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The paper “Variational Assimilation of Streamflow Observations in Improving Monthly
Streamflow Forecasting” aims at proposing a scheme that applies Variational Data
Assimilation (VAR DA) in VIC Land Surface Model (LSM) in order to correct the initial
state conditions and improve 1-month ahead streamflow forecast by using observed
streamflow information. The authors analyzed also the role of VAR DA in Improving
Streamflow Simulation and Forecasts. | really enjoyed reading the paper, which | found
well written, properly structured and easy to understand despite the complexity of the
assimilation approach. Because of this, | recommend a minor revision. However, | still
have a few comments which may help the authors to improve their manuscript.
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- One of my main concern is the use of an LSM. In particular, besides for the fact
that (to the best of authors knowledge) this is the first study that uses LSM and VAR
DA together, why did the authors use a semi-distributed model instead of a more sim-
ple conceptual lumped model? Because of the complexity of the integration between
VAR DA and LSM, the authors introduced some important assumptions (e.g. the use
of a constant multiplier) which may affect the final assimilation performances. There-
fore, VAR DA (or sequential data assimilation) algorithm could be implemented lumped
model in an easier way, and the computational time of the simulation (which is a prob-
lem underlined by the authors in the paper) could be reduced.

Response: The motivation of the study here is to validate the gain in the performance of a distributed
LSM such as VIC due to application of VAR DA using point-measured streamflow data. In another study
we have published recently (Mazrooei and Sankarasubramanian, 2019), we used EnKF sequential DA to
correct the state variables of a simpler lumped watershed model, again using observed streamflow data,
and evaluate the DA-aided forecasts/simulations. So to our best knowledge, this is the first study using
downstream streamflow observations to implement VAR-DA in an LSM. It is certainly true that DA is of
interest both in lumped and distributed models, with the latter presenting more of a challenge due to
their complexity. Since studies have already considered VAR-DA for lumped models (e.g., Seo et al.,
2003; Seo et al., 2009), thus we did not consider VAR-DA application for a lumped model for our
analyses. Further, the proposed “k multiplier” approach could work in principle on the lumped
watershed models too.

Mazrooei, Amirhossein, and A. Sankarasubramanian. "Improving monthly streamflow forecasts through assimilation of
observed streamflow for rainfall-dominated basins across the CONUS." Journal of Hydrology 575 (2019): 704-715.

Seo, Dong-Jun, Victor Koren, and Neftali Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data
into operational hydrologic forecasting." Journal of Hydrometeorology 4.3 (2003): 627-641.

Seo, Dong-Jun, et al. "Automatic state updating for operational streamflow forecasting via variational data assimilation."
Journal of Hydrology 367.3-4 (2009): 255-275.

Accordingly, the introduction of the manuscript has undergone a major revision to better address the
mentioned points. A comparison between the old version and the new version is presented below
where the eliminated text is highlighted in red and the added text is highlighted in green:



