
This is the response letter to Reviewers’ comments on the manuscript hess-2019-288 

“Variational Assimilation of Streamflow Observations in Improving Monthly Streamflow 

Forecasting”. The reveiwer’s concerns are shown in red boxes and the author’s responses are 

presented in blue colors. 

 

 

The novelty of the work stems from developing a simpler approach to apply VAR-DA for ingesting point 
observations such as streamflow over a gridded LSM. To our knowledge, this has not been addressed 
before.  Further, the role of VAR-DA in improving monthly forecasts is assessed systematically using 
precipitation and temperature forecasts derived from ECHAM4.5 GCM forced with 
constructed-analogue based SST forecasts. In general, DA is not commonly used in hydrologic 
forecasting, whether using gridded satellite observations or using point observations. Hence, there 
remains a strong need for a simpler VAR-DA approach that can improve the initial conditions of LSM 
using the long historical record of observed streamflow and consequently improve the skill in monthly 
streamflow forecasting. Hence, the work has potential for application. 

 

 



 

Response: There is no relation/dependency between the update frequency (UF) and the length of 
assimilation window (AW). However, the total number of DA applications during the study timeframe T 
can be estimated as T/UF. For clarity, this is now revised to “update frequency (the interval between DA 
applications) “. 

 

  

 

Response: The Kumar et al. 2014 and Aubert et al. 2003 studies are now cited in the manuscript, 
pointing out studies on DA application in the context of drought monitoring and flood forecasting.  

 

- Kumar, Sujay V., et al. "Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation." Journal 

of Hydrometeorology 15.6 (2014): 2446-2469. 

- Aubert, David, Cecile Loumagne, and Ludovic Oudin. "Sequential assimilation of soil moisture and streamflow data in a 

conceptual rainfall–runoff model." Journal of Hydrology 280.1-4 (2003): 145-161. 

 

 

Response: We don’t ignore that in-situ observations contain measurement errors, nevertheless it has 
relatively higher accuracy compared to remote sensing and modeled products. Thus, hydrologic studies 
typically consider the in-situ observations as the “reference quantity” or “true value” to evaluate 
remotely sensed data (Loew et al., 2017; Ford and Quiring, 2019; Swenson et al., 2006). The important 
contribution from this paper is on how to utilize long historical record of observed streamflow for error 
correction of LSM initial conditions using a simpler approach based on VAR-DA. 



 

- Loew, Alexander, et al. "Validation practices for satellite-based Earth observation data across communities." Reviews of 

Geophysics 55.3 (2017): 779-817. 

- Ford, Trent W., and Steven M. Quiring. "Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture 

With a Focus on Drought Monitoring." Water Resources Research 55.2 (2019): 1565-1582.  

- Swenson, Sean, et al. "A comparison of terrestrial water storage variations from GRACE with in situ measurements from 

Illinois." Geophysical Research Letters 33.16 (2006). 

 

 

Response: We agree with this point. In general, limited work has been done on ingesting observed 
streamflow for error correcting initial conditions of a hydrologic model (Seo et al., 2003, 2009; Mazrooei 
and Sankar, 2019). To our knowledge, there is no proper comparison has been done on how error 
correction of a hydrologic model, lumped or distributed, results in improved prediction when observed 
streamflow is used as opposed to satellite observations. In addition, Reichle et al. 2003 describes that 
there is a lack of compatibility/similarity between the soil moisture datasets from satellite observations 
and ground measurements, which arises the necessity of a proper bias correction of satellite datasets 
before DA applications. Nevertheless, the papers that we referred in lines 8-10 are mostly utilizing a 
lumped model (Seo et al., 2003, 2009; Vrugt et al., 2005;). So, we agree with your comment. 

- Seo, Dong-Jun, Victor Koren, and Neftali Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data 

into operational hydrologic forecasting." Journal of Hydrometeorology 4.3 (2003): 627-641. 

- Seo, Dong-Jun, et al. "Automatic state updating for operational streamflow forecasting via variational data assimilation." 

Journal of Hydrology 367.3-4 (2009): 255-275. 

- Mazrooei, Amirhossein, and A. Sankarasubramanian. "Improving monthly streamflow forecasts through assimilation of 

observed streamflow for rainfall-dominated basins across the CONUS." Journal of Hydrology 575 (2019): 704-715. 

- Reichle, Rolf H., et al. "Global soil moisture from satellite observations, land surface models, and ground data: Implications for 

data assimilation." Journal of Hydrometeorology 5.3 (2004): 430-442. 

- Vrugt, Jasper A., et al. "Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global 

optimization and data assimilation." Water resources research 41.1 (2005). 

