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This is well-organized paper analyzing the effectiveness of variational data assimila-
tion approach to improve monthly streamflow forecast. Although the authors provided
a comprehensive discussion on the strengths of the variational data assimilation ap-
proach in improving streamflow forecasts, the way they implemented the variational
data assimilation is not consistent with its definition. Additionally, | have several other
serious concerns about this study. All in all, | do not find this study novel nor provides
insight/unique findings that makes it publishable in HESS.

The novelty of the work stems from developing a simpler approach to apply VAR-DA for ingesting point
observations such as streamflow over a gridded LSM. To our knowledge, this has not been addressed
before. Further, the role of VAR-DA in improving monthly forecasts is assessed systematically using
precipitation and temperature forecasts derived from ECHAMA4.5 GCM forced with
constructed-analogue based SST forecasts. In general, DA is not commonly used in hydrologic
forecasting, whether using gridded satellite observations or using point observations. Hence, there
remains a strong need for a simpler VAR-DA approach that can improve the initial conditions of LSM
using the long historical record of observed streamflow and consequently improve the skill in monthly
streamflow forecasting. Hence, the work has potential for application.



Page 1, line 7: It is not clear what does the frequency of Data Assimilation (DA) appli-
cation mean? The length of the assimilation window (t) is the time interval for which the
variational cost function is minimized, and its frequency depends on the entire period
of study, as it is calculated by (entire period, T)/(assimilation window, t). Therefore,
this is a bit vague as the authors defined it as one of the “independent” parameters of
variational DA approach.

Response: There is no relation/dependency between the update frequency (UF) and the length of
assimilation window (AW). However, the total number of DA applications during the study timeframe T
can be estimated as T/UF. For clarity, this is now revised to “update frequency (the interval between DA
applications) “.

casting. The study is conducted for the Tar River basin in North Carolina over 20-year period (1991-2010). The role of two
critical parameters of VAR DA - the update frequency (the interval between DA applications) and the length of assimilation

window - in determining the skill of DA-improved streamflow predictions is also assessed. We found that correcting VIC

Page 2, line 16: Please include hydrologic studies, such as drought monitoring and
flood forecasting, as well.

Response: The Kumar et al. 2014 and Aubert et al. 2003 studies are now cited in the manuscript,
pointing out studies on DA application in the context of drought monitoring and flood forecasting.

15 strated. Furthermore, considerable advances in theoretical development of DA techniques in hydrology have been proposed
from simple direct insertion methods to complex sequential and smoothing filtering methods (Kumar et al., 2009; DeChant and

Moradkhani. 2012; Wang and Cai. 2008; Aubert et al., 2003; Kumar et al., 2014), yet its application in hydrologic studies on

real-time forecasting is at its infancy (Liu et al., 2012).

- Kumar, Sujay V., et al. "Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation." Journal
of Hydrometeorology 15.6 (2014): 2446-2469.

- Aubert, David, Cecile Loumagne, and Ludovic Oudin. "Sequential assimilation of soil moisture and streamflow data in a
conceptual rainfall-runoff model." Journal of Hydrology 280.1-4 (2003): 145-161.

Page 3, line 8: In situ streamflow observation generally contains substantially lower
measurement errors compared to satellite retrievals. Please include a reference for
this statement.

Response: We don’t ignore that in-situ observations contain measurement errors, nevertheless it has
relatively higher accuracy compared to remote sensing and modeled products. Thus, hydrologic studies
typically consider the in-situ observations as the “reference quantity” or “true value” to evaluate
remotely sensed data (Loew et al., 2017; Ford and Quiring, 2019; Swenson et al., 2006). The important
contribution from this paper is on how to utilize long historical record of observed streamflow for error
correction of LSM initial conditions using a simpler approach based on VAR-DA.




5 2008: Reichle et al., 2008). Remote sensing provides estimations of initial hydrologic conditions over a large extent, thus
it could be utilized in regional and continental DA studies. On the other hand. historical in-situ observations such as gauge-
measured streamflow records are available for a much longer period of time and contain substantially lower measurement errors
compared to satellite observations (Loew et al., 2017; Ford and Quiring, 2019; Swenson et al., 2006). Hence, assimilating

gauge-measured streamflow also provides a great opportunity to correct model state conditions and consequently improve

10 hydrologic predictions (Seo et al., 2003, 2009; Vrugt et al., 2005; Clark et al., 2008; Moradkhani and Sorooshian, 2008).

- Loew, Alexander, et al. "Validation practices for satellite-based Earth observation data across communities." Reviews of
Geophysics 55.3 (2017): 779-817.

- Ford, Trent W., and Steven M. Quiring. "Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture
With a Focus on Drought Monitoring." Water Resources Research 55.2 (2019): 1565-1582.

- Swenson, Sean, et al. "A comparison of terrestrial water storage variations from GRACE with in situ measurements from
Illinois." Geophysical Research Letters 33.16 (2006).