1 Introduction

Reliable Monthly-to-Seasonal (M2S) streamflow forecasting
provides critical information for water system planning and
management (¢.g.. crop management). Such forecasts also
litate the allocation of water supplies to different water
users (e.g.. domestic. agriculural, etc.) and (o meet envi-
ronmental demands (Hamlet and Lettenmaier, 1999; Wood
et al., 2002; Devineni et al., 2008). Over the past decades,
several strides have been made in M2S streamflow forecast-
<ing through uilizing climate forecasts from General Cir-
lation Models (GCMs), following-with considerable f-
forts on uncertainty quantification in the context of real-time
hydrologic forecasting (Schaake et al., 2006; Pappenberger
and Beven, 2006; Brown, 2010; Mazrooei et al., 2015; Ah-
« madalipour et al., 2017). Although, several sources of uncer-
tainty in streamflow forecasting have been identified (e.g.,
uncertainty in model structure and model parameters, in-
accurate initial hydrologic conditions, imprecise hydrome-
teorological forcings), addressing such inherent uncertain-
2« ties Within forccasting approaches have remained a long-
standing problem (Ajami et al., 2007 Salamon and Feyen,
2010). Still, effective quantification and further reduction of
uncertainties from multiple sources hold great potential for
enhancing the accuracy and reliability of hydrologic fore-
s casts (Liu et al., 2012; Pappenberger et al., 2011: Sankara-
subramanian et al., 2009: Li et al., 2014). Rainfall is the ma-
jor contributor 1o the streamflow and it s the key source of
uncertainty in M2S streamflow forecasting for basins under
rainfall-runoff regime (Li et al., 2009). Hence, our limited
» il monthly metearologcal forcasting s  detemining
factor for the skill of M2S streamflow forecasting. Further-
more, hydrologic predmlabl ity in rainfall-dominated basins
is dependent on accurate estimation of soil moisture condi-
tions (Mahanama et al., 2012). Thus, the skill of long-range
- streamflow forecasting for such basins could be substantially
improved by incorporating fine-tuned soil moisture initial-
ization,
Data Assimilation (DA) is an effective technique that is
able to reduce the errors in model state variables and parame-
o fers and consequently improves the model predictability. The
basic theory behind DA is to optimally combine the infor-
‘mation from model predictions and available observations to
correct the model initial conditions. DA have been widely ap-
plied in occanography and atmospheric sciences, espec
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commonly used methods that has been explored in hydrolog-
ical studies (Moradkhani et al., 2005; Reichle et al., 200
Clark ctal., 2008). Sequential DA is most suitable when grid-
ded observations are exploited for correcting initial condi-
tions estimated by the model. however its application in dis-
tributed hydrologic models demands state-space reformula-
tion of model (in a gridded form) and substantial computing
powerdueto ensemble simulations (Seo et al., 2003).

Alternatively, Variational data assimilation (VAR) is a
potentially simpler method as opposed to sequential DA
(Jazwinski, 2007). VAR DA is a commonly used technique
in global atmospheric assimilation schemes and operational
‘meteorological centers, yet it has not been fully exploited in
hydrological studies (Ide et al., 1997; Li and Navon, 2001;
Liu et al., 2012). In spite of the substantial research on hy-
drologic DA, limited number of studies have been focused on
VAR DA formulation, application and quantifying the per-
formance gain in M2S hydrologic forecasting. For example,
Seo et al. (2003) employed variational assimilation (VAR)
10 assimilate streamflow and precipitation observations for
improving operational hydrological forecasting at short lead
times. They revealed that VAR DA significantly improves the
a of 40-hour ahead streamflow forecasts over few se-
lected basins in the United State, and concluded that em-
ploying VAR DA is more appropriate in real-time forecast-
- in comparison 1o other DA technigues - since it requires
computational demand. Riidiger et al. (2006) employed
VAR DA coupled with the Catchment Land Surface Model
(CLSM) in order to assimilate observed streamflow
sessed the direct improvements in initial soil moisture states
over three catchments in Australia.

“The abundance of hydrologic observations collected over
last decades from in-situ measurements and satellite remote
sensing has motivated the need to integrate them into DA
techniques for improving hydrologic predictions. Accord-
ingly. the potential for DA studies has increased due to avail-
ability of remotely sensed data of soil moisture and snow
cover area/extent from satellite observations in recent years
(Pauwels et al., 2001; Andreadis and Lettenmaicr, 2006; Ku-
mar et al., 2016: Clark et al., 2008; Reichle et al., 2008). Re-
mote sensing provides estimations of initial hydrologic con-
ditions over a large extent. thus it could be utilized in re
gional and continental DA studies. On the other hand, histor-
iical in-situ observations such as gauge-measured streamflow
records are available for a much longer period of time and

nd as-

«in operational weather forecasting, and its
been well Furthermore,

contain lower errors compared 10
satellite . Hence, assimilating gauge-measured

in theoretical development of DA techniques in hydrology
have been proposed from simple direct insertion methods o
complex sequential and smoothing filtering methods (Kumar
w etal., 2009; DeChant and Moradkhani, 2012; Wang and Cai,

2008), yet its application in hydrologic studies on real-time
forecasting is at its infancy (Liu et al., 2012)

Sequential DA such as Extended Kalman Filter (EKF) or
Ensemble Kalman Filter (EnKF) is one of the carliest and

streamflow also provides a great opportunity to correct model
state conditions and consequently improve hydrologic pre-
dictions (Seo et al.. 2003, 2009: Vrugt et al.. 2005: Clark
etal., 2008; Moradkhani and Sorooshian, 2008).

