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Abstract. Accurate and robust multi-step-ahead flood forecast during flood season is extremely crucial 10 

to reservoir flood control. A modified hybrid learning algorithm, which fuses the Least Square 

Estimator (LSE) with Genetic Algorithm (GA), is proposed for optimizing the parameters of recurrent 

ANFIS (R-ANFIS) model to overcome the instability and local minima problems as well as improve 

model’s generalization and robustness. A coherent set of evaluation criteria is used to fully explore the 

model’s accuracy (MAE, RMSE, CC & CE) and robustness (reliability, vulnerability & resilience). 15 

Three types of ANFIS (i.e. Classic, Recurrent, and Modified Recurrent) models with their optimal input 

variables identified by the Gamma Test are utilized for modeling multi-step-ahead flood forecast of 

Three Gorges Reservoir in the Yangtze River, respectively. Taking the horizon t+12 (three days ahead), 

for example, the comparison analysis between C-ANFIS and R-ANFIS indicates that the R-ANFIS 

model can largely improve the CE, CC, reliability and resilience by 38.09%, 17.36%, 28.30% & 20 

140.26% as well as significantly reduce the MAE, RMSE, vulnerability by 68.03%, 47.98% & 13.32%. 

The comparison analysis between R-ANFIS and MR-ANFIS shows that the MR-ANFIS model can 

further enhance the CE, CC, reliability and resilience by 2.04%, 2.04%, 5.05%, and 3.61%, respectively, 

as well as decrease the MAE, RMSE, vulnerability by 9.91%, 13.79%, and 9.92%, respectively. Such 

results evidently promote data-driven model’s generalization (accuracy & robustness) and leads to 25 

better decisions on real-time reservoir operation during flood season.  
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Artificial Intelligence (AI); Multi-step-ahead flood forecast  
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1 Introduction 

Yangtze River is the longest river in China, where a great many farms and important industrial areas are 

built beside the river. To control and promote water resource utilization, a series of large dams have 

been built along the river for multiple purposes, such as hydropower flood control, water supply, and 5 

navigation. Among them, the Three Gorges Dam is the largest dam structure in the world and largest 

hydroelectric project to date, which could generate approximately 90 billion kW˙h/year of 

hydroelectric power for Shanghai and other cities and protect millions of people downstream from 

flooding. Thus, it is crucial to pay particular attention to reservoir flood forecasting to properly address 

the flow variability for promoting multi-beneficiary resource management and to gain the highest 10 

satisfaction and/or maximal total benefits from all the goals of the reservoir operation. Extremely 

limited response time to flood disasters in river basin or urban area makes real-time reservoir operation 

very challenging and reveal an urgent need for accurate and robust multi-step-ahead inflow forecasting 

models in managing contingencies and emergencies and in alleviating flood risk as well as loss of life 

and property.  15 

Rainfall-runoff relationship is one of the most popular yet complex practices of data-driven 

models (Abrahart et al., 2012). Data-driven techniques like artificial neural networks (ANNs) and fuzzy 

inference systems (FIS) have been widely applied with success to modeling runoff based on rainfall 

data in operational hydrology (Darras et al., 2015; Chang et al., 2014; Chen et al., 2014; Chen et al., 

2013; Yang et al., 2013; De 2013; Mount et al., 2013; Li et al., 2009; Xiong et al., 2004). The FIS is 20 

capable of coping with imprecision and uncertainty while ANNs have adaptive learning capabilities of 

being identified input-output patterns (Wandera et al., 2017; Khan 2016; Sun et al., 2016; Baghdadi et 

al., 2012; Gunnink et al., 2012; Lohani et al., 2011). Neuro-Fuzzy networks combine the advantages of 

both fuzzy reasoning and neural networks. The classic Adaptive-Network-based Fuzzy Inference 

System (C-ANFIS) proposed by Jang (1993) could represent one of the state-of-the-art Neuro-Fuzzy 25 

networks and has been widely implemented with satisfaction in streamflow forecasts (Chang and 

Chang, 2006; Chang et al., 2016; Tsai et al., 2014; Firat and Güngör, 2008; Khac and Hock, 2012). 
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However, the C-ANFIS as one of feedforward type of Neuro-Fuzzy networks may be insufficient give 

satisfactory performance for time varying occurrence of rainfall-runoff relationship. Rainfall-runoff 

simulation is one of the most popular real-world hydrological applications, while they are time 

dependent dynamic (non-stationary) processes whose input-output patterns cannot be completely 

identified using static (stationary) ANFIS. Recurrent ANFIS (R-ANFIS) has feedback connection in its 5 

topology and its mechanism is dynamic (Zhang and Morris, 1999). Such dynamic mechanism has 

excellent property that input-output mapping is time-varying rather than a fixed map (long-term 

memory) and can integrate short-term memory with long-term memory in multi-step-ahead forecast 

(refs. Juang, 2002; Mastorocostas and Theocharis, 2002), nevertheless this feature and capability of 

recurrent-ANFIS do not get much attention in the hydrological fields. The original hybrid learning 10 

algorithm proposed by Jang (1993) integrate Least Square Estimator (LSE) with steepest or gradient 

descent algorithms for locally tuning the parameters of C-ANFIS so as to minimize the error between 

output and target. Whereas the steepest or gradient descent algorithms are derivative optimization 

algorithms and have the instability, sensitivity to initial conditions, local minima problems (Tamura et 

al., 2008). Thus, a modified hybrid learning algorithm is proposed here to overcome these defects and 15 

improve the generalization and robustness of R-ANFIS.  

