Preprints
https://doi.org/10.5194/hess-2019-288
https://doi.org/10.5194/hess-2019-288
11 Jul 2019
 | 11 Jul 2019
Status: this preprint was under review for the journal HESS but the revision was not accepted.

Variational Assimilation of Streamflow Observations in Improving Monthly Streamflow Forecasting

Amirhossein Mazrooei, A. Sankarasubramanian, and Andrew W. Wood

Abstract. Uncertainties associated with the initial conditions (e.g. soil moisture content) of a hydrologic model have been recognized as one of the main sources of errors in hydrologic predictions, specifically over a rainfall-runoff regime. Apart from the recent advances in Data Assimilation (DA) for improving hydrologic predictions, this study explores variational assimilation (VAR) of gauge-measured daily streamflow data for updating initial state of soil moisture content of Variable Infiltration Capacity (VIC) Land Surface Model (LSM) in order to improve streamflow simulations as well as monthly streamflow forecasting. The study is conducted for the Tar River basin in North Carolina over 20-year period (1991–2010). The role of two critical parameters of VAR DA – the frequency of DA application and the length of assimilation window – in determining the skill of DA-improved streamflow predictions is also assessed. We found that correcting VIC model's initial conditions using a 7-day assimilation window results in the highest improvement in the skill of streamflow predictions quantified by Kling-Gupta Efficiency (KGE) and Nash-Sutcliffe Efficiency (NSE) metrics. In addition, the potential gain from VAR DA framework is quantified and compared under two 1-month ahead streamflow forecasting schemes: 1) deterministic forecasts developed by using ECHAM4.5 GCM 1-month ahead precipitation forecasts and 2) Probabilistic forecasts from Ensemble Streamflow Prediction (ESP) approach. This study also examines the persistence of the DA impact in the monthly predictions by quantifying the enhanced accuracy in daily flows over extending forecast lead time blocks. Analyses show that the the corrected initial state conditions continually enhance the 7–8 days ahead predictions, but after that the errors in forcings dominate the DA effects. Still, the overall impact of VAR DA in monthly streamflow forecasting is positive.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Amirhossein Mazrooei, A. Sankarasubramanian, and Andrew W. Wood
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Amirhossein Mazrooei, A. Sankarasubramanian, and Andrew W. Wood
Amirhossein Mazrooei, A. Sankarasubramanian, and Andrew W. Wood

Viewed

Total article views: 1,947 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,540 351 56 1,947 158 83 71
  • HTML: 1,540
  • PDF: 351
  • XML: 56
  • Total: 1,947
  • Supplement: 158
  • BibTeX: 83
  • EndNote: 71
Views and downloads (calculated since 11 Jul 2019)
Cumulative views and downloads (calculated since 11 Jul 2019)

Viewed (geographical distribution)

Total article views: 1,648 (including HTML, PDF, and XML) Thereof 1,634 with geography defined and 14 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Nov 2024
Download
Short summary
Reliable long-range hydrologic forecasts (e.g. month-ahead streamflow conditions) greatly help to facilitate water resources management. Toward this, climate forecasts are utilized to implement hydrologic models, with past hydrologic simulations used to initialize the land-surface conditions of models. Since there are uncertainties associated with the simulated conditions, Data Assimilation (DA) techniques can be employed to reduce such errors and consequently improve hydrologic forecasting.