‘The motivation of this study is to improve monthly stream-
flow forecasts using month-ahead climate forecasts which
specify the uncertainty in the forcings. For this purpose, VAR
DA based on observed streamflow data is incorporated in

s

1 Introduc

ion

Reliable Monthly-to-Seasonal (M2S) streamflow forecasting
provides critical information for water system planning and
management (e.g., crop management). Such forecasts also

« facilitate the allocation of water supplics to different water
users (e.g.. domestic. agricultural, etc.) and 1o meet envi-
ronmental demands (Hamlet and Lettenmaicr, 1999; Wood
et al., 2002; Devineni et al., 2008). Over the past decades,
several strides have been made in M2S streamflow forecast-

« ing through uilizing climate forecasts from General Circu-
lation Maodels (GCMs) with several efforts on uncertaint
quantification in the context of real-time hydrologic forc-
casting (Schaake et al., 2006: Pappenberger and Beven,
2006; Brown, 2010; Mazrooei et al., 2015; Ahmadalipou

2017). Although, several sources of uncertainty in
streamflow forecasting have been identified (e.g.. uncertainty
in model structure and model parameters, inaccurate
tial hydrologic conditions, imprecise hydrometeorological
forcings), addressing such inherent uncertainties combined

» within forecasting approaches have remained a long-standing
problem (Ajami et al., 2007; Salamon and Feyen, 2010).
Still, effective quantification and further reduction of unc
tainties from multiple sources hold great potential for en-
hancing the accuracy and reliability of hydrologic forecasts

= (Liuetal.. 2012; Pappenberger et al., 201 1; Sankarasubrama-
nian et al., 2009; Li et al., 2014). Further, rainfall is the ma-
jor contributor to streamflow variability and remains as the
key source of uncertainty in M2S streamflow forecasting for
basins under rainfall-runoff regime (Li ct al., 2009). Under

» these regimes. our limited skill in precipitation forecasting
is a determining factor for the skill of M2S streamflow fore-

ertheless, an accurate estimation of model’s soil
moisture conditions could overcome the limited skill of pre-
cipitation forecast and further improve streamflow forecastin

-« rainfall-runoff regimes (Mahanama et al., 2012). Thus, data
assimilation_techniques for correcting model’s soil mois-
ture conditions provide lots of promise in improving M2S
streamflow forecasting in rainfall-runoff regimes (Morad-
Khani et al.. 2005: Reichle et al.. 2008: Clark et al., 2008).

o Data Assimilation (DA) is an effective methodology that
is able to reduce the errors in model state variables and pa-
rameters and consequently improves the model predictabil-
ity. The basic idea behind DA is to optimally combine the
information from model predictions and available observa-

« tions 10 correct the model initial conditions. DA have been
widely applied in oceanography and atmospheric sciences,
especially in operational weather forecasting, and its effec-
tiveness has been well demonstrated. Furthermore, consid-
erable advances in the theoretical development of DA tey

« niques in hydrology have been proposed from simple direet
insertion methods to complex sequential and smoothing fil-
tering methods (Kumar et al.. 2009; DeChant and Morad-
Khani, 2012; Wang and Cai, 2008; Aubert et al., 2003; Ku
mar et al., 2014). yet its application in hydrologic studi

st al

Mazrooei et al.: VAR DA in Streamflow Forecasting

on real-time forecasting is at its infancy (Liu et al., 2012).
Of these methods, sequential DA such as Extended Kalman
Filter (EKF) or Ensemble Kalman Filter (EnKF) is one of
the earliest and commonly used methods that has been ex-
plored in hydrological studies (Moradkhani et al., 2005; Re-
ichle et al., 2008: Clark et al., 2008). Sequential DA is most
suitable when gridded observations are considered for cor-
recting initial conditions estimated by the model, however i
main limitation on the application in distributed hydrologic
maodels stems from the requirement of state-space reformula-
tion of model (in a gridded form) along with the substantial
demand of the computational power arising from ensemble
simulations (Seo et al.. 2003

Altematively, yariational data assimilation (VAR DA) is
a potentially simpler melhm! as opposed 1o sequential DA