 This study intends to investigate the R-ANFIS for modeling multi-step-ahead flood forecast in 

comparison to the C-ANFIS, and then modify the original hybrid learning algorithm for enhancing the 

forecast accuracy and prolonging forecast horizon of R-ANFIS by fusing the LSE with Genetic 

Algorithm (GA). The GA is used to optimize the premise nonlinear parameters and the LSE is utilized 20 

to optimize the consequent parameters of R-ANFIS model. Such modified hybrid learning algorithm 

provides derivative free exploration for solution in input-output space in comparison to the original 

hybrid learning algorithm. The paper is organized as follows: Section 2 briefly introduces the study area 

and materials. Section 3 described the methodology adopted in this study, which comprises three major 

parts: (1) presenting a theory of the C- ANFIS, R-ANFIS and modified R-ANFIS models adopted in this 25 

paper, (2) describing the original and modified hybrid learning algorithms, and (3) elaborating a 

coherent set of model’s performance evaluation metrics. The results and discussion are shown in 

Section 4, and final remarks are drawn in Section 5.  
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2 Study area and materials 

The Yangtze River (Chang-Jiang) has a total length of 6,300 km with a drainage area of 1.80 million 

km2, and it is the longest river in China (Fig. 1). The cascade reservoirs of Xiangjiaba (XJB) reservoir 

and Three Gorges reservoir (TGR) are located at the mainstream of Yangtze River from upstream to 5 

downstream. The XJB and TGR reservoirs, which were built in 2014 and 2003, respectively, are the 

pivot hydraulic facilities in the Yangtze River basin for flood control, hydropower generation, 

navigation, etc. The drainage areas of the XJB and TGR are 0.46 and 1.00 million km2, respectively, 

and these reservoirs have the flood control capacity of 0.90 and 22.15 billion m3, respectively. The 

inflow of TGR consists of three components, the main upstream inflow controlled by XJB reservoir, the 10 

tributaries inflow controlled by eight flow gauged stations and two (I & II) regional rainfall stations. 

The information of the reservoirs, rives, streamflow gauged stations and regional rainfall stations in the 

Yangtze River basin between the XJB and TGR reservoirs can be found in Fig. 1. The observations of 

XJB reservoir flow, eight flow gauged stations, I & II region rainfalls and TGR flow in the flood season 

(June 1st to September 30th) from 2003 to 2016 year (14 years) with 6 hours’ time-step are available for 15 

the TGR inflow forecasting. The observed rainfall data of the I & II region rainfall gauged stations are 

utilized for calculating the I & II region average rainfall. Take TGR for example, Fig. 2 presents the 

boxplot of the observed TGR inflow in different years. On the basis of similar statistic values (max, 

mean, min & derivation) in boxplot (Fig. 2), the data series are divided into the training period (2003 to 

2010 year, 9 years) and testing period (2011 to 2016 year, 5 years), which can properly cope with the 20 

overfitting problem of data-driven model.  

 

3 Methodology 

3.1 Modeling approach-ANFIS 

Developing accurate and robust data-driven model for modeling multi-step-ahead flood forecast is the 25 

major goal of this study. Bearing this in mind as a motivation, a modified hybrid-learning algorithm is 

proposed here by fusing Least Square Estimation (LSE) with Genetic Algorithm (GA) for optimizing 

the parameters of R-ANFIS. Inflow of TGR is modeled at forecast horizon up to 3 days ahead (Qt+4, 
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Qt+8, Qt+12) with 6 hours’ time-step by using three modeling approaches, and the model architecture is 

shown in Fig. 3. The Model 1 (C-ANFIS) is selected as benchmark, and its results are compared with 

those of Model 2 (R-ANFIS) for the purpose of evaluating the performance of recurrent (dynamic) 

learning mechanism in multi-step-ahead flood forecast. The comparison between Model 2 and Model 3 

(Modified R-ANFIS) focuses on how the different hybrid learning algorithms affect the outputs of R-5 

ANFIS models.  

For completeness, we firstly present a brief description of the C-ANFIS (Jang, 1993). We 

assume the ANFIS architecture has two inputs x1 and x2 as well as one output y based on a popular rule 

set with two if-then rules of Sugeno’s type (Sugeno and Kang 1988), and is defined as the following.  

