sets

using an N ×N randomly generated orthogonal rotation matrix R[j]. This orthogonal rotation matrix was created using the

algorithm by Mezzadri (2007, pg. 597). This rotation is formulated as

X̃hs
[j] = Xhs

[j]R[j]

X̃fs
[j] = Xfs

[j]R[j]

X̃ho
[j] = Xho

[j]R[j]

(7)

with X̃[j] the resulting rotated matrix. In the next step, quantile delta mapping is applied to each variable in X̃hs
[j] and X̃fs

[j],255

using the corresponding variable in X̃ho
[j] as the target. The resulting matrices Xhc

[j] and Xfa
[j] are rotated back:

Xhs
[j+1] = Xhc

[j]R
−1
[j]

Xfs
[j+1] = Xfa

[j]R
−1
[j]

Xho
[j+1] = Xho

[j]

(8)

These steps have to be repeated until the multivariate distribution of Xhs
[j+1] matches Xho, or the similarity between the two

matrices cannot be increased further. This is measured using the (squared) energy distance (Székely and Rizzo, 2004, 2013;
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Rizzo and Székely, 2016), a measure of statistical discrepancy between two multivariate distributions. For two N -dimensional260

independent random vectors x and y with respective CDFs F and G, this measure is given by:

D2 (F,G) = 2E [|| x−y ||]−E [|| x−x′ ||]−E [|| y−y′ ||]≥ 0 (9)

with E the expected value, || . || the Euclidean norm and x′ and x and y′ and y i.i.d.. A practical way of calculating this

measure is as follows (Székely and Rizzo, 2013), with X = (X1, ...,Xn1) and Y = (Y1, ...Yn2):

D (X,Y) =
2

n1n2

n1∑

i=1

n2∑

m=1

|Xi−Ym |

− 1
n2

1

n1∑

i=1

n1∑

j=1

|Xi−Xj |

− 1
n2

2

n2∑

l=1

n2∑

m=1

| Yl−Ym | ,

(10)265

with i, j, l and m denoting the time steps. In this study, a tolerance of 0.0001 was used to ensure that the computation would

not take too long.

As a last step, the preservation of trends of QDM has to be combined with the restoration of the multivariate ranks by the

transformations. To do this, first either the equidistant or equiratio version of quantile delta mapping (depending on the variable)

has to be applied to each variable of the original data set Xfs, using Xhs and Xho as historical baseline data. As a final step,270

the elements of each column of Xfa are reordered following a method known as the ‘Schaake Shuffle’ (Clark et al., 2004; Vrac

and Friederichs, 2015). In this method, the ranks of each variable of Xfa are swapped with the ranks of the corresponding

variables of Xfs
[j+1], thus reordering the time series’ structure according to the ranks of the observations. The Schaake Shuffle

can be mathematically formulated as follows (Clark et al., 2004). Let X be a vector of n time steps of a variable, and χ be the

sorted vector of X, that is:275

X = (x1,x2, ...xn) , and (11)

χ=
(
x(1),x(2), ...x(n)

)
, x(1) ≤ x(2)...≤ x(n) (12)

Let Y be a vector of n historical observations and γ be the sorted vector of Y:

Y = (y1,y2, ...yn) , and (13)

γ =
(
y(1),y(2), ...y(n)

)
, y(1) ≤ y(2)...≤ y(n). (14)280

B is then the vector of indices describing the original observation number that corresponds to the values in the ordered vector γ.

The main step of the Schaake Shuffle is to reconstruct the reordered vector Xss:

Xss = (xss
1 ,x

ss
2 , ...,x

ss
n ) (15)
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where

xss
q = x(r), q = B [r] ,and r = 1, ...,n (16)285

This method is essentially the only difference with the univariate QDM, implying that differences in performance can be related

to it.