 



 

 

Response: Most DA techniques using EnKF and PF have been used with distributed models particularly 
using satellite observations (Sun et al., 2004; Reichle et al., 2008; Kumar et al., 2016), which obviously 
has a limited number of years of observations (around 10 years depending on the satellite product) . 
Given our interest is in improving monthly streamflow forecasts, which typically requires a longer period 
for evaluation, we consider observed streamflow for correcting the initial conditions of VIC.  Given the 
computational challenges in running VIC in ensemble mode to implement EnKF for error-correction 
using point observations (Seo et al., 2003), we have used VAR-DA for improving monthly streamflow 
forecasting whose initial conditions are corrected using the long historical streamflow observations. 
Further,  limited/no studies have used VAR-DA for correcting initial conditions using observed 
streamflow particularly for monthly streamflow forecasting derived using climate forecasts.  Hence the 
justification is as follows: To improve monthly streamflow forecasting skill, DA can be very helpful. But, 
for better evaluation of forecasting skill, we need a longer period of observations. Hence, observed 
streamflow is a better choice as opposed to satellite records. To apply DA with observed streamflow in a 
distributed hydrologic model, VAR-DA is more suited as opposed to sequential DA techniques such as 
EnKF. Hence, we use VAR-DA with observed streamflow for error correcting the VIC to develop 1-month 
ahead streamflow forecasts. 

Hope this justifies the motivation and the need for this study. 

- Sun, Chaojiao, Jeffrey P. Walker, and Paul R. Houser. "A methodology for snow data assimilation in a land surface model." 

Journal of Geophysical Research: Atmospheres 109.D8 (2004). 

- Reichle, Rolf H., Wade T. Crow, and Christian L. Keppenne. "An adaptive ensemble Kalman filter for soil moisture data 

assimilation." Water resources research 44.3 (2008). 

- Kumar, Sujay V., et al. "Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data 

Assimilation System." Journal of Hydrometeorology 17.7 (2016): 1951-1972. 

- Seo, Dong-Jun, Victor Koren, and Neftali Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data 

into operational hydrologic forecasting." Journal of Hydrometeorology 4.3 (2003): 627-641. 

 

Accordingly, the introduction of the manuscript has undergone a major revision to better address the 
mentioned points. A comparison between the old version and the new version is presented below 
where the eliminated text is highlighted in red and the added text is highlighted in green:  

  



 

  



 

Response: Agreed. Using downscaled and disaggregated climate forecasts from previous studies  is 
similar to using observed precipitation and temperature available from a given station for different 
investigations. The key contribution of this paper is the implementation of VIC LSM VAR-DA 
methodology in VIC LSM and analyzing how VAR-DA improves skill in monthly streamflow forecasting. In 
section 2.4 we explained the algorithm in developing climate forecasts at finer spatial resolutions, while 
it is not the focus of this paper, and the validation of the utilized downscaled climate forecasts is 
presented in Mazrooei et al., 2015, referenced for readers’ further deliberation.  

Moreover, the VIC model parameters are not the same as those from the model used in Sinha and 
Sankarasubramanian 2013, since the studies are over two different basins. Though, the similarity is the 
calibration process used in both studies (explained in the response letter to reviewer#1) and the model’s 
performance is presented as a table.  

- Mazrooei, Amirhossein, et al. "Decomposition of sources of errors in seasonal streamflow forecasting over the US Sunbelt." 

Journal of Geophysical Research: Atmospheres 120.23 (2015): 11-809. 

- Sinha, T., and A. Sankarasubramanian. "Role of climate forecasts and initial conditions in developing streamflow and soil 

moisture forecasts in a rainfall–runoff regime." Hydrology and Earth System Sciences 17.2 (2013): 721-733.  

 

 

Response: Our work tries to understand the potential of VAR-DA using streamflow observations in 
1-month ahead hydrologic forecasting through two approaches: using ECHAM4.5 GCM climate forecasts 
and through ESP forecasting, so the focus is to achieve the maximum gain in terms of forecast accuracy 
from DA application. If we include the cost function of background error (J_b) in the VAR objective 
function then it penalizes changes in the decision variable ‘k’ from k=1 (i.e. x = x_b), thus the DA-aided 
forecasts are much closer to the forecasts from the Open Loop scheme. Accordingly, Liu and Gupta 2007 
have also suggested to exclude the background error from the VAR frameworks in practical hydrologic 
studies. Also, Seo et al 2003 have supported the same simplification by expressing that J_b has "rather 
small influence" on VAR-aided predictions in hydrology. 



 

 

To better address this concern, we have conducted a pilot study over 1-year period of 1991, where the 
background error covariance matrix B is computed as the variance of simulated SM values over the Tar 
river basin (Total SM content in all 3 layers, spatially averaged over all the 40 grid cells of Tar River basin) 
from 100 ensemble simulations, by executing VIC model with perturbed observed forcing variables 
(input error = 5%). Figure1 illustrates the simulated SM values over 62 years (1949-2010) and figure2 
shows the variance of simulated SM values from a) single model simulation and b) ensemble model 
simulation, which is used as the benchmark for matrix B. In our study, matrix B is computed as a 1-D 
problem (i.e., a single value of B for a given date since SM is spatially averaged over the basin), although, 
one could consider the spatial varying SM values from all the grid cells to compute the variance of SMs 
and an array of B values for a given date. 