Rule 1: if x1 is A1 and x2 is B1, then 𝑓1 = p1x1 + q1x2 + r1                                  (1) 10 

Rule 2: if x1 is A2 and x2 is B2, then 𝑓2 = p2x1 + q2x2 + r2                                  (2) 

where A and B form a fuzzy set. Ai and Bi are the ith (i=1,2) linguistic term (such as “small” or “large”) 

of the two inputs x1 and x2, respectively. pi, qi and ri are the linear parameters in ith if-then rules. fi is the 

ith if-then rules.  

The ANFIS consist of five layers (see Fig.3). The Gaussian function and linear function are 15 

selected as the member function for Layer 1 and consequent function for Layer 4, respectively. The T-

norm operator is applied to fuzzy-AND operation in Layer 2. For a full description of the well-known 

structure of the ANFIS, please refer to Jang (1993). 

As aforementioned, the set of total parameters in ANFIS models consist of premise (nonlinear) 

parameters and consequent (linear) parameters. In Fig. 3, the Model 1 (C-ANFIS) is static data-driven 20 

model and trained by the original hybrid learning algorithm (LSE & steepest descent algorithm), while 

the Model 2 (R-ANFIS) is a dynamic data-driven model and also trained by the original hybrid learning 

algorithm (LSE & steepest descent algorithm). The Model 3 (Modified R-ANFIS) is also dynamic data-

driven model and trained by the modified hybrid learning algorithm (LSE & Genetic Algorithm) 

proposed in this study. The flowchart of original and modified hybrid learning algorithm is described 25 

below.  

3.2 Optimizing model parameters by hybrid learning algorithm 

The C-ANFIS and R-ANFIS employ the original hybrid learning algorithm for optimizing parameters, 
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i.e., the steepest descent algorithm is employed in order to optimize the premise parameters of Layer 1, 

and Least Square Estimator (LSE) is employed so as to optimizing the consequent parameters of Layer 

4. To overcome the local minima and instability problems of the original hybrid learning algorithm, a 

modified hybrid learning algorithm is proposed in this study by fusing the LSE with Genetic Algorithm 

(GA) for optimizing the parameters of R-ANFIS. The computation steps (Fig. 4) of the modified hybrid 5 

learning algorithm are described below.  

(1) Population initialization using real-code: randomly create an initial population (Pop) of the premise 

parameters of Layer 1.  

(2) Forward propagation from Layer 1 to Layer 4: utilize LSE for optimizing the set of consequent 

parameters.  10 

(3) Solution evaluation and save best solution: fix the optimal consequent parameters and evaluate 

solutions by computing the following objective (or error) function.  

f(s) =
1

2
∑ (e𝑖)

2N
𝑖=1 =

1

2
∑ (Qf(𝑖) − Qo(𝑖))

2𝑁
𝑖=1                           (3) 

where f(s) is the objective function corresponding to the solution (s) of premise parameters. e𝑖 is the 

error of the ith data. N is the number of data. Qf(𝑖) and Qo(𝑖) are the forecasted and observed values of 15 

the ith data.  

(4) Genetic operator procedure: (a) the reproduction procedure makes a duplicate of parent 

chromosomes as a tentative new population. The selection probability of the possible chromosomes for 

the next generation is in proportion to the fitness value of the chromosomes. The selection procedure 

follows the schema theorem proposed by Goldberg (1989), i.e. the best chromosomes gains more 20 

duplicates while the worst ones are discarded. The tournament selection (Goldberg and Deb, 1991) is 

used in this study. (b) the crossover procedure with probability Pc re-combines two parent chromosomes 

into new offspring chromosomes. (c) To maintain genetic diversity in the population, mutation 

procedure can be implemented occasionally with probability Pm for the next generation.  

(5) Stop criteria: Evaluate the created solutions through Steps 2-3. If the iteration number is less than 25 

the max generation “Gmax”, then repeat Steps 2-5. Otherwise, stop and output the optimization results.  

The differences between the original and modified hybrid learning algorithms are: (1) the former 

fuses the LSE with steepest descent algorithm (Jiang, 1993; Zhang, 1999), while the latter fuses the LSE 
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with GA for optimizing ANFIS parameters; (2) the former is deterministic and derivative optimization 

algorithm (Tamura et al., 2008), while the latter is stochastic and derivative-free optimization algorithm; 

(3) the former is local search technique and limited to the initial values of premise parameters of Layer 

1, while the latter is global search technique and one of the state-of-the-art artificial intelligent 

techniques (Juang, 2002). The parameters of the steepest descent algorithm in original hybrid learning 5 

algorithm contain learning rate (Ita, 0 < η ≤ 0.1), momentum term (Alpha, 0 < α ≤ 1.0) and max 

generation (Gmax), while the parameters of the GA in modified hybrid learning algorithm contain 

population (Pop), max generation (Gmax), crossover probability (Pc) and mutation probability (Pm).  