The MBCn method was shown by Cannon (2018) to outperform many earlier multivariate bias-adjusting methods, such as

the EC-BC (Vrac and Friederichs, 2015), the JBC (Li et al., 2014), MBCr and MBCp methods (Cannon, 2016). In contrast,

Cannon (2018) also pointed out some problems. Depending on the number of variables, the computational cost can get too290

high and convergence speed too low, or overfitting might become an issue. The first problem can be tackled by implementing

sufficient time steps when having a lot of variables. Second, to address the convergence speed, Pitié et al. (2007) suggested

using a deterministic selection of rotation matrices that maximizes the distance between rotation axis sets instead of randomly

generating them. It is also suggested by Cannon (2018) to use the most efficient form of quantile mapping and to limit the use

of an advanced quantile mapping technique to the last step. Third, to avoid overfitting (and to reduce the computational cost),295

early stopping is suggested (e.g. Prechelt (1998)).

3.6 Evaluation

To compare and evaluate different bias-adjusting methods, a logical evaluation structure is required. One of the goals of this

study is to compare the bias-adjusting methods in a climate change context. To do this, 1970-1989 was chosen as the control

or ‘historical’ time period and 1998-2017 as the validation or ‘future’ period. Choosing these time frames allowed for a300

comparison with observations in the validation period for a time period that was already affected by climate change (IPCC,

2013). For a robust calculation of the bias adjustment, 30 years of data are advised (Berg et al., 2012; Reiter et al., 2018). This

decreases the effect of internal variability of the climate model and therefore decreases the uncertainty of the bias adjustment

results (Maraun, 2012). However, 30 years of data would in this specific case have resulted in overlapping time series, as no

earlier data are available. This would have consequently decreased the differences between the time series. The 20 years chosen305

as an alternative were used in a set-up called a ‘pseudo-projection’ (e.g. Li et al. (2010)). This evaluation set-up resembles the

Differential Split-Sample Testing (DSST) implemented by Teutschbein and Seibert (2013), which is based on the work of

Klemeš (1986). In DSST, the calibration and validation time series are chosen to make the difference between both as large as

possible, which allows to study how robust a model is to changes.

Besides the choice of calibration and validation years, it is important to define the indices used for the evaluation (Table 1).310

As discussed by Maraun et al. (2015) and Maraun and Widmann (2018), it is important to use indices that are both directly

and indirectly affected by the bias adjustment. They argue that only using directly adjusted indices can possibly be misleading,

especially when using cross-validation. To account for this, indices based on the discharge Q were used (indices 2 and 3).

These indices allowed for the assessment of the impact of the occurrence-bias-adjusting methods on simulated river flow. As a

final important group of indices, occurrence indices were used, in order to assess how the combined methods differ in changing315

the precipitation occurrence of the time series (indices 4 to 7). For the precipitation amount, the quantiles of the empirical
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Table 1. Overview of the indices used

Nr Index Name

1 Px Precipitation amount quantiles, with x the quantile considered

2 Qx Discharge quantiles, with x the quantile considered

3 QT20 20-year return period value of discharge

4 PP00 Precipitation transition probability from a dry to a dry day

5 PP10 Precipitation transition probability from a wet to a dry day

6 Ndry Number of dry days

7 Plag1 Precipitation lag-1 autocorrelation

distributions were considered. Expert Team on Climate Change Detection and Indices (ETCCDI) precipitation indices (Zhang

et al., 2011) have also been considered and calculated. However, these are not included in this paper, as the ETCCDI indices

did not allow to discern between the different combined methods. All indices were calculated taking all days into account,

instead of only calculating them on wet days.320

Similar to Pham et al. (2018), we use the Probability Distributed Model (PDM, Moore (2007)), a lumped conceptual rainfall-

runoff model to calculate the discharge for the Grote Nete watershed in Belgium. The PDM as used here was calibrated by

Cabus (2008) using the Particle Swarm Optimization algorithm (PSO, Eberhart and Kennedy (1995)). As in Pham et al. (2018),

it was assumed that the differences between meteorological conditions in the Grote Nete-watershed and Uccle are negligible,

and that thus the adjusted data for the Uccle grid cell can be used as a forcing for the PDM. Furthermore, the goal is not to325

make predictions, but to assess the impact of different post-processing chains on the discharge values. To calculate the bias on

the indices, both the raw and adjusted RCM time series were used as forcing for this model.