Page 3, lines 8-10. Yes, this is true for hydrologic data assimilation based on lumped-
or semi-distrusted hydrologic models. However, for fully distributed hydrologic models,
such conclusion is rather speculative and less conclusive, as the impact of assimilating
satellite soil moisture versus streamflow observations into fully distributed hydrologic
models has not been fully explored according to the literature.

Response: We agree with this point. In general, limited work has been done on ingesting observed
streamflow for error correcting initial conditions of a hydrologic model (Seo et al., 2003, 2009; Mazrooei
and Sankar, 2019). To our knowledge, there is no proper comparison has been done on how error
correction of a hydrologic model, lumped or distributed, results in improved prediction when observed
streamflow is used as opposed to satellite observations. In addition, Reichle et al. 2003 describes that
there is a lack of compatibility/similarity between the soil moisture datasets from satellite observations
and ground measurements, which arises the necessity of a proper bias correction of satellite datasets
before DA applications. Nevertheless, the papers that we referred in lines 8-10 are mostly utilizing a
lumped model (Seo et al., 2003, 2009; Vrugt et al., 2005;). So, we agree with your comment.

- Seo, Dong-Jun, Victor Koren, and Neftali Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data
into operational hydrologic forecasting." Journal of Hydrometeorology 4.3 (2003): 627-641.

- Seo, Dong-Jun, et al. "Automatic state updating for operational streamflow forecasting via variational data assimilation."
Journal of Hydrology 367.3-4 (2009): 255-275.

- Mazrooei, Amirhossein, and A. Sankarasubramanian. "Improving monthly streamflow forecasts through assimilation of
observed streamflow for rainfall-dominated basins across the CONUS." Journal of Hydrology 575 (2019): 704-715.

- Reichle, Rolf H., et al. "Global soil moisture from satellite observations, land surface models, and ground data: Implications for
data assimilation." Journal of Hydrometeorology 5.3 (2004): 430-442.

- Vrugt, Jasper A., et al. "Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global
optimization and data assimilation." Water resources research 41.1 (2005).




Page 3, lines 20-24: It is unclear how the authors believe assimilating point-
measurement, such as observed streamflow at gauge, into a gridded hydrologic model
(i.e., Variable Infiltration Capacity, VIC) using a variational DA assimilation is essen-
tial, knowing that many studies have already used the ensemble DA approaches such
ensemble Kalman filter (EnKF) or Particle Filter as a maore efficient approach under
similar conditions. | suggest the authors use more encouraging and tenable explana-
tion to justify the necessity of for this study.

Page 3, line 29: After reading the introduction section, | am still not sure why variational
data assimilation approach is being used in this study.

Response: Most DA techniques using EnKF and PF have been used with distributed models particularly
using satellite observations (Sun et al., 2004; Reichle et al., 2008; Kumar et al., 2016), which obviously
has a limited number of years of observations (around 10 years depending on the satellite product) .
Given our interest is in improving monthly streamflow forecasts, which typically requires a longer period
for evaluation, we consider observed streamflow for correcting the initial conditions of VIC. Given the
computational challenges in running VIC in ensemble mode to implement EnKF for error-correction
using point observations (Seo et al., 2003), we have used VAR-DA for improving monthly streamflow
forecasting whose initial conditions are corrected using the long historical streamflow observations.
Further, limited/no studies have used VAR-DA for correcting initial conditions using observed
streamflow particularly for monthly streamflow forecasting derived using climate forecasts. Hence the
justification is as follows: To improve monthly streamflow forecasting skill, DA can be very helpful. But,
for better evaluation of forecasting skill, we need a longer period of observations. Hence, observed
streamflow is a better choice as opposed to satellite records. To apply DA with observed streamflow in a
distributed hydrologic model, VAR-DA is more suited as opposed to sequential DA techniques such as
EnKF. Hence, we use VAR-DA with observed streamflow for error correcting the VIC to develop 1-month
ahead streamflow forecasts.

Hope this justifies the motivation and the need for this study.

- Sun, Chaojiao, Jeffrey P. Walker, and Paul R. Houser. "A methodology for snow data assimilation in a land surface model."
Journal of Geophysical Research: Atmospheres 109.D8 (2004).

- Reichle, Rolf H., Wade T. Crow, and Christian L. Keppenne. "An adaptive ensemble Kalman filter for soil moisture data
assimilation." Water resources research 44.3 (2008).

- Kumar, Sujay V., et al. "Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data
Assimilation System." Journal of Hydrometeorology 17.7 (2016): 1951-1972.

- Seo, Dong-Jun, Victor Koren, and Neftali Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data
into operational hydrologic forecasting." Journal of Hydrometeorology 4.3 (2003): 627-641.