3.3 Evaluation criteria 

Considering the stochastic nature of hydrological variable, one must not rely on single criteria when 10 

evaluating the performance of data-driven models (ex. Cheng et al., 2017). In this paper, both visual 

plots in conjunction with statistical metrics are used to evaluate the models’ performances. The Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient of Efficiency (CE) and 

Coefficient of Correlation (CC) are selected to evaluate the forecasting accuracy of the three models. 

We also propose a coherent set of evaluation criteria to fully distill the robustness (reliability, 15 

vulnerability and resilience) of model. The evaluation criteria are described below.  

(1) MAE 

MAE =
1

N
∑ |Qf(𝑖) − Qo(𝑖)|N

𝑖=1 ,   MAE ≥ 0                            (4) 

(2) RMSE 

RMSE = √
1

N
∑ (Qf(𝑖) − Qo(𝑖))

2N
𝑖=1 ,   RMSE ≥ 0                    (5) 20 

(3) CE 

CE = 1 −
∑ (Qf(𝑖)−Qo(𝑖))

2N
𝑖=1

∑ (Qo(𝑖)−Q̅o)2N
𝑖=1

, CE ≤ 1                                       (6) 

where Q̅o is the average of the observed data.  

(4) CC 

CC =
∑ (Qf(𝑖)−Q̅f)(Qo(𝑖)−Q̅o)N

𝑖=1

√∑ (Qf(𝑖)−Q̅f)2N
𝑖=1 ∑ (Q𝑜(𝑖)−Q̅𝑜)2N

𝑖=1

, −1 ≤ CC ≤ 1               (7) 25 
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where Q̅f is the average of the forecasted data.  

(5) Reliability of model  

This indicator can be described by the probability that model forecast remains in a satisfactory state. 

Reliability =
∑ K𝑖

N
𝑖=1

N
× 100%                                            (8a) 

K𝑖 = {
1, if(  RAEi ≤ δ)
0,                     else 

                                                   (8b) 5 

RAE𝑖 =
|Qf(𝑖)−Qo(𝑖)|

Qo(𝑖)
× 100%,   RAE𝑖 ≥ 0                         (8c) 

where RAE𝑖 is the Relative Absolute Error (RAE) of the ith data. K𝑖 is the number of times that RAE is 

less than or equal to the threshold value (δ) of qualified forecast. The δ is set to 20% according to 

Chinese standard (GB/T 22482-2008).  

(6) Vulnerability of model  10 

Vulnerability represents the incompetence of a model to resist the effects of a hostile environment (e.g., 

the stochastic nature of hydrological variable). Vulnerability of model denotes the maximum RAE of 

model forecast.  

Vulnerability = max𝑖=1
N {RAE𝑖}                                        (9) 

(7) Resilience of model  15 

Resilience of model describes how quickly model forecast is likely to recover once unqualified forecast 

has occurred.  

Resilience = {
100%,    if(Reliability = 100% or Vulnerability ≤  δ)

∑ R𝑖
N−1
𝑖=1

N−∑ K𝑖
N
𝑖=1

× 100%,                                                            else
     (10a) 

R𝑖 = {
1, 𝑖𝑓(  RAE𝑖 > δ and  RAE𝑖+1 ≤ δ)
0,                                                     𝑒𝑙𝑠𝑒 

                             (10b) 

where R𝑖 is the number of times that model forecast is likely to transfer from unqualified into qualified 20 

forecast in the ith data. Especially, the resilience is equal to 100% if the reliability is equal to 100% or 

vulnerability is less than the δ.  
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4 Results and discussion 

4.1 Input selection and ANFIS model parameters 

This study investigates the multi-step-ahead flood forecast performances of the three types of ANFIS 

models based on a large number of rainfall-runoff patterns of TGR in the Yangtze River. The flood 

forecast of TGR is a multi-inputs and single-output (MISO) pattern (Fig. 1) and there are 6,832 5 

normalized input data (14 year*488 data/year) (Table 1). There are 12 input variables (10 flow variables 

and 2 regional rainfall variables) and their time-lag information is roughly estimated according to the 

geographical distribution and the various travel times of the flow from the upper stream and region 

rainfall gauged stations to the TGR (Table 2). The Gamma Test (Koncar 1997) as one of the state-of-

the-art input selection techniques is used to identify the non-linearity of the rainfall-runoff relationship 10 

(ex. Chang & Tsai, 2016) and determine the optimal input combination of the three ANFIS models, as 

shown in Table 2. The input combinations of current variables Q(t) and R(t) have been selected as 

benchmarks, Ben(I) and Ben(II) for horizons t+8 and t+12, respectively. We only give the optimal (first) 

and suboptimal (second) input combinations at horizons t+4 (one-day), t+8 (two-day) and t+12 (three-

day). We find that: (1) the combination associated with the lowest Ratio values (0.0001, 0.0012 and 15 

0.0015) of Gamma Test are considered as the best combination at horizons t+4, t+8 and t+12, 

respectively; (2) the rainfall variables R(t-2) and R(t) in I Region are selected as optimal time-lagged 

rainfall variables at horizons t+4 and t+8, respectively; (3) the flow variable Q(t) in Fuxi stream gauged 

station is not necessary to form the best combination at horizon t+12. This implies that some of input 

variables at horizons t+8 and t+12 are not necessary to form the best combination as they may make no 20 

contribution for rainfall-runoff pattern, while all input variables at horizon t+4 are necessary to form the 

best combination as they make crucial contribution for rainfall-runoff pattern.  