3.6.1 Calculation set-up

As some of the bias-adjusting methods include randomness, it is important to have enough computer simulations to account

for variability. Yet, to ensure the availability of sufficient computing capacity, just 20 calculations were carried out for each330

stochastic step. Only 1 calculation is used in the case of a deterministic method, as more simulations will always result in

the same outcome. All methods used here, except for SSR and TDA, are deterministic, thus only the combinations of these

methods with respectively QDM and MBCn were simulated 20 times. After these multiple calculations were carried out, the

value of each index was first calculated on the basis of every simulation. Then, the values were averaged over the simulations;

these averaged values were used for the comparison of the methods. Biases on the indices are always calculated as simulations335

minus observations, indicating a positive bias if the simulations are larger than the observations and vice versa.

16

https://doi.org/10.5194/hess-2020-83
Preprint. Discussion started: 6 April 2020
c© Author(s) 2020. CC BY 4.0 License.



4 Results

The results are shown and discussed according to the used uni- or multivariate intensity methods. For each intensity method,

the results are shown for three coherent groups of indices used: precipitation amount, precipitation occurrence and discharge.

To summarize and compare the performance of the methods for each of the index groups, the residual biases for the indices340

of each combination of occurrence-bias-adjusting and intensity-bias-adjusting methods were calculated, based on the ‘added

value’ concept (discussed in Di Luca et al. (2015)). This residual bias can be calculated relative to the model bias or the

observations. This enables a comparison based on how well the methods perform in removing the bias and the size of the bias

removal in comparison with the original value for the corresponding index for the observation time series. The residual bias

relative to the observations RBO for an index k is calculated as follows345

RBOk = 1− | biasraw,k | − | biasadj,k |
| obsk |

(17)

wit obsk, biasraw,k and biasadj,k respectively the value of the observations for index k, the bias of the raw climate model simula-

tions and of the adjusted climate simulations for index k. .

The residual bias relative to the model bias RBMB for an index k is calculated as follows

RBMBk = 1− | biasraw,k | − | biasadj,k |
| biasraw,k |

(18)350

The absolute values are used for calculation to indicate the distance between the raw and adjusted values, thus neglecting if

the sign of the bias is changed. If the values of these residual biases are lower than 1 for an index, the method performs better

than the raw RCM for this index. For the RBMB it is impossible to have values lower than 0. However, for RBO, this is possible,

if the value after bias adjustment is exceptionally small in comparison to the value of the observations. The best methods have

low scores on both residual biases for their indices.355

The original data used for these residual biases, i.e. the observational data, the raw climate simulations and the effective

biases of the adjusted simulations, can be found in Appendix A.

4.1 Univariate bias adjustment

For the univariate case, QDM was used without a specific occurrence correction, and in combination with thresholding, SSR

and TDA. This yields four time series, which will be compared on basis of the precipitation amount, precipitation occurrence360

and discharge indices.

4.1.1 Precipitation amount

In Fig. 3, it can be seen that for all occurrence-bias-adjusting methods, the adjusted simulations perform better than the raw

climate simulations, for most quantiles, with values ranging from 0.39 to 0.98 for RBO and from 0.10 to 0.79 for RBMB. Only
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the highest quantile (99.5) performs worse than the climate simulations and can thus not be plotted. This quantile has for all365

occurrence methods a value of 1.09 for RBO and of 2.69 for RBMB. This is as expected: the QDM method has been proven in

other papers to generally perform well (Cannon et al., 2015). However, in contrast to many other quantile mapping methods

(e.g. Li et al. (2010)), quantile delta mapping does not apply extrapolation for the highest quantiles. This extrapolation is often

advised for these quantiles, as their simulated values might be larger than the largest values of the observations. Applying no

extrapolation causes underestimation, which is demonstrated here. This implies that QDM might perform even better if this370

extrapolation or a parametric approach were implemented, as was the case in the original version of Li et al. (2010). This effect

is also visible in the other quantiles: the values for both RBO and RBMB rise with the higher quantiles. This implies that it is

harder to correctly adjust the bias for the higher quantiles and that the 90th quantile and higher quantiles are also influenced by

this extrapolation problem. Three other quantiles cannot be plotted besides the 99.5th: the 5th, the 25th and 50th quantile. The

value for the observations of the former two is 0 mm, which causes the RB0 to be impossible to calculate. The latter is very375

small for RBO, caused by a decrease in bias that is larger than the observed value.