Accordingly, the introduction of the manuscript has undergone a major revision to better address the
mentioned points. A comparison between the old version and the new version is presented below
where the eliminated text is highlighted in red and the added text is highlighted in green:



1 Introduction

Reliable Monthly-to-Seasonal (M2S) streamflow forecasting
provides critical information for water system planning and
management (¢.g.. crop management). Such forecasts also
litate the allocation of water supplies to different water
users (e.g.. domestic. agriculural, etc.) and (o meet envi-
ronmental demands (Hamlet and Lettenmaier, 1999; Wood
et al., 2002; Devineni et al., 2008). Over the past decades,
several strides have been made in M2S streamflow forecast-
<ing through uilizing climate forecasts from General Cir-
lation Models (GCMs), following-with considerable f-
forts on uncertainty quantification in the context of real-time
hydrologic forecasting (Schaake et al., 2006; Pappenberger
and Beven, 2006; Brown, 2010; Mazrooei et al., 2015; Ah-
« madalipour et al., 2017). Although, several sources of uncer-
tainty in streamflow forecasting have been identified (e.g.,
uncertainty in model structure and model parameters, in-
accurate initial hydrologic conditions, imprecise hydrome-
teorological forcings), addressing such inherent uncertain-
2« ties Within forccasting approaches have remained a long-
standing problem (Ajami et al., 2007 Salamon and Feyen,
2010). Still, effective quantification and further reduction of
uncertainties from multiple sources hold great potential for
enhancing the accuracy and reliability of hydrologic fore-
s casts (Liu et al., 2012; Pappenberger et al., 2011: Sankara-
subramanian et al., 2009: Li et al., 2014). Rainfall is the ma-
jor contributor 1o the streamflow and it s the key source of
uncertainty in M2S streamflow forecasting for basins under
rainfall-runoff regime (Li et al., 2009). Hence, our limited
» il monthly metearologcal forcasting s  detemining
factor for the skill of M2S streamflow forecasting. Further-
more, hydrologic predmlabl ity in rainfall-dominated basins
is dependent on accurate estimation of soil moisture condi-
tions (Mahanama et al., 2012). Thus, the skill of long-range
- streamflow forecasting for such basins could be substantially
improved by incorporating fine-tuned soil moisture initial-
ization,
Data Assimilation (DA) is an effective technique that is
able to reduce the errors in model state variables and parame-
o fers and consequently improves the model predictability. The
basic theory behind DA is to optimally combine the infor-
‘mation from model predictions and available observations to
correct the model initial conditions. DA have been widely ap-
plied in occanography and atmospheric sciences, espec
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commonly used methods that has been explored in hydrolog-
ical studies (Moradkhani et al., 2005; Reichle et al., 200
Clark ctal., 2008). Sequential DA is most suitable when grid-
ded observations are exploited for correcting initial condi-
tions estimated by the model. however its application in dis-
tributed hydrologic models demands state-space reformula-
tion of model (in a gridded form) and substantial computing
powerdueto ensemble simulations (Seo et al., 2003).

Alternatively, Variational data assimilation (VAR) is a
potentially simpler method as opposed to sequential DA
(Jazwinski, 2007). VAR DA is a commonly used technique
in global atmospheric assimilation schemes and operational
‘meteorological centers, yet it has not been fully exploited in
hydrological studies (Ide et al., 1997; Li and Navon, 2001;
Liu et al., 2012). In spite of the substantial research on hy-
drologic DA, limited number of studies have been focused on
VAR DA formulation, application and quantifying the per-
formance gain in M2S hydrologic forecasting. For example,
Seo et al. (2003) employed variational assimilation (VAR)
10 assimilate streamflow and precipitation observations for
improving operational hydrological forecasting at short lead
times. They revealed that VAR DA significantly improves the
a of 40-hour ahead streamflow forecasts over few se-
lected basins in the United State, and concluded that em-
ploying VAR DA is more appropriate in real-time forecast-
- in comparison 1o other DA technigues - since it requires
computational demand. Riidiger et al. (2006) employed
VAR DA coupled with the Catchment Land Surface Model
(CLSM) in order to assimilate observed streamflow
sessed the direct improvements in initial soil moisture states
over three catchments in Australia.

“The abundance of hydrologic observations collected over
last decades from in-situ measurements and satellite remote
sensing has motivated the need to integrate them into DA
techniques for improving hydrologic predictions. Accord-
ingly. the potential for DA studies has increased due to avail-
ability of remotely sensed data of soil moisture and snow
cover area/extent from satellite observations in recent years
(Pauwels et al., 2001; Andreadis and Lettenmaicr, 2006; Ku-
mar et al., 2016: Clark et al., 2008; Reichle et al., 2008). Re-
mote sensing provides estimations of initial hydrologic con-
ditions over a large extent. thus it could be utilized in re
gional and continental DA studies. On the other hand, histor-
iical in-situ observations such as gauge-measured streamflow
records are available for a much longer period of time and

nd as-

«in operational weather forecasting, and its
been well Furthermore,

contain lower errors compared 10
satellite . Hence, assimilating gauge-measured

in theoretical development of DA techniques in hydrology
have been proposed from simple direct insertion methods o
complex sequential and smoothing filtering methods (Kumar
w etal., 2009; DeChant and Moradkhani, 2012; Wang and Cai,

2008), yet its application in hydrologic studies on real-time
forecasting is at its infancy (Liu et al., 2012)

Sequential DA such as Extended Kalman Filter (EKF) or
Ensemble Kalman Filter (EnKF) is one of the carliest and

streamflow also provides a great opportunity to correct model
state conditions and consequently improve hydrologic pre-
dictions (Seo et al.. 2003, 2009: Vrugt et al.. 2005: Clark
etal., 2008; Moradkhani and Sorooshian, 2008).