2007). VAR DA is a commonly used techni

in global atmospheric mmylmn schemes and operational
metcorological centers, yet it has not been fully exploited in
hydrological studies (Ide et al., 1997; Li and Navon, 2001;
Liu et al.. 2012). In spite of the substantial research on hy-
drologic DA. limited number of studi
VAR DA formulation, application and quantifying the perfor-
mance gain in M2S hydrologic forecasting. For example, Seo
etal. (2003) employed VAR DA to assimilate streamflow and
precipitation observations for improving operational hydro-
logical forecasting at short lead times. They employed VAR
DA in a lumped watershed model, Sacramento Model, and
found that it significantly improves the accuracy of 40-hour
ahead streamflow forecasts over few selected basins in the
United States. Since Sacramento Model is commonly used
in operational streamflow forecasts. they also suggested VAR
DA is more suitable for real-time forecasting - in compari-
son 10 other DA techniques - since it requires less compu-
tational demand. Riidiger et al. (2006) employed VAR DA
coupled with the Catchment Land Surface Model (CLSM)
in order to assimilate observed streamflow and assessed the
direct improvements in initial soil moisture states over three
catchments in Australia. However, the entire study is a syn-
thetic study where observed forcings were used in improving
streamflow and latent-heat flux predictions.

‘The abundance of hydrologic observations collected over
last decades from in-situ measurements and satellite remote
sensing has motivated the need to integrate them into DA
techniques for improving hydrologic predictions. Accord-
ingly. the potential for DA studies has increased due to av:
ability of remotely sensed data of soil moisture and snow
cover arcafextent from satellite observations in recent years
(Pauwels et al., 2001; Andreadis and Lettenmaier, 2006; Ku-
mar et al., 2016; Clark et al., 2008; Reichle et al., 2008). Re-
mote sensing provides estimation of initial hydrologic con-
ditions over a large extent, thus it could be utilized in re-
gional and continental DA studies. On the other hand, histor-
ical in-situ observations such as gauge-measured streamflow
records are available for a much longer period of time and
contain substantially lower measurement errors compared to

ave been focused on

[
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a Land Surface Model (LSM).to correct the. initial condi-
tions. Past DA studies have considered either a conceptual
hydrologic model or a distributed model along with observed
forcings for evaluating the utility of DA in improving hy-
+ drologic predictions, mainly for short-range forecasting lead
hourly 1o weekly). rather than long-range fore-
casting. Recently, Mazrooei and Sankarasubramanian (2019)
analyzed the improved skill of monthly streamflow forecasts
over rainfall-dominated basins across the United States. by
EnKF 10 correct the im\ml conditions of a concep-
tual hydrologic model. Thi considers Variable Infil-
tration Capacity (VIC) LSMin wl\u.h more complex model-
ing components - such as interactions between land surface
and atmosphere, vegetation dynamics. soil temperature and
» streamflow response -are explicitly incorporated with a finer
modeling time steps (Cox et al.. 2000; Feddema et al.. 2005:
Bonan and Levis. 2006; Zeng, 2010). The challenge in cou-
pling VAR DA and VIC LSM is in incorporating the error in
point measurements (i.e.. observed streamflow at gauge) to
 correct the initial conditions of the gridded VIC states. To the
best of our knowledge, there are limited efforts on assessing
the application of VAR DA using in-situ streamflow obst
vations in correcting VIC LSM initial conditions, and quan-
tifying the resultant improvements in real-time long-range
s streamflow forecasts. Our hypothesis here is that addressing
the two sources of uncertainty - correcting initial conditions
and utilizing month-ahead climate forecasts from G - will
provide us with improved monthly streamflow forecasts, par-
ticularly for months with limited skill in climate forecasts
s (e.g.,summer season). For months with significant skill in
climate forecasts arose from ENSO conditions (e.g.. winter
months). we expect the analyses to provide the added value
of VAR DA in improving the monthly streamflow forecast
over the climatological forcings of precipitation and temper-
« ature.
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satellite observations (Loew et al., 2017 Ford and Quiring,
2019; Swenson et al., 2006). Ridiger et al. (2006) showed
that assimilating streamflow reduces the error in correcting
the initial conditions as opposed to the soil moisture condi-
« tions using a synthetic setup, since streamflow is an integra-
tor of spatial variability in soil moisture and climate forc-
ings. Hence, assimilating gauge-measured streamflow also
provides a great opportunity to correct model state conditions
and consequently improve hydrologic predictions (Seo et al.,
2 2003, 2009; Vrugt et al., 2005; Clark et al., 2008; Morad-
khani and Sorooshian. 2008).