Figure 3. RBMB versus RB0 for the univariate precipitation amount quantiles. (a) without specific adjustment, (b) thresholding, (c) SSR, (d)

TDA.

As for the comparison of the occurrence-bias-adjusting methods, all methods perform similarly. This was to be expected, as

the difference in dry days between the methods is relatively small compared to the total number of dry days and its influence

is thus negligible.
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4.1.2 Precipitation occurrence380

For the precipitation occurrence, the indices indicate that all bias-adjusted simulations perform better than the climate simula-

tions (Fig. 4). The values for RB0 range from 0.54 to 0.88 and from 0 to 0.46 for RBMB. The RBMB values indicate that the

bias is almost entirely removed, although the RB0 values imply that this bias removal does not add much value in comparison

to the observations.

In contrast to the precipitation amount indices, the performances of the transition probabilities depend on the occurrence-385

bias-adjusting method used. The best values are obtained without a specific occurrence-bias-adjusting method or when the

thresholding method is used. The SSR method performs the worst of all methods considered, while the TDA has an intermediate

performance. An effect by the occurrence-bias-adjusting methods on the transition probabilities was expected by construction.

However, the differences noticed here are not in line with the expectations. It is often assumed that additional randomness,

which is introduced by the TDA and SSR methods, brings the simulations closer to the observations. Our results seem to390

contradict this assumption, as TDA and SSR have a worse performance than thresholding or the baseline without any specific

occurrence-bias-adjustment. This indicates that the climate models simulated the wet and dry days at the right positions in the

time series. In that case, the additional randomness induced on wet days by TDA and SSR might change the simulated time

series too much. This is especially striking for the number of dry days, which SSR adjusts worst. Whereas the other methods

completely remove the bias in number of dry days, the simulations are still biased after occurrence-bias-adjustment by SSR.395

This implies that the final step of SSR, the reintroduction of dry days, reintroduces too few dry days.

4.1.3 Discharge

For the discharge, the quantiles and the 20-year return period value all indicate a better performance of the adjusted climate

simulations than the original climate simulations, as summarized in Fig. 5. The values for RB0 range from 0.04 to 0.74 and

from 0.01 to 0.34 for RBMB. This is in line with the precipitation amount quantile results mentioned above and implies that400

adjusted simulations are almost bias-free. The range in values for RB0 is mostly related to the small absolute range of the bias

values, ranging from -0.03 m3/s to 0.97 m3/s.

There are some small differences between the occurrence-bias-adjusting methods, indicating that the combination of the non-

linear PDM and the occurrence-bias-adjusting methods increases the effect of the latter. However, these differences are subtle

and it is hard to discern the best method. Only the 99th quantile for the TDA method indicates a slightly better performance405

than the other methods. However, this difference is small: TDA has a RBMB value of 0.03 for this quantile whereas the other

methods have values of 0.08 or 0.09.

The small, almost indiscernible differences seem to imply that for the combinations of QDM and occurrence-bias-adjusting

methods, the more advanced methods do not bring any added value.
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Figure 4. RBMB versus RB0 for the univariate precipitation occurrence indices. (a) without specific adjustment, (b) thresholding, (c) SSR,

(d) TDA.

4.2 Multivariate bias adjustment410

For the multivariate case, MBCn was used in combination with no specific occurrence correction, thresholding, SSR and TDA.

As in the univariate case, this yields four resulting time series, which will be compared on the basis of the precipitation amount,

precipitation occurrence and discharge indices.

4.2.1 Precipitation amount

Figure 6 illustrates that the results for the precipitation amount indices of the combinations of occurrence-bias-adjusting meth-415

ods and MBCn are essentially the same as those for QDM. This follows from the construction of MBCn: in the last steps, QDM

is applied and the resulting time series is changed on the basis of the ranks of the previous steps of MBCn, using the Schaake

Shuffle. A change in ranks has no influence on the CDF and corresponding quantiles of precipitation amount, which explains

that the plots are the same. More information on the specific quantiles can be found above, in Subsection 4.1.1.