‘The motivation of this study is to improve monthly stream-
flow forecasts using month-ahead climate forecasts which
specify the uncertainty in the forcings. For this purpose, VAR
DA based on observed streamflow data is incorporated in

s

1 Introduc

ion

Reliable Monthly-to-Seasonal (M2S) streamflow forecasting
provides critical information for water system planning and
management (e.g., crop management). Such forecasts also

« facilitate the allocation of water supplics to different water
users (e.g.. domestic. agricultural, etc.) and 1o meet envi-
ronmental demands (Hamlet and Lettenmaicr, 1999; Wood
et al., 2002; Devineni et al., 2008). Over the past decades,
several strides have been made in M2S streamflow forecast-

« ing through uilizing climate forecasts from General Circu-
lation Maodels (GCMs) with several efforts on uncertaint
quantification in the context of real-time hydrologic forc-
casting (Schaake et al., 2006: Pappenberger and Beven,
2006; Brown, 2010; Mazrooei et al., 2015; Ahmadalipou

2017). Although, several sources of uncertainty in
streamflow forecasting have been identified (e.g.. uncertainty
in model structure and model parameters, inaccurate
tial hydrologic conditions, imprecise hydrometeorological
forcings), addressing such inherent uncertainties combined

» within forecasting approaches have remained a long-standing
problem (Ajami et al., 2007; Salamon and Feyen, 2010).
Still, effective quantification and further reduction of unc
tainties from multiple sources hold great potential for en-
hancing the accuracy and reliability of hydrologic forecasts

= (Liuetal.. 2012; Pappenberger et al., 201 1; Sankarasubrama-
nian et al., 2009; Li et al., 2014). Further, rainfall is the ma-
jor contributor to streamflow variability and remains as the
key source of uncertainty in M2S streamflow forecasting for
basins under rainfall-runoff regime (Li ct al., 2009). Under

» these regimes. our limited skill in precipitation forecasting
is a determining factor for the skill of M2S streamflow fore-

ertheless, an accurate estimation of model’s soil
moisture conditions could overcome the limited skill of pre-
cipitation forecast and further improve streamflow forecastin

-« rainfall-runoff regimes (Mahanama et al., 2012). Thus, data
assimilation_techniques for correcting model’s soil mois-
ture conditions provide lots of promise in improving M2S
streamflow forecasting in rainfall-runoff regimes (Morad-
Khani et al.. 2005: Reichle et al.. 2008: Clark et al., 2008).

o Data Assimilation (DA) is an effective methodology that
is able to reduce the errors in model state variables and pa-
rameters and consequently improves the model predictabil-
ity. The basic idea behind DA is to optimally combine the
information from model predictions and available observa-

« tions 10 correct the model initial conditions. DA have been
widely applied in oceanography and atmospheric sciences,
especially in operational weather forecasting, and its effec-
tiveness has been well demonstrated. Furthermore, consid-
erable advances in the theoretical development of DA tey

« niques in hydrology have been proposed from simple direet
insertion methods to complex sequential and smoothing fil-
tering methods (Kumar et al.. 2009; DeChant and Morad-
Khani, 2012; Wang and Cai, 2008; Aubert et al., 2003; Ku
mar et al., 2014). yet its application in hydrologic studi

st al
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on real-time forecasting is at its infancy (Liu et al., 2012).
Of these methods, sequential DA such as Extended Kalman
Filter (EKF) or Ensemble Kalman Filter (EnKF) is one of
the earliest and commonly used methods that has been ex-
plored in hydrological studies (Moradkhani et al., 2005; Re-
ichle et al., 2008: Clark et al., 2008). Sequential DA is most
suitable when gridded observations are considered for cor-
recting initial conditions estimated by the model, however i
main limitation on the application in distributed hydrologic
maodels stems from the requirement of state-space reformula-
tion of model (in a gridded form) along with the substantial
demand of the computational power arising from ensemble
simulations (Seo et al.. 2003

Altematively, yariational data assimilation (VAR DA) is
a potentially simpler melhm! as opposed 1o sequential DA