Given that utilizing obseryed streamflow in DA applica-
tions better reduces the errors in the initial conditions (as op-
posed to soil moisture observations) (Rudiger et al., 2006)

- and VAR DA is more suitable for assimilating point obser-

vations over gridded initial conditions for real-time stream-
flow forecasting (as opposed to sequential DA methods) (Seo
5 cal. 2003), i this sudy we consider VAR DA fo assimi-

Jating observed streamflow information into the Vduable In-

» hllrauon Capacity (VIC) Land Surface Model (LS

“The motivation of this study is to assess the uullly of VAR
DA in improving VIC LSM monthly s(r:amﬁow (orecasls
through two forecasting approaches: 1) using month-ahead
climate forecasts from a GCM and 2) pmlmbnl. stream-

2» flow forecasting, known as Ensemble Streamflow Prediction
(ESP). Past DA studies have considered either a conceptual
hydrologic model or a distributed model along with observed
forcings for evaluating the utility of DA in improving hydro-
logic simulations (aka “predictions"). or for short-range forc-

» casting lead times (i.c., hourly to maximum weekly), rather
than M2S forecasting. Recently, Mazrooei
ramanian (2019) anlyzed the improved skill of I-month
ahead streamflow forecasts over rainfall-dominated basins
across the United States, by correcting the initial conditions

« 0f a conceptual hydrologic model using EnKE. But, the appli-
cation of EnKF 1o & distributed hydrological model is com-
putationally intensive due to ensemble executions. Further-
more, VIC L.SM is selected in which more complex model-
ing components (such as interactions between land surface

. and atmosphere, vegetation dynamics, soil temperature and
streamflow response) are explicitly incorporated with finer
modelling timesteps to-better estimate land-surface fluxes
(Cox et al., 2000; Feddema et al., 2005: Bonan and Levis,
2006; Zeng, 2010)

" The challenge in coupling VAR DA and VIC LSM is in
incorporating the error in point measurements (i.¢., observed
streamflow at gauge) to correct the initial conditions of the
gridded VIC states. To the best of our knowledge, there are
limited efforts on assessing the application of VAR DA using

<« in-situ streamflow observations in correcting VIC LSM ini-
tial conditions, and quantifying the resultant improvements
in real-time long-range streamflow forecasts. Here, we pro-
pose a methodology that minimizes the errors in predict-
ing the observed streamflow towards correcting the spatially

« varying VIC model*s initial conditions. Our hypothesis here

is that addressing the two sources of uncertainty - corre
initial conditions and ilizing month-ahead climate fore
from GCM - will provide us with improved monthly stream-
flow forecasts, particularly for months with limited skill in
climate forecasts (e.g..summer season). For months with sig-
nificant skill in climate forecasts arose from ENSO condi-
tions (e.g.. winter months), we expect the analyses to pro-
vide the added value of VAR DA in improving the monthly
streamflow forecast over the climatological forcings of pre-
cipitation and temperature.




- How can the proposed assimilation scheme be extended in case of assimilation of
distributed streamflow observations?

Response: If the distributed streamflow observations were available across the watershed, then the VAR
framework could be performed for each station within the basin. We have added additional discussion
regarding this. One approach would be to consider the constant multiplier as a spatial distribution with
the ‘K’ to be correlated across space. A simplistic approach is to allow the “K” to vary based on the
distance between streamflow observations. Alternately, this fits within a Bayesian framework by
assuming a prior distribution on ‘K’, which could be used to update “K” simultaneously across the space
to obtain the posterior distribution of the constant multiplier across the watershed that maximizes the
joint likelihood of streamflow observations across the watershed. We have added these future
opportunities under the discussion section on page 17.

is expected. In these conditions, multiple streamflow observations could be considered with spatially varying ‘K’ multiplier for
10 implementing the VAR-DA framework. If distributed streamflow observations were available across the watershed. then the
VAR framework could be adapted for each station/grid cell within the basin. One approach would be to consider the constant
multiplier as a spatial distribution with the 'k’ to be correlated across space. A simplistic approach is to allow the 'k’ to vary
based on the distance between streamflow observations. Alternately, this fits within a Bayesian framework by assuming a prior
distribution on “k’, which could be used to update 'k’ simultaneously across the space to obtain the posterior distribution of the

15 constant multiplier across the watershed that maximizes the joint likelihood of streamflow observations across the watershed.