4.2.2 Precipitation occurrence420

Unlike all other index groups, for the combinations with both univariate and multivariate intensity-bias-adjusting methods,

the precipitation occurrence indices for the combination of MBCn and occurrence-bias-adjusting methods indicate that the
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Figure 5. RBMB versus RB0 for the univariate discharge quantiles and the 20 year return period value. (a) without specific adjustment, (b)

thresholding, (c) SSR, (d) TDA.

adjusted climate simulations generally perform worse than the raw climate simulations (Fig. 7). The wet-to-dry transition

probability and precipitation lag-1 autocorrelation are close to the 1-1 line in the plots, but the dry-to-dry transition probability

has RBMB values above 1.5 for every combined method, as can be seen in Table 2. The only two exceptions to the generally425

poor performance are the wet-to-dry transition probability for SSR and the number of dry days. The former is contrasting with

all other index groups, in which the SSR method often performed the worst. However, SSR performed worst for the dry-to-dry

transition probability, with values of 1.23 and 2.56 for respectively RBO and RBMB. The number of dry days for the different

methods is the same as in the combinations of QDM and the occurrence-bias-adjusting methods. These are unaffected by the

multivariate step of MBCn, as was the case for the precipitation intensity in Section 4.2.1.430

Except for SSR, the influence of the occurrence-bias-adjusting methods on precipitation occurrence is negligible, with

e.g. values for PP10 ranging from 1.03 to 1.04 for RBO and ranging from 1.07 to 1.09 for RBMB. This implies that the

performance is largely influenced by the intensity-bias-adjusting method. The only difference between the multivariate and

the univariate intensity-bias-adjusting methods is the rank-based Schaake Shuffle, as previously mentioned, which implies that

this shuffling might be responsible for the performance. As the shuffle changes the time series structure, it is a plausible cause435

for the poor performance of occurrence-related indices. The post-processing done by the SSR method might then balance this

effect by reintroducing some dry days, thus increasing the wet-to-dry transition probability. This is in contrast with the other
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Figure 6. RBMB versus RB0 for the multivariate precipitation amount quantiles. (a) without specific adjustment, (b) thresholding, (c) SSR,

(d) TDA.

Table 2. RBMB and RBO values of PP00 for the combinations of MBCn and the occurrence-bias-adjusting methods

Occurrence-bias-adjusting method RBMB RBO

Without specific adjustment 1.84 1.12

Thresholding 1.81 1.12

SSR 2.56 1.23

TDA 1.73 1.11

occurrence-bias-adjusting methods, which do not apply post-processing after the intensity correction step. However, this would

also explain the poor performance for PP00 for SSR, as the post-processing also changes the dry-to-dry transition probability

by reintroducing dry days. This changes the structure of dry day sequences and thus implies an extra change in the temporal440

structure on top of the effect of the Schaake Shuffle.

4.2.3 Discharge

The results of the adjusted climate simulations for discharge (Fig. 8) are all better than the raw climate simulations. In this case,

the values for RB0 range from 0.09 to 0.97 and from 0.03 to 0.91 for RBMB. Both indices imply that the added value of the bias

22

https://doi.org/10.5194/hess-2020-83
Preprint. Discussion started: 6 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 7. RBMB versus RB0 for the multivariate precipitation occurrence indices. (a) without specific adjustment, (b) thresholding, (c) SSR,

(d) TDA.

adjustment depends strongly on the quantile under consideration. For the lowest (5th) discharge quantile, the performance of445

the adjusted climate simulations is only marginally better than for the raw climate simulations. With values ranging from only

0.95 to 0.97 and from 0.97 to 0.91 for respectively RBO and RBMB, it can be assumed that the influence of the occurrence-

bias-adjusting methods on the lowest discharge quantiles is negligible. However, the performance of MBCn combined with

the occurrence-bias-adjusting methods for the lowest quantile shown here is worse than for the same quantile in Fig. 5. As

mentioned in Section 3.5, the reordering by the Schaake Shuffle is the only difference with QDM. Therefore, it can be assumed450

that changing the time series structure by the rank-based reordering breaks sequences of low precipitation amounts, which

results in less or different low flow sequences. In contrast to the 5th quantile, the resulting performance for the combinations

under consideration is better for the highest quantiles, for both RBO and RBMB. This indicates that the climate model bias was

large and most of this bias has been removed by the bias-adjustment.

When comparing the occurrence-bias-adjusting methods, variability in their performance can be noticed for the indices455

under consideration, unlike in Section 4.2.1. However, as can be seen in Table 3, the differences are small for most quantiles.