For inflow of TGR, flood forecast models at horizons t+4, t+8 and t+12 are constructed by the C-

ANFIS (Model 1), R-ANFIS (Model 2) and MR-ANFIS (Model 3), and there are 4,392 normalized 

training dataset (9 year*488 data/year) and 2,440 normalized testing dataset (5 year*488 data/year) 25 

(Table 1). The parameters in every ANFIS model contain: (a) the number of input variables (N1) at 

horizons t+4, t+8 and t+12 are 12, 7 and 4, respectively (Table 2); (b) the number of output variables 

(N2) is 1 (Single-output pattern); (c) the number of membership functions (N3) for every input variable 
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is 2 (N3=Clusters); (d) the number of premise parameters (N4) in Layer 1 at horizons t+4, t+8 and t+12 

are 48(2122), 28(272) and 16(242), respectively (N4=2N1N3); (e) the number of consequent 

parameters (N5) in Layer 4 at horizons t+4, t+8 and t+12 are 26=2(12+1), 16=2(7+1) and 10=2(4+1), 

respectively (N5=N3(N1+ N2)).  

After implementing an intensive trial-and-error procedure based on the training data set, every 5 

ANFIS model is constructed to have five layers with two membership functions for every input 

variable, which in general would have the most suitable performances for the three models of TGR. The 

ANFIS architectures in the three models are then applied to the testing data set without further 

modifications. In the Models 1 & 2, the parameters of the steepest descent algorithm in the original 

hybrid learning algorithm (LSE & Steepest descent algorithm) are set as η = 0.01, α = 0.9 and 10 

Gmax=1000. In the Model 3, the parameters of the GA in the modified hybrid learning algorithm (LSE & 

GA) are set as Pop=1,000, Gmax=1,000, Pc =0.9 and Pm=0.1. The summarized results of the three ANFIS 

models are presented below.  

4.2 Fuzzy rules and performance of ANFIS models 

As mentioned earlier, the fuzzy if-then rules used in the ANFIS models are of the Sugeno’s type. Taking 15 

the Model 3 at horizon t+4 as an example, the inputs consist of three types (10 upstream flow variables, 

2 regional rainfall variables and TGR flow variable). The Model 3 has two clusters (N3), and its 

Gaussian membership functions of the inputs (XJB reservoir flow, I regional rainfall and TGR flow) at 

horizon t+4 are shown in Fig. 5. Only the membership function at horizon t+4 is shown because the 

membership functions at horizons t+8 and t+12 are similar to each other. For the membership functions 20 

of TGR flow, it is clear that cluster 1 represents low flow while cluster 2 represents high flow. The 

membership functions for lagged tributaries flows and region rainfalls are also associated with the two 

clusters that represent higher input amount and lower input amount (Fig. 5).  

The values of MAE, RMSE, CE, CC, Reliability, Vulnerability and Resilience for each models 

are summarized in Table 3. The results show that: (1) the MAE, RMSE, Vulnerability values of Model 25 

3 are relative smaller than the other two models at all horizons; (2) the CE, CC, Reliability and 

Resilience values of Model 3 are relative larger than the other two models at all horizons. These values 

indicate the more accurate and robust results we might reach based on the recurrent learning mechanism 
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and modified hybrid learning algorithm.  

 We further examine the results of Model 1 and Model 2, which have exactly the same 

optimization algorithm (the original hybrid learning algorithm) with the different learning mechanisms. 

The Model 1 & 2 utilize the static and dynamic (recurrent) learning mechanisms, respectively. 

Apparently, the Model 2 have much better performances, in terms of much smaller MAE, RMSE and 5 

Vulnerability values as well as larger CE, CC, Reliability and Resilience values, than Model 1 for both 

training and testing cases at horizons t+4, t+8 and t+12, especially at horizons t+8 and t+12. These 

results provide clear and rigid evidences that the accuracy and generalization of the constructed models 

are poor in the two or three days ahead flood forecast if the recurrent learning mechanism cannot be 

used in ANFIS.  10 

 And then, we check the results of Model 2 and Model 3, which have exactly the same learning 

mechanism (the recurrent learning mechanism) with the different hybrid learning algorithms. The 

