Evaluating E-OBS forcing data for large-sample hydrology using model performance diagnostics
Data sets
CAMELS-DK: Hydrometeorological Time Series and Landscape Attributes for 3330 Catchments in Denmark https://doi.org/10.22008/FK2/AZXSYP
CAMELS-FR dataset https://doi.org/10.57745/WH7FJR
CAMELS-DE: hydrometeorological time series and attributes for 1582 catchments in Germany https://doi.org/10.5281/zenodo.13837553
Catchment attributes and hydro-meteorological timeseries for 671 catchments across Great Britain (CAMELS- GB) [Dataset] https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
BULL Database – Spanish Basin attributes for Unraveling Learning in Large-sample hydrology [Dataset] (1) https://doi.org/10.5281/zenodo.10844207
Hydroklimatiska förhållanden i Sverige 1961-2020 - Nederbörd, temperatur och avrinningsobservationer i 50 avrinningsområden (CAMELS-SE) [Dataset] https://doi.org/10.57804/t3rm-v029
Catchment attributes and hydro- meteorological time series for large-sample studies across hydrologic Switzerland (CAMELS-CH) [Dataset] (0.9) https://doi.org/10.5281/zenodo.15025258
EStreams: An Integrated Dataset and Catalogue of Streamflow, Hydro-Climatic Variables and Landscape Descriptors for Eu- rope (1.4) https://doi.org/10.5281/zenodo.17598150
Model code and software
Code from: "Evaluating E-OBS forcing data for large-sample hydrology using model performance diagnostics" https://doi.org/10.5281/zenodo.17943610