This implies that there is no single method that performs considerably better than any other. Thus for this case, the assumption

that randomized steps nudge the adjusted climate simulations closer to the observations does not hold, as was the case for the

univariate discharge quantiles in Section 4.1.3.
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Figure 8. RBMB versus RB0 for the multivariate discharge quantiles and 20 year return period value. (a) without specific adjustment, (b)

thresholding, (c) SSR, (d) TDA.

Table 3. Maximal difference among the discharge indices for the combinations with MBCn for RBMB and RBO

Index RBMB RBO

Q5 0.05 0.02

Q25 0.05 0.02

Q50 0.06 0.02

Q75 0.04 0.02

Q90 0.04 0.03

Q95 0.04 0.04

Q99 0.21 0.21

Q99.5 0.41 0.34

QT20 0.09 0.10

The range of values is much larger for the highest quantiles, i.e. the 99th and 99.5th quantiles, which contribute to the460

most extreme events. These quantiles have ranges of respectively 0.21 and 0.34 for RBO and 0.21 and 0.41 for RBMB. It

is unexpected that these are influenced by the occurrence-bias-adjusting methods, as these methods are supposed to only

change the low precipitation amount values. However, the combination of changes in low precipitation amount values with
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the rank-based Schaake Shuffle and the non-linearity of the rainfall-runoff model might cause this effect. This becomes more

clear in comparison with Fig. 5, which includes the same steps, except the Schaake Shuffle based on the preceding rotations.465

As mentioned above, the highest quantiles are the most sensitive to these structural changes (Switanek et al., 2017). When

comparing the CDFs of the combinations under consideration (figure not shown), this sensitivity of the quantiles is visible.

This seems to imply that the small effect of the occurrence-bias-adjusting methods (which can be seen in Fig. 4) is reinforced

by the multivariate MBCn method. This difference in effect of methods becomes clearer when comparing the highest quantiles

for thresholding with the other occurrence-bias-adjusting methods: the 99.5th quantile performs much better for this method470

than for the other methods, with values for RBO and RBMB close to zero. As in Section 4.1.2, the best performing method is

not one of the advanced methods, but the simpler thresholding method.

Table A2 shows what the poor performance of the highest quantiles means in practice: the bias in the climate simulation is

an overestimation, and whereas all methods correct this overestimation, only the thresholding method does correct too much,

implying that its temporal structure is the closest to the observations and that the temporal structure of the other methods does475

not allow the precipitation to build up the antecedent conditions for extreme floods. When comparing the time series of the

adjusted climate simulations (figures not shown), it can be seen that the extreme floods in time series adjusted by combinations

of QDM and occurrence-bias-adjusting methods are situated in periods with strong antecedent conditions, i.e. more than one

week of daily rainfall and can be caused by moderate rainfall peaks on top of these antecedent conditions. In contrast, in time

series adjusted by combinations of MBCn and occurrence-bias-adjusting methods, the antecedent conditions are less strong,480

with only a few days of rainfall or even dry days shortly before the flood event: the floods are caused by extreme rainfall peaks.

The combination of MBCn with the thresholding occurrence-bias-adjusting method is situated somewhat in between, causing

extreme floods in periods of moderate-to-strong antecedent conditions and extreme rainfall peaks.

5 Discussion

When all methods are compared, the performance of the adjusted climate simulations is for the indices considered here gen-485

erally better than the climate simulations. As a recent time period, 1998-2017, is used for validation purposes, the good per-

formance shows that so far, for precipitation bias adjustment, the stationarity assumption holds and that the adjustments are

meaningful in a climate change context. However, this does not give any indication of the time for which this assumption will

continue to hold. Only for the precipitation occurrence indices of the combinations of MBCn and the occurrence-bias-adjusting

methods (Fig. 7), the performance is worse than the climate simulations.490

When comparing the univariate and multivariate intensity-bias-adjusting methods, some major differences can be noticed.