Model 2 & 3 utilize the original and modified hybrid learning algorithms, respectively. As we compared 

the results of Model 2 and Model 3, the MAE, RMSE and vulnerability values of the Model 3 are 

smaller than that of the Model 2, and the CE, CC, reliability and resilience values of the Model 3 are 15 

larger than those of the Model 2 for both training and testing periods at all horizons. For instance, the 

reliabilities of horizon t+12 in the training period are 96.19% and 99.16% for the Models 2 & 3, 

respectively; and the reliabilities of horizon t+12 in the testing period are 92.15% and 96.80% for the 

Models 2 & 3, respectively. These results indicate that the Model 3 provides much better (accurate and 

robustness) forecasts than the Model 2.  20 

The growth trends of the MAE, RMSE and vulnerability as well as the decline trends of the CE, 

CC, reliability and resilience values of the Model 1 & 2 at horizons t+4, t+8 and t+12 in the testing 

period are shown in Fig. 6(a). It is noticed that the Model 1 outputs would gradually apart from true 

values as the forecasting time-step increased, and using static learning mechanism and constant synaptic 

weights would further accelerate the growth of forecast errors. Whereas the Model 2 outputs would be 25 

close to true values as the forecasting proceeds, using recurrent learning mechanism and updating 

synaptic weights would correct forecast errors in real time. The MAE, RMSE, vulnerability values of 

Model 2 increase gradually, whereas those of Model 1 increase rapidly from the horizon t+4 to t+12. 
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The CE, CC, reliability and resilience values of the Model 2 decrease slowly, while those of Model 1 

decrease quickly from the horizon t+4 to t+12. The two models perform equally well for horizon t+4 

forecasting, while significant differences among their performances are found as the forecasting 

horizons from t+8 to t+12. This demonstrates that the Model 2 has substantially smaller error 

accumulation and propagation than the Model 1, and the Model 2 could provide reasonable results for 5 

multi-step-ahead flood forecast if real-time observed rainfall and runoff as well as the feedback of 

model runoff outputs to the input layer and consequent layer can be implemented as the forecasting 

proceeds.  

Fig. 6(b) also presents the radar maps of MAE, RMSE, CE, CC, reliability, vulnerability and 

resilience values of the Models 2 & 3 at horizon t+4, t+8 and t+12 in the testing period. It clearly 10 

indicates that the Model 3 produces much lower MAE, RMSE and vulnerability and higher CE, CC, 

reliability and resilience values than Model 2. Such result is consistent with the parameter optimization 

algorithm affecting the robustness of recurrent ANFIS model, which is determined by the modified 

hybrid learning algorithm addressed in Section 3.2.  

Fig. 7 shows the residual values of the three models at horizons t+4, t+8 and t+12 in testing 15 

period. The Model 3 produces the fewer number of residual values falling outside the  20% range of 

observed values than the other two models, while the Model 1 performs even worse than the Model 2. 

Meanwhile, the Model 3 produces smaller maximum residual value than the other two models, while 

the Model 1 performs even worse than the Model 2. Such result implies that the recurrent learning 

mechanism and parameter optimization algorithm (LSE & GA) could reduce the highly variable 20 

rainfall-runoff information and thus increase the reliability of the ANFIS.  

To illustrate the forecasting accuracy of the three models, the scatter plots of the forecasted and 

observed values of the three models at horizons t+4, t+8 and t+12 in the testing period are shown in Fig. 

8. In the Model 3, almost all pairs of forecasted and observed points at horizons t+4, t+8 and t+12 

scatter closely to the diagonal line for TGR inflow. In the Model 2, most of pairs of forecasted and 25 

observed points at horizons t+4, t+8 and t+12 scatter closely to the diagonal line for TGR inflow. In the 

Model 1, only the pairs of forecasted and observed points at horizons t+4 scatter suitably around the 

diagonal line for TGR inflow. According to the results, the Model 3 provides a significant superior 
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performance to the Model 1 and a comparative superior performance to the Model 2.  

Taylor diagram provides a way of graphically summarizing how closely a pattern (or a set of 

patterns) matches observations (Taylor, 2001). The similarity between two patterns is quantified in 

terms of three statistic indicators, i.e., correlation, centered RMSE and standard deviation. Such diagram 

is especially useful in evaluating the relative skill of many different models. Taylor diagram (Fig. 9) 5 

systematically shows these statistic indicators of the three models at horizons t+4, t+8 and t+12 in the 

testing period. Taking the horizon t+12 for an example, Fig. 9 easily identifies Model 3 that performs 

relative well (CC = 0.97, standard deviation = 9022 cms & centered RMSE = 2206 cms) because it lies 

relative close to the observed point (CC = 1.0 & standard deviation = 8991 cms) than the Model 2 (CC 

= 0.95, standard deviation = 9060 cms & centered RMSE = 2855 cms) and Model 1 (CC = 0.81, 10 

standard deviation = 9085 cms & centered RMSE = 5572 cms).  