- As the authors properly stated, the skill of VIC in predicting low flows are particularly
lower than normal. As a consequence, a strong improvement in low flow predictions
is achieved. What could be the impact of calibrating the VIC model separately for low
and high flows? How this will affect the assimilation performances?

Response: This is true, in the presence of a high bias in the predicted flows, DA application is more
successful in improving the prediction skill, i.e. a better calibrated model decreases the positive role of
VAR DA. Our previous studies have shown that calibrating models based on flow conditions tends to
improve the model performance (Li and Sankar, 2012; Yapo et al., 1996). If we improve the model
calibration, certainly it will reduce the role of VAR-DA. It’s also possible to apply a VIC model that has
multiple parameter sets that optimize performance in different hydrologic regimes. In the VAR context,
adjustments could be sought in simulations produced by each parameter set to potentially achieve
higher performance than using just one parameter set. This approach is similar in some regards to a
joint state/parameter estimation, which can be effected within EnKF and Particle Filter based methods.

The following is now added to the discussion section:



effect of DA in the absence of model bias. With the intention of applying bias correction as well as quantifying the sole role of
DA in hydrologic forecasting, a recursive bias estimation should be coupled into the DA framework at each iteration resulting
in a two-stage estimation algorithm, but this significantly increases the computational cost (Friedland, 1969; Dee and Da Silva,
1998). In the presence of a high bias in the predicted flows. DA application is more successful in improving the prediction skill,
30 i.e. a better calibrated model decreases the positive role of VAR DA. Our previous studies have shown that calibrating models
based on flow conditions tends to improve the model performance (Li and Sankarasubramanian. 2012: Yapo et al.. 1996). Thus

If the model calibration in this study improves, the positive role of VAR-DA will be reduced.

Li, Weihua, and A. Sankarasubramanian. "Reducing hydrologic model uncertainty in monthly streamflow predictions using
multimodel combination." Water Resources Research 48.12 (2012).

Yapo, Patrice O., Hoshin Vijai Gupta, and Soroosh Sorooshian. "Automatic calibration of conceptual rainfall-runoff models:
sensitivity to calibration data." Journal of Hydrology 181.1-4 (1996): 23-48.

- In all assimilation applications, it is important to provide adequate information regard-
ing the estimation of model and observation error and their spatial correlation. These
aspects can drastically affect the assimilation performance. Could the authors elabo-
rate more on the assumption of daily observational error equal to 0.05% of the variance
of observed daily flows over 62 years (1949-2010)?

Response: The perturbation setup should add slight noise to the data, and this approach is adopted from
Burgers et al 1998. Here we consider 0.05% variance of streamflow observations for perturbation
purposes based on the uncertainties in the stage-discharge relationship (Herschy 1994). This is already
explained in the draft Page7 Line23. Also this is in line with our other hydrologic DA study recently
published (Mazrooei and Sankarasubramanian, 2019)

Burgers, Gerrit, Peter Jan van Leeuwen, and Geir Evensen. "Analysis scheme in the ensemble Kalman filter." Monthly weather
review 126.6 (1998): 1719-1724.

Herschy, Reg. "The analysis of uncertainties in the stage-discharge relation." Flow Measurement and Instrumentation5.3
(1994): 188-190.

Mazrooei, Amirhossein, and A. Sankarasubramanian. "Improving monthly streamflow forecasts through assimilation of
observed streamflow for rainfall-dominated basins across the CONUS." Journal of Hydrology 575 (2019): 704-715.

- Can the authors provide more detail about the calibration method used with the VIC
model? In addition, which range of model parameters is considered during calibration?

Response: The VIC LSM is calibrated for the Tar River basin over a 40-year period from 1951-1990
through estimating Nash-Sutcliffe Efficiency (NSE) by comparing the mean monthly simulated
streamflows and the USGS #02083500 gauge observed monthly flows. The calibration is performed by
manually adjusting the standard soil parameters of VIC model that control infiltration (i.e., Variable
infiltration curve parameter “b_infilt” [0.00001,0.4] ), and runoff and subsurface flows (i.e., Ws: fraction
of maximum soil moisture where non-linear baseflow occurs [0.5,1] ,Dsmax: maximum velocity of
baseflow [0,inf] ,Ds: Fraction of Dsmax where non-linear baseflow begins [0,1], depth: Soil depth of
second and third layers [0,inf]). This calibration process is similar to what Sinha and Arumugam 2013
have done using VIC model over another river basin.