For QDM, the effect of the occurrence-bias-adjusting methods was only seen on the precipitation occurrence indices, which

was to be expected. In contrast, for the combinations of the multivariate intensity-bias-adjusting methods and the occurrence-

bias-adjusting methods, there were differences in both the discharge and precipitation occurrence indices. These differences

were most pronounced for the methods that apply randomization: they performed unexpectedly worse (Figs. 4 and 8). This495

is in contrast with the findings of Vrac et al. (2016), who demonstrated the superior performance of SSR in comparison with
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other methods. However, Vrac et al. (2016) used a different combination of occurrence and intensity-bias-adjusting methods.

First, the occurrence-bias-adjusting methods that were proven to be outperformed by SSR by Vrac et al. (2016), the positive

correction and threshold adaptation, were not used in this paper. Second, another univariate method, CDF-t (Michelangeli et al.,

2009) was used. Third, no multivariate method was used in the comparison of Vrac et al. (2016). Besides, the geographical500

region was different, though comparable, as Vrac et al. (2016) used the complete EURO-CORDEX region.

Nonetheless, in the univariate case, which is most comparable to the study by Vrac et al. (2016), both randomness-inducing

methods perform worst. The combinations of QDM without a specific adjustment method and with a simpler method such as

thresholding, perform best in the univariate precipitation occurrence case (Fig. 4). In the multivariate discharge case (Fig. 8)

thresholding performed especially good. This implies that other multivariate methods, which apply different algorithms to505

restore the multivariate correlation structure, might have a varying impact on the occurrence correction. This has to be studied

in more detail.

The effect of using a multivariate intensity-bias-adjusting methods as such is also interesting. When assessing the precip-

itation occurrence for the combinations with MBCn, it was noticed that the poor performance seemed to be more related to

the use of the rank-based Schaake Shuffle alone, than to the use of occurrence-bias-adjusting methods, as they mostly had a510

similar performance. This effect could also be noticed for the discharge indices for the combinations with MBCn (Fig. 8),

though in those combinations the effect of the occurrence-bias-adjusting methods is slightly larger. However, there is not a lot

of information available yet on the effect of multivariate intensity-bias-adjusting methods on precipitation occurrence, though

this paper partially fills the gap.

6 Conclusions515

In this paper, different occurrence-bias-adjusting methods were compared in combination with univariate and multivariate

intensity-bias-adjusting methods. The occurrence-bias-adjusting methods compared were thresholding, Stochastic Singularity

Removal (SSR) and Triangular Distribution Adjustment (TDA). The intensity-bias-adjusting methods were also run once with-

out a specific adjustment method. The intensity-bias-adjusting methods used were QDM (univariate) and MBCn (multivariate).

The combinations of occurrence-bias-adjusting and intensity-bias-adjusting methods were compared for precipitation amount,520

precipitation occurrence and discharge indices, using the residual bias relative to the model bias and the residual bias relative

to the observations.

These comparisons have shown that the performance is very specific depending on the combination of bias-adjusting meth-

ods. Two main observations could be made. First, in both the univariate and multivariate combinations the randomness-inducing

methods, SSR and TDA, performed generally worse than the more traditional methods such as thresholding. They performed525

even worse than the baseline where the intensity-bias-adjusting method was applied. Second, the multivariate method has a

large influence on the performance of the occurrence-bias-adjusting methods, by changing the time series structure and pos-

sibly reinforcing the effect of the occurrence-bias-adjusting methods, worsening the performance of the resulting adjusted

climate simulations. In the multivariate case, small changes made by the occurrence-bias-adjusting methods thus seem to have
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an unexpectedly large influence. This implies that more research should be done on the interaction of multivariate intensity-530

bias-adjusting methods and occurrence-bias-adjusting methods, to clarify how combined methods influence the assessment of

climate change impact. The effect of multivariate methods themselves on the time series structure is also uncertain, and will

be investigated in further research. This is especially important for the assessment of hazards that depend on the time series

structure, as is the case in hydrology and agriculture. This also has to be assessed for other geographic/climatic regions, where

precipitation characteristics and in turn the interaction between subsequent bias-adjusting methods may be different. To con-535

clude, as long as the effect of the interactions between bias-adjusting methods is unclear, the use of simpler methods seems

recommended to reduce the uncertainty as much as possible when assessing and communicating global change impacts. In the

framework of this study, the simpler method would be the thresholding occurrence-bias-adjusting method.
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Appendix A: Appendix A

Table A1. Observed values, and biases for the raw climate simulations, and the combinations of QDM and occurrence-bias-adjusting meth-

ods.