To demonstrate the significance and effectiveness of the proposed methodology that fuses the 

LSE with Genetic Algorithm (GA) for optimizing the parameters of R-ANFIS. Fig. 10 further shows 

sensitive analysis of the three models at horizon t+4, t+8 and t+12 in the testing period with cross-

validation (exchanging one-year dataset between training and testing periods, see Fig. 2). Fig. 10 clear 15 

indicates that the forecast accuracy and robustness of M-ANFIS (Model 3) are significantly superior to 

the others (Model 1&2), as all of the indicators (MAE, RMSE, CE, CC, Reliability, Vulnerability and 

Resilience) in Model 3 have smaller boxplots and are insensitive to cross-validation process at different 

horizons. This analysis suggests that there is great capable for overcoming the local minima and 

instability problems of the original hybrid learning algorithm (coupling steepest descent algorithm with 20 

Least Square Estimator) as the proposed methodology is implemented. 

 

5 Conclusions 

A robust recurrent ANFIS for modeling multi-step-ahead flood forecast of the Three Gorges Reservoir 

is presented in this study. A modified hybrid learning algorithm which fuses the LSE with GA is used to 25 

optimize the parameters of recurrent ANFIS. This method is compared with the original hybrid learning 

algorithm which fuses LSE with steepest descent algorithm. The classic ANFIS is selected as 

benchmark, and its results are compared with those of recurrent ANFIS for the purpose of evaluating 
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the performance of recurrent (dynamic) learning mechanism in multi-step-ahead flood forecast. The 

comparison between recurrent ANFIS and modified recurrent ANFIS focuses on how the different 

hybrid learning algorithms affect the robustness of recurrent ANFIS models. Three models with their 

optimal input variables identified by the Gamma Test are applied for modeling one to three days ahead 

flood forecasts of the Three Gorges Reservoir in the Yangtze River. A detail comparison of three 5 

models’ performances has been given based on a coherent set of evaluation criteria, which are the MAE, 

RMSE, CE and CC for assessing the forecasting accuracy and the reliability, vulnerability and 

resilience for distilling the robustness. 

 The results showed that the recurrent ANFIS model can enhance the forecast accuracy and 

prolong forecast horizon in comparison to the classic ANFIS model. Moreover, the modified recurrent 10 

ANFIS model not only enhance the forecast accuracy, but also improve the robustness of recurrent 

ANFIS model. All of the indicators (MAE, RMSE, CE, CC, reliability, vulnerability and resilience) in 

MR-ANFIS model have smaller boxplots and are insensitive to cross-validation process at different 

horizons. That is, the recurrent learning mechanism can improve the generalization of ANFIS model 

and the modified hybrid learning algorithm (LSE & GA) can overcome the shortcomings which are 15 

mainly instability, sensitivity to initial conditions, local minima problems of the original hybrid learning 

algorithm (LSE & steepest descent algorithm). Thus, the modified recurrent ANFIS model can 

successfully be implemented as a reliable and accurate alternative for multi-step-ahead flood forecast. 

Our results demonstrate the proposed model (MR-ANFIS) can make accurate and robust multi-step-

ahead flood forecasts in the Three Gorges Reservoir, which would provide precious decision-making 20 

time for effectively managing contingencies and emergencies and greatly alleviating flood risk as well 

as loss of life and property.  
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Table 1 TGR inflow datasets in flood season (from June 1st to September 30th and time step = 6h)  

Period Year Max (cms) Ave (cms) Min (cms) Std Dev (cms) 

2003 50800 24894 9980 8472 

2004 67300 22270 11200 7844 

2005 54900 25680 12500 9373 

2006 31800 13564 6940 4444 

2007 56900 24583 8860 9301 

2008 40600 22876 10000 7114 

2009 57100 21880 8440 8731 

2010 68300 24470 9460 10806 

2011 45400 17759 8180 7550 

2012 69100 26581 10500 12199 

2013 49000 21384 10500 8071 

2014 55000 24951 11000 8574 

2015 39000 19298 10000 5550 

2016 50000 20262 10000 7036 

 

 

Table 2 The optimal lagged variables and input combinations used in the three models  
Station Travel time Sub-opt Opt Ben (I) Sub-opt Opt Ben (II) Sub-opt Opt 

Xiangjiaba 48h Q(t-4) Q(t-4) Q(t) Q(t) Q(t) Q(t) Q(t) Q(t) 

Hengjiang 48h Q(t-4) Q(t-4) Q(t) Q(t) Q(t) Q(t) Q(t) Q(t) 

Fuxi 42h Q(t-3) Q(t-3) Q(t) Q(t) Q(t) Q(t) Q(t) / 

Gaochang 48h Q(t-4) Q(t-4) Q(t) Q(t) Q(t) Q(t) Q(t) Q(t) 