Sinha, T., and A. Sankarasubramanian. "Role of climate forecasts and initial conditions in developing streamflow and soil
moisture forecasts in a rainfall-runoff regime." Hydrology and Earth System Sciences 17.2 (2013): 721-733.

- | suggest to include the dimension of the matrices of the VAR DA method (e.g.
[nstate,nobs]). This will help the reader to better understand how to implement VAR
DA in a generic hydrological model

Response: This information is fully given in the paper P.7 L.14. Nstate is equal to 804, all the number of
soil moisture elements in 3 soil layers over 268 sub-grids of the 40 grid cells covering Tar basin. and Nobs
is the number of data points used within the assimilation window. Further, the following highlights are
now added to the manuscript:

To

20 J(zk)=Jo= Y (ye—He[za])" R (ye — Hi[on]) 2

T

where in the above expression, xy € B*%%68 refers to the analysis state, T is the time of forecast, T_ 44y is the beginning

of the assimilation window, y € BAW=1 5 the vector of observations, and Hi[zy] is the simulated flow at time f when VIC is

initialized with xy. Ry is the daily observational error computed based on 0.05% of variance of observed daily flows over 62

- Besides the simplification of the minimization function of Eq1, what are the other
limitations of the current study and recommendations for future ones?

Response: The Tar river basin that is selected as our case study is categorized as a relatively small river
basin. One limitation of this study is the application of our methodology in larger river basins. Since we
are using downstream observed streamflow data in correcting the initial conditions of a distributed
hydrologic model and taking into account that streamflow is an integrated product of all the physical
processes over a basin with different time lags , thus selecting a larger river basin with a longer
concentration time may result in a different behavior of VAR-DA and declined skill in VAR-aided
forecasts/simulations is expected. In these conditions, multiple streamflow observations could be
considered with spatially varying ‘K’ multiplier for implementing the VAR-DA framework. This is now
added to the discussion section on page 17 and 18:



and parameier esimation. Finally, advances 1n hydrologic DA should be well communicated among researchers and forecastng
centers in order to reach a transition strategy from hydrologic DA research into operational forecasting applications.
The Tar river basin that is selected as our case study here is categorized as a relatively small river basin. One limitation of
this study is the application of our methodology in larger river basins. Since we are using downstream observed streamflow
25 data in correcting the initial conditions of a distributed hydrologic model - taking into account that streamflow is an integrated
product of all the physical processes over a basin with different time lags - thus selecting a larger river basin with a longer
concentration time may result in a different behavior of VAR-DA and even declined skill in VAR-aided forecasts/simulations
is expected.
If distributed streamflow observations were available across the watershed, then the VAR framework could be converted to
30 a3-D problem and be applied to each station/grid cell within the basin. In these conditions, multiple streamflow observations
could be considered with spatially varying 'k’ multiplier for implementing the VAR-DA framework. One approach would be
to consider the constant multiplier as a spatial distribution with the "k’ to be correlated across space. A simplistic approach
is to allow the "k’ to vary based on the distance between streamflow observations. Alternately, this fits within a Bayesian
framework by assuming a prior distribution on *k’, which could be used to update "k’ simultaneously across the space to obtain
35 the posterior distribution of the constant multiplier across the watershed that maximizes the joint likelihood of streamflow
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observations across the watershed. Moreover, our VARDA framework is simplified to a 1-D problem along with excluding
model background error term as it has a minimal impact on the VAR-aided forecasts and it is suggested for hydrological
studies (Liu and Gupta, 2007; Seo et al., 2003). Here we apply a single 'k’ multiplier to adjust the SM contents and minimize
the observational error term J,,. In case of including the background error term .J;, matrix B could be computed as the variance

5 of VIC LSM’s SM simulations in an ensemble mode (e.g., by executing VIC LSM with perturbed observed forcings). Also,
one could consider the spatial varying background SM values (X3) across all the grid cells as the decision variables in the
VARDA optimization problem, however this significantly increases the computational demand of the analysis.

Thank you for your review and constructive feedback!