 

 
figure1: simulated SM contents over 62 years (1949-2010) 

 



 
figure2: the variance of simulated SM values used to compute Background Error Covariance matrix B. 

 
 
The VARDA framework including both background error and observational error (i.e., J = (½)*J_b + 
(½)*J_o ) is then applied to VIC LSM and performed over the 1-year period of 1991, by using 7 days of 
assimilation window (i.e., AW=7days) and updating the model’s Initial Hydrologic Conditions (IHCs) at 
the beginning of each month (i.e., UF=1month). As mentioned before, including J_b penalizes the 
decision variable ‘k’ to change from k=1 since J_b is always zero at k=1. In other words, including J_b 
always results in an optimal ‘k’ between 1 and the obtained ‘k’ from minimizing J_o solely. 
The effect of including J_b in the VARDA is shown in figure3. We see that considering J_b into the VAR 
calculations does not pose significant differences in the k values as the B matrix contains much higher 
errors compared to matrix R, deweighting J_b contribution as the result. This is in line with Seo et al. 
2003 who expressed that including J_b has a small influence on VARDA in hydrological studies. 
Nevertheless, in few situations it is possible that J_b dominates J_o completely, as shown in figure4, 
where the optimal k is found as 1 (i.e., no change in the Xb) after including J_b into the calculations. 
 
 

 
figure3: Comparison between the optimal value of k, for minimizing a) J_O and b) general VAR equation.  

 



 
figure4: Relation between decision variable ‘k’ and the decomposed objective functions of VARDA.  
 
- Liu, Yuqiong, and Hoshin V. Gupta. "Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework." 

Water Resources Research 43.7 (2007). 

- Seo, Dong-Jun, Victor Koren, and Neftali Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data 

into operational hydrologic forecasting." Journal of Hydrometeorology 4.3 (2003): 627-641. 

 

 

Response:   We used a heuristical search for obtaining the optimal decision variable ‘k’ that minimizes 
the objective function. The searching decision space for ‘k’ is from 0 to 2 with a uniformly divided 
intervals of 0.01. The found ‘k’ is then used to adjust SM contents in three soil layers and within the 268 
subgrid cells of Tar river basin in order to run VIC in an “analysis” mode (Xa = x*k).  

 

 

 

Response: As mentioned earlier in this letter, including J_b along with J_o results in minimal changes in 
the optimal decision variable ‘k’. Consequently, it is expected to have a small impact on the VAR-aided 



streamflow forecasts too. This is now tested and evaluated over the pilot study of 1991 shown in 
figure5, where the forecasting skill from both VARDA applications are approximately the same. This 
experiment could be performed over the entire 20-years of our study timeframe and by selecting 
different lengths of assimilation window. This requires a substantial amount of time which is beyond the 
deadline of our response letter.  

 
figure5: 1-month ahead streamflow forecasting using ECHAM climate forecasts obtained from updating model states from Open 

Loop (OL) simulations and updating model states from two VARDA experiments using 7 days assimilation window. 

 
 

 

Response: The main purpose of defining a single decision variable ‘k’ is to reduce the computational 
time, as this study is conducted over a long timeframe of 20-years, considering two DA parameters as 
AW and UF that results in 49 different VARDA scenarios (i.e., selection of 7 assimilation window lengths 
and 7 update frequencies) and including two different forecasting approaches. Therefore, the 
application of VARDA by considering 804 elements of SM contents as decision variables (i.e., three soil 
layers and within the 268 subgrid cells of Tar river basin) is beyond our available computational 
resources, thus we initialized the VIC LSM at the beginning of assimilation window with an adjusted Xb 
(i.e., ). The following is now added to the discussion section to address thisk  | k ∊ [0, ]xk =  × xb 2  

concern:  



 

 

 

 

Response: It is found from our results that selecting an assimilation window of 7-days results in the 
highest improvements in streamflow simulations (figure 4 in the manuscript) and short-range 
forecasting up to 10-days ahead (figure 6 in the manuscript), while long range forecasting (e.g., 15days 
ahead and 1-month ahead) benefits more from longer assimilation windows. The effectiveness of 7-days 
AW might be due to the consideration of most recent streamflow observations which is assumed to be 
within the basin’s short-term SM memory. However for longer lead times, the long-term persistence of 
SM variable is found more effective in dominating the imprecise ECHAM climate forecasts.  

 

 

Thank you for your review and constructive feedback! 