Fushun 42h Q(t-3) Q(t-3) Q(t) Q(t) Q(t) Q(t) / / 
Chishui 24h Q(t) Q(t) Q(t) / / Q(t) / / 
Wucha 12-18h Q(t) Q(t) Q(t) / / Q(t) / / 
Beibei 12-18h Q(t) Q(t) Q(t) / / Q(t) / / 
Wulong 6-12h Q(t) Q(t) Q(t) / / Q(t) / / 
I Rainfall 42-48h R(t-1) R(t-2) R(t) / R(t) R(t) / / 
II Rainfall 12-18h R(t) R(t) R(t) / / R(t) / / 
TGR / Q(t) Q(t) Q(t) Q(t) Q(t) Q(t) Q(t) Q(t) 

Horizon / t+4 t+4 t+8 t+8 t+8 t+12 t+12 t+12 

Ratio / 0.0007 0.0001 0.0115 0.0081 0.0012 0.0121 0.0097 0.0015 
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Table 3 Performance of the three models for TGR flood forecast at horizons t+4, t+8 and t+12  

Model Model 1 Model 2 Model 3 Model 2 VS 1 (%) Model 3 VS 2 (%) 

Horizon t+4 t+8 t+12 t+4 t+8 t+12 t+4 t+8 t+12 t+4 t+8 t+12 t+4 t+8 t+12 

Training 1021 1635 3006 713 803 842 679 765 787 -30.17 -50.87 -71.99 -4.76 -4.76 -6.54 

Testing 1413 1990 3722 899 1013 1190 832 921 1072 -36.41 -49.09 -68.03 -7.41 -9.09 -9.91 

Training 1712 2462 4199 1131 1306 1319 992 1146 1157 -33.94 -46.94 -68.59 -12.28 -12.28 -12.28 

Testing 2208 2896 5410 1596 2351 2814 1388 2062 2426 -27.71 -18.83 -47.98 -13.04 -12.28 -13.79 

Training 0.95 0.91 0.75 0.98 0.97 0.97 0.99 0.98 0.98 3.17 6.62 29.36 1.01 1.01 1.01 

Testing 0.92 0.88 0.66 0.95 0.92 0.91 0.97 0.94 0.93 3.33 4.68 38.09 2.04 2.04 2.04 

Training 0.97 0.95 0.88 0.98 0.98 0.98 0.99 0.99 0.99 1.04 3.17 11.38 1.01 1.01 1.01 

Testing 0.96 0.93 0.81 0.96 0.95 0.95 0.98 0.97 0.97 0.04 2.22 17.36 2.04 2.04 2.04 

Training 97.23 93.77 75.04 97.32 96.52 96.19 99.25 99.20 99.16 0.09 2.94 28.18 1.98 2.77 3.09 

Testing 96.10 92.65 72.43 96.92 94.19 92.15 99.07 98.11 96.80 0.86 1.66 27.23 2.22 4.17 5.05 

Training 36.85 47.20 68.15 30.84 37.35 62.16 30.23 36.61 60.94 -16.30 -20.88 -8.78 -1.97 -1.96 -1.96 

Testing 40.29 61.45 75.13 32.79 41.01 68.13 30.15 37.53 61.85 -18.62 -33.26 -9.33 -8.05 -8.47 -9.22 

Training 48.86 43.66 30.55 77.87 75.31 69.58 78.66 77.08 71.29 59.38 72.49 127.75 1.01 2.35 2.46 

Testing 40.08 37.89 27.41 75.06 68.14 64.86 76.90 70.55 67.20 87.28 79.83 136.61 2.45 3.54 3.61 

Notes: in comparison analysis between models, the negative value denotes decrease and positive value denotes increase.  
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Figure 1 Map of the Yangtze River basin between the Xiangjiaba (XJB) and TGR reservoirs   
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Figure 2 The boxplot of the observed TGR inflows in the flood season (June 1st to September 30th) 

from 2003 to 2016 year (14 years) with 6 hours’ time-step  
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Figure 3 Framework of three ANFIS modeling approaches 



24 

 

Figure 4 Computation steps of the original (left) and modified (right) hybrid learning algorithms 
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Figure 5 Membership functions of the inputs (XJB flow, I regional rainfall and TGR flow variables) in 

Model 3 at horizon t+4  
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Figure 6 The trend plots (left) and radar maps (right) of evaluation indicator values of the Model 2 & 3 

at horizons t+4, t+8 and t+12 in the testing period  
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Horizon        Model 1       Model 2      Model 3 

   20% range of observed values 
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Figure 7 The residual values (=Observation - Forecast) of the three models at horizons t+4, t+8 and t+12 in testing period   
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Horizon        Model 1       Model 2      Model 3 
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Figure 8 Scatter plots of the forecasted (For) and observed (Obs) values of reservoir inflow at horizons t+4, t+8 and t+12 in the testing period  
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Figure 9 Taylor diagrams of the three models at horizons t+4, t+8 and t+12 in the testing period 
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Figure 10 Sensitive analysis of the three models at horizon t+4, t+8 and t+12 in the testing period 

with cross-validation 
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