2007). VAR DA is a commonly used techni

in global atmospheric mmylmn schemes and operational
metcorological centers, yet it has not been fully exploited in
hydrological studies (Ide et al., 1997; Li and Navon, 2001;
Liu et al.. 2012). In spite of the substantial research on hy-
drologic DA. limited number of studi
VAR DA formulation, application and quantifying the perfor-
mance gain in M2S hydrologic forecasting. For example, Seo
etal. (2003) employed VAR DA to assimilate streamflow and
precipitation observations for improving operational hydro-
logical forecasting at short lead times. They employed VAR
DA in a lumped watershed model, Sacramento Model, and
found that it significantly improves the accuracy of 40-hour
ahead streamflow forecasts over few selected basins in the
United States. Since Sacramento Model is commonly used
in operational streamflow forecasts. they also suggested VAR
DA is more suitable for real-time forecasting - in compari-
son 10 other DA techniques - since it requires less compu-
tational demand. Riidiger et al. (2006) employed VAR DA
coupled with the Catchment Land Surface Model (CLSM)
in order to assimilate observed streamflow and assessed the
direct improvements in initial soil moisture states over three
catchments in Australia. However, the entire study is a syn-
thetic study where observed forcings were used in improving
streamflow and latent-heat flux predictions.

‘The abundance of hydrologic observations collected over
last decades from in-situ measurements and satellite remote
sensing has motivated the need to integrate them into DA
techniques for improving hydrologic predictions. Accord-
ingly. the potential for DA studies has increased due to av:
ability of remotely sensed data of soil moisture and snow
cover arcafextent from satellite observations in recent years
(Pauwels et al., 2001; Andreadis and Lettenmaier, 2006; Ku-
mar et al., 2016; Clark et al., 2008; Reichle et al., 2008). Re-
mote sensing provides estimation of initial hydrologic con-
ditions over a large extent, thus it could be utilized in re-
gional and continental DA studies. On the other hand, histor-
ical in-situ observations such as gauge-measured streamflow
records are available for a much longer period of time and
contain substantially lower measurement errors compared to

ave been focused on

[
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a Land Surface Model (LSM).to correct the. initial condi-
tions. Past DA studies have considered either a conceptual
hydrologic model or a distributed model along with observed
forcings for evaluating the utility of DA in improving hy-
+ drologic predictions, mainly for short-range forecasting lead
hourly 1o weekly). rather than long-range fore-
casting. Recently, Mazrooei and Sankarasubramanian (2019)
analyzed the improved skill of monthly streamflow forecasts
over rainfall-dominated basins across the United States. by
EnKF 10 correct the im\ml conditions of a concep-
tual hydrologic model. Thi considers Variable Infil-
tration Capacity (VIC) LSMin wl\u.h more complex model-
ing components - such as interactions between land surface
and atmosphere, vegetation dynamics. soil temperature and
» streamflow response -are explicitly incorporated with a finer
modeling time steps (Cox et al.. 2000; Feddema et al.. 2005:
Bonan and Levis. 2006; Zeng, 2010). The challenge in cou-
pling VAR DA and VIC LSM is in incorporating the error in
point measurements (i.e.. observed streamflow at gauge) to
 correct the initial conditions of the gridded VIC states. To the
best of our knowledge, there are limited efforts on assessing
the application of VAR DA using in-situ streamflow obst
vations in correcting VIC LSM initial conditions, and quan-
tifying the resultant improvements in real-time long-range
s streamflow forecasts. Our hypothesis here is that addressing
the two sources of uncertainty - correcting initial conditions
and utilizing month-ahead climate forecasts from G - will
provide us with improved monthly streamflow forecasts, par-
ticularly for months with limited skill in climate forecasts
s (e.g.,summer season). For months with significant skill in
climate forecasts arose from ENSO conditions (e.g.. winter
months). we expect the analyses to provide the added value
of VAR DA in improving the monthly streamflow forecast
over the climatological forcings of precipitation and temper-
« ature.

Mazrooei et al.: VAR DA in Streamflow Forecasting

satellite observations (Loew et al., 2017 Ford and Quiring,
2019; Swenson et al., 2006). Ridiger et al. (2006) showed
that assimilating streamflow reduces the error in correcting
the initial conditions as opposed to the soil moisture condi-
« tions using a synthetic setup, since streamflow is an integra-
tor of spatial variability in soil moisture and climate forc-
ings. Hence, assimilating gauge-measured streamflow also
provides a great opportunity to correct model state conditions
and consequently improve hydrologic predictions (Seo et al.,
2 2003, 2009; Vrugt et al., 2005; Clark et al., 2008; Morad-
khani and Sorooshian. 2008).