Bias

Index Observed value
Raw

climate simulations

Without

specific adjustment
SSR TDA Thresholding

Q5 (m3/s) 2.30 0.92 -0.31 -0.31 -0.29 -0.31

Q25 (m3/s) 3.36 1.45 0.02 0.03 0.03 0.02

Q50 (m3/s) 4.39 1.53 0.08 0.08 0.09 0.08

Q75 (m3/s) 5.72 2.52 -0.08 -0.08 -0.08 -0.08

Q90 (m3/s) 7.83 4.76 -0.36 -0.35 -0.37 -0.36

Q95(m3/s) 10.09 9.22 -1.01 -1.00 -0.97 -1.00

Q99 (m3/s) 18.71 18.58 -1.67 -1.41 -0.53 -1.65

Q99.5 (m3/s) 23.90 19.70 -0.77 0.78 0.74 0.84

QT20 (m3/s) 48.69 54.61 8.30 9.13 9.99 8.36

P5 (mm) 0.00 0.00 0.00 0.00 0.00 0.00

P25 (mm) 0.00 0.08 0.00 0.00 0.02 0.00

P50 (mm) 0.10 1.01 0.05 0.06 0.04 0.05

P75(mm) 2.70 1.83 -0.18 -0.18 -0.19 -0.18

P90(mm) 7.40 1.99 -0.26 -0.26 -0.26 -0.26

P95 (mm) 11.42 2.38 -0.61 -0.61 -0.61 -0.61

P99 (mm) 21.80 2.36 -1.86 -1.86 -1.86 -1.86

P99.5 (mm) 29.09 1.56 -4.20 -4.20 -4.20 -4.20

PP00 0.65 -0.10 0.00 -0.02 -0.02 0.00

PP10 0.32 -0.15 0.00 -0.07 0.02 0.00

Ndry 3470.00 -1466.00 0.00 -544.70 38.00 0.00

Plag1 0.33 0.11 0.03 0.03 0.03 0.03
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Table A2. Observed values, and biases for the raw climate simulations, and the combinations of MBCn and occurrence-bias-adjusting

methods.

Bias

Index Observed values
Raw

climate simulations

Without

specific adjustment
SSR TDA Thresholding

Q5 (m3/s) 2.30 0.92 0.79 0.80 0.84 0.82

Q25 (m3/s) 3.36 1.45 0.29 0.33 0.36 0.29

Q50 (m3/s) 4.39 1.53 -0.16 -0.14 -0.11 -0.20

Q75 (m3/s) 5.72 2.52 -0.64 -0.63 -0.62 -0.72

Q90 (m3/s) 7.83 4.76 -1.46 -1.54 -1.55 -1.66

Q95 (m3/s) 10.09 9.22 -2.42 -2.66 -2.74 -2.78

Q99 (m3/s) 18.71 18.58 -5.51 -6.17 -7.17 -3.21

Q99.5 (m3/s) 23.90 19.70 -6.72 -6.15 -8.58 -0.57

QT20 (m3/s) 48.69 54.61 -11.85 -14.26 -15.16 -10.40

P5 (mm) 0.00 0.00 0.00 0.00 0.00 0.00

P25 (mm) 0.00 0.08 0.00 0.00 0.02 0.00

P50 (mm) 0.10 1.01 0.05 0.06 0.04 0.05

P75 (mm) 2.70 1.83 -0.18 -0.18 -0.19 -0.18

P90 (mm) 7.40 1.99 -0.26 -0.26 -0.26 -0.26

P95 (mm) 11.42 2.38 -0.61 -0.61 -0.61 -0.61

P99 (mm) 21.80 2.36 -1.86 -1.86 -1.86 -1.86

P99.5 (mm) 29.09 1.56 -4.20 -4.20 -4.20 -4.20

PP00 0.65 -0.10 -0.18 -0.25 -0.17 -0.17

PP10 0.32 -0.15 0.16 0.08 0.16 0.16

Ndry 3470.00 -1466.00 0.00 -544.70 41.15 0.00

Plag1 0.33 0.11 -0.13 -0.12 -0.12 -0.12
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