Status: this preprint was under review for the journal HESS but the revision was not accepted.
A robust recurrent ANFIS for modeling multi-step-ahead flood forecast of Three Gorges Reservoir in the Yangtze River
Yanlai Zhou,Fi-John Chang,Shenglian Guo,Huanhuan Ba,and Shaokun He
Abstract. Accurate and robust multi-step-ahead flood forecast during flood season is extremely crucial to reservoir flood control. A modified hybrid learning algorithm, which fuses the Least Square Estimator (LSE) with Genetic Algorithm (GA), is proposed for optimizing the parameters of recurrent ANFIS (R-ANFIS) model to overcome the instability and local minima problems as well as improve model’s generalization and robustness. A coherent set of evaluation criteria is used to fully explore the model's accuracy (MAE, RMSE, CC & CE) and robustness (reliability, vulnerability & resilience). Three types of ANFIS (i.e. Classic, Recurrent, and Modified Recurrent) models with their optimal input variables identified by the Gamma Test are utilized for modeling multi-step-ahead flood forecast of Three Gorges Reservoir in the Yangtze River, respectively. Taking the horizon t + 12 (three days ahead), for example, the comparison analysis between C-ANFIS and R-ANFIS indicates that the R-ANFIS model can largely improve the CE, CC, reliability and resilience by 38.09 %, 17.36 %, 28.30 % & 140.26 % as well as significantly reduce the MAE, RMSE, vulnerability by 68.03 %, 47.98 % & 13.32 %. The comparison analysis between R-ANFIS and MR-ANFIS shows that the MR-ANFIS model can further enhance the CE, CC, reliability and resilience by 2.04 %, 2.04 %, 5.05 %, and 3.61 %, respectively, as well as decrease the MAE, RMSE, vulnerability by 9.91 %, 13.79 %, and 9.92 %, respectively. Such results evidently promote data-driven model's generalization (accuracy & robustness) and leads to better decisions on real-time reservoir operation during flood season.
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Developing a robust recurrent ANFIS for modeling multi-step-ahead flood forecast. Fusing the LSE into GA for optimizing the parameters of recurrent ANFIS. Improving the robustness and generalization of recurrent ANFIS. An accurate and robust multi-step-ahead inflow forecast in the Three Gorges Reservoir will provide precious decision-making time for effectively managing contingencies and emergencies and greatly alleviating flood risk as well as loss of life and property.
Developing a robust recurrent ANFIS for modeling multi-step-ahead flood forecast. Fusing the LSE...