Given that utilizing obseryed streamflow in DA applica-
tions better reduces the errors in the initial conditions (as op-
posed to soil moisture observations) (Rudiger et al., 2006)

- and VAR DA is more suitable for assimilating point obser-

vations over gridded initial conditions for real-time stream-
flow forecasting (as opposed to sequential DA methods) (Seo
5 cal. 2003), i this sudy we consider VAR DA fo assimi-

Jating observed streamflow information into the Vduable In-

» hllrauon Capacity (VIC) Land Surface Model (LS

“The motivation of this study is to assess the uullly of VAR
DA in improving VIC LSM monthly s(r:amﬁow (orecasls
through two forecasting approaches: 1) using month-ahead
climate forecasts from a GCM and 2) pmlmbnl. stream-

2» flow forecasting, known as Ensemble Streamflow Prediction
(ESP). Past DA studies have considered either a conceptual
hydrologic model or a distributed model along with observed
forcings for evaluating the utility of DA in improving hydro-
logic simulations (aka “predictions"). or for short-range forc-

» casting lead times (i.c., hourly to maximum weekly), rather
than M2S forecasting. Recently, Mazrooei
ramanian (2019) anlyzed the improved skill of I-month
ahead streamflow forecasts over rainfall-dominated basins
across the United States, by correcting the initial conditions

« 0f a conceptual hydrologic model using EnKE. But, the appli-
cation of EnKF 1o & distributed hydrological model is com-
putationally intensive due to ensemble executions. Further-
more, VIC L.SM is selected in which more complex model-
ing components (such as interactions between land surface

. and atmosphere, vegetation dynamics, soil temperature and
streamflow response) are explicitly incorporated with finer
modelling timesteps to-better estimate land-surface fluxes
(Cox et al., 2000; Feddema et al., 2005: Bonan and Levis,
2006; Zeng, 2010)

" The challenge in coupling VAR DA and VIC LSM is in
incorporating the error in point measurements (i.¢., observed
streamflow at gauge) to correct the initial conditions of the
gridded VIC states. To the best of our knowledge, there are
limited efforts on assessing the application of VAR DA using

<« in-situ streamflow observations in correcting VIC LSM ini-
tial conditions, and quantifying the resultant improvements
in real-time long-range streamflow forecasts. Here, we pro-
pose a methodology that minimizes the errors in predict-
ing the observed streamflow towards correcting the spatially

« varying VIC model*s initial conditions. Our hypothesis here

is that addressing the two sources of uncertainty - corre
initial conditions and ilizing month-ahead climate fore
from GCM - will provide us with improved monthly stream-
flow forecasts, particularly for months with limited skill in
climate forecasts (e.g..summer season). For months with sig-
nificant skill in climate forecasts arose from ENSO condi-
tions (e.g.. winter months), we expect the analyses to pro-
vide the added value of VAR DA in improving the monthly
streamflow forecast over the climatological forcings of pre-
cipitation and temperature.




Page 5, section 2.4 and 3.1: The spatial downscaling and temporal disaggregation
of precipitation forecast data along with calibrated model parameters for the Tar River
Basin were directly borrowed from authors’ other studies.

Response: Agreed. Using downscaled and disaggregated climate forecasts from previous studies is
similar to using observed precipitation and temperature available from a given station for different
investigations. The key contribution of this paper is the implementation of VIC LSM VAR-DA
methodology in VIC LSM and analyzing how VAR-DA improves skill in monthly streamflow forecasting. In
section 2.4 we explained the algorithm in developing climate forecasts at finer spatial resolutions, while
it is not the focus of this paper, and the validation of the utilized downscaled climate forecasts is
presented in Mazrooei et al., 2015, referenced for readers’ further deliberation.

Moreover, the VIC model parameters are not the same as those from the model used in Sinha and
Sankarasubramanian 2013, since the studies are over two different basins. Though, the similarity is the
calibration process used in both studies (explained in the response letter to reviewer#1) and the model’s
performance is presented as a table.

- Mazrooei, Amirhossein, et al. "Decomposition of sources of errors in seasonal streamflow forecasting over the US Sunbelt."
Journal of Geophysical Research: Atmospheres 120.23 (2015): 11-809.

- Sinha, T., and A. Sankarasubramanian. "Role of climate forecasts and initial conditions in developing streamflow and soil
moisture forecasts in a rainfall-runoff regime." Hydrology and Earth System Sciences 17.2 (2013): 721-733.

Page 6, section 3.2: Equation (1) shows that the authors used strong-constrained
4DVAR assimilation approach where B (background error covariance matrix) and R
(observational error covariance matrix) are the only error covariance matrices. In the
strong-constrained formulation, we do not have model error covariance matrix (Q). This
means that the model error covariance matrix is zero, unlike the week-constrained
formulation that includes all three error covariance matrices, B, R and Q. With this
introduction, the equation (1) should be used for the synthetic case where the model
error (Q) is zero (perfect model assumption). However, the present work is based on
a real case, which is inconsistent with the definition of the variational data assimilation
approach implemented.

Response: Our work tries to understand the potential of VAR-DA using streamflow observations in
1-month ahead hydrologic forecasting through two approaches: using ECHAM4.5 GCM climate forecasts
and through ESP forecasting, so the focus is to achieve the maximum gain in terms of forecast accuracy
from DA application. If we include the cost function of background error (J_b) in the VAR objective
function then it penalizes changes in the decision variable ‘k’ from k=1 (i.e. x = x_b), thus the DA-aided
forecasts are much closer to the forecasts from the Open Loop scheme. Accordingly, Liu and Gupta 2007
have also suggested to exclude the background error from the VAR frameworks in practical hydrologic
studies. Also, Seo et al 2003 have supported the same simplification by expressing that J_b has "rather
small influence" on VAR-aided predictions in hydrology.
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taken into account.

[81] In practice, however, nonlinear, high-dimensional
hydrologic applications render the comprehensive optimi-
zation problem as represented by (42) very difficult, and
often impossible, to solve. Consequently, simplifications
and approximations are often introduced by, for example,
neglecting model/parameter errors and/or linearizing the
state and observation equations. Even with simplifications,
solving a VDA problem analytically is not easy, and often a
numerical algorithm such as the adjoint model technique is
used to obtain solutions in an iterative manner.

[s2] To illustrate the implementation process of variation-
al data assimilation, we consider a simple VDA system
where the objective is to minimize the following cost
function with only the measurement term ./, considered:

n

J@)=Jo=> (z— Hix))'R; 'z — Hix]).  (44)
i=1

Screenshot From Liu and Gupta 2007

To better address this concern, we have conducted a pilot study over 1-year period of 1991, where the
background error covariance matrix B is computed as the variance of simulated SM values over the Tar
river basin (Total SM content in all 3 layers, spatially averaged over all the 40 grid cells of Tar River basin)
from 100 ensemble simulations, by executing VIC model with perturbed observed forcing variables
(input error = 5%). Figurel illustrates the simulated SM values over 62 years (1949-2010) and figure2
shows the variance of simulated SM values from a) single model simulation and b) ensemble model
simulation, which is used as the benchmark for matrix B. In our study, matrix B is computed as a 1-D
problem (i.e., a single value of B for a given date since SM is spatially averaged over the basin), although,
one could consider the spatial varying SM values from all the grid cells to compute the variance of SMs
and an array of B values for a given date.

VIC model Simulation (1949-2010) for Tar River Basin —
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figurel: simulated SM contents over 62 years (1949-2010)



. Matrix B (Background Error Covariance)
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figure2: the variance of simulated SM values used to compute Background Error Covariance matrix B.

The VARDA framework including both background error and observational error (i.e., J = (%4)*)_b +
(*4)*)_o) is then applied to VIC LSM and performed over the 1-year period of 1991, by using 7 days of
assimilation window (i.e., AW=7days) and updating the model’s Initial Hydrologic Conditions (IHCs) at
the beginning of each month (i.e., UF=1month). As mentioned before, including J_b penalizes the
decision variable ‘k’ to change from k=1 since J_b is always zero at k=1. In other words, includingJ_b
always results in an optimal ‘k’ between 1 and the obtained ‘k’ from minimizing J_o solely.

The effect of including J_b in the VARDA is shown in figure3. We see that considering J_b into the VAR
calculations does not pose significant differences in the k values as the B matrix contains much higher
errors compared to matrix R, deweighting J_b contribution as the result. This is in line with Seo et al.
2003 who expressed that including J_b has a small influence on VARDA in hydrological studies.
Nevertheless, in few situations it is possible that J_b dominates J_o completely, as shown in figure4,
where the optimal k is found as 1 (i.e., no change in the Xb) after including J_b into the calculations.

optimal 'k' over 1-year period (AW=7days, UF=1month)
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figure3: Comparison between the optimal value of k, for minimizing a) J_O and b) general VAR equation.



K/J relation (Forecast date: 1991-11-01, AW=7days, UF=1months)
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figure4: Relation between decision variable 'k’ and the decomposed objective functions of VARDA.
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Page 6, lines 25-29: It is not clear what approach was used for the minimization of the
cost function, as the tangent linear and adjoint versions of the forecast model is not
available.

Response: We used a heuristical search for obtaining the optimal decision variable ‘k’ that minimizes
the objective function. The searching decision space for ‘k’ is from 0 to 2 with a uniformly divided
intervals of 0.01. The found ‘k” is then used to adjust SM contents in three soil layers and within the 268
subgrid cells of Tar river basin in order to run VIC in an “analysis” mode (Xa = x* ).

II) Given a forecast time T and assimilation window AW, the model background state =, at T_ 4w is linearly scaled by a &

factor to generate the analysis state &y, (i.e., xx = kx x|k € [0,2]). VIC is initialized based on x, and executed during the

30 assimilation window using observed forcings to generate streamflow fluxes Hy[x;] and the cost function .J is computed
based on streamflow observations. This process repeats for all the k values range from 0 to 2 with 0.01 interval to find

the minimum cost function and the optimal analysis state xj.

III) VIC is then initialized by w7}, and executed in order to estimate the corrected state conditions X}; at the forecast time,

Page 7, section 3.3: As highlighted in this section, the goal of this study is to correct
the VIC model's initial state to improve monthly streamflow forecasts. To accomplish
this though variational DA approach, the cost function should include background er-
ror covariance matrix (B) (along with other matrices if necessary) as it represents the
uncertainty in the initial condition. However, the authors excluded this matrix from the
cost function (J) for the sake of simplicity and low computational load. | am not sure
then, how the authors are addressing the uncertainty in the model states (soil mois-
ture) while equation (2) only has observational error covariance matrix that represents
the uncertainty in the USGS gauge observation.

Response: As mentioned earlier in this letter, including J_b along with J_o results in minimal changes in
the optimal decision variable ‘k’. Consequently, it is expected to have a small impact on the VAR-aided




streamflow forecasts too. This is now tested and evaluated over the pilot study of 1991 shown in
figure5, where the forecasting skill from both VARDA applications are approximately the same. This
experiment could be performed over the entire 20-years of our study timeframe and by selecting
different lengths of assimilation window. This requires a substantial amount of time which is beyond the
deadline of our response letter.

1-month ahead Streamflow Forecasts (From ECHAM climate forecasts)
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figure5: 1-month ahead streamflow forecasting using ECHAM climate forecasts obtained from updating model states from Open
Loop (OL) simulations and updating model states from two VARDA experiments using 7 days assimilation window.

Page 7, lines 27-28: To minimize the cost function (J), the VIC model should be ini-
tialized with the background (prior) state variable, which is calculated as Xb = x(initial
guess)+Epsilon and Epsilon belongs to N(0,B), where B is the background error covari-
ance matrix. The result (optimized initial condition), is the X analysis (or let's say Xa).
The authors are using a “k” (!?) factor to generate the analysis state variables and use
them to initialize the VIC model during the optimization process. This is inconsistent
with the cost function definition in the variational DA approach.

Response: The main purpose of defining a single decision variable ‘k’ is to reduce the computational
time, as this study is conducted over a long timeframe of 20-years, considering two DA parameters as
AW and UF that results in 49 different VARDA scenarios (i.e., selection of 7 assimilation window lengths
and 7 update frequencies) and including two different forecasting approaches. Therefore, the
application of VARDA by considering 804 elements of SM contents as decision variables (i.e., three soil
layers and within the 268 subgrid cells of Tar river basin) is beyond our available computational
resources, thus we initialized the VIC LSM at the beginning of assimilation window with an adjusted Xb
(i.e., x;, = kxx, | k€][0,2]). The following is now added to the discussion section to address this

concern:



concentration time may result i a different behavior of VAR-DA and even declined sKill in VAR-aided forecasts/simulations
is expected.
If distributed streamflow observations were available across the watershed, then the VAR framework could be converted to
30 a 3-D problem and be applied to each station/grid cell within the basin. In these conditions, multiple streamflow observations
could be considered with spatially varying 'k” multiplier for implementing the VAR-DA framework. One approach would be
to consider the constant multiplier as a spatial distribution with the 'k’ to be correlated across space. A simplistic approach
is to allow the 'k’ to vary based on the distance between streamflow observations. Alternately, this fits within a Bayesian
framework by assuming a prior distribution on 'k’, which could be used to update "k’ simultaneously across the space to obtain

35 the posterior distribution of the constant multiplier across the watershed that maximizes the joint likelihood of streamflow
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observations across the watershed. Moreover, our VARDA framework is simplified to a 1-D problem along with excluding
model background error term as it has a minimal impact on the VAR-aided forecasts and it is suggested for hydrological
studies (Liu and Gupta, 2007; Seo et al., 2003). Here we apply a single 'k multiplier to adjust the SM contents and minimize
the observational error term .J,,.. In case of including the background error term .J;, matrix B could be computed as the variance
5 of VIC LSM’s SM simulations in an ensemble mode (e.g.. by executing VIC LSM with perturbed observed forcings). Also,
one could consider the spatial varying background SM values (X}) across all the grid cells as the decision variables in the

VARDA optimization problem, however this significantly increases the computational demand of the analysis.

Page 15: line 21: 7-days was identified as a more effective assimilation window size
to implement the variational assimilation approach for streamflow forecasting. Please
provide a reasoning for this choice or back up your claim with a previous study which
has done this.

Response: It is found from our results that selecting an assimilation window of 7-days results in the
highest improvements in streamflow simulations (figure 4 in the manuscript) and short-range
forecasting up to 10-days ahead (figure 6 in the manuscript), while long range forecasting (e.g., 15days
ahead and 1-month ahead) benefits more from longer assimilation windows. The effectiveness of 7-days
AW might be due to the consideration of most recent streamflow observations which is assumed to be
within the basin’s short-term SM memory. However for longer lead times, the long-term persistence of
SM variable is found more effective in dominating the imprecise ECHAM climate forecasts.

Thank you for your review and constructive feedback!



