Hydrol. Earth Syst. Sci., 30, 119-140, 2026
https://doi.org/10.5194/hess-30-119-2026

© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Evaluating E-OBS forcing data for large-sample hydrology using

model performance diagnostics

Franziska Clerc-Schwarzenbach! ¥ and Thiago V. M. do Nascimento

1.2, %

'Department of Geography, University of Zurich, Zurich, 8057, Switzerland
2Eawag: Swiss Federal Institute of Aquatic Science and Technology, Diibendorf, 8600, Switzerland

X These authors contributed equally to this work.

Correspondence: Thiago V. M. do Nascimento (thiago.nascimento @eawag.ch)

Received: 30 July 2025 — Revised: 5 December 2025 — Accepted: 11 December 2025 — Published: 13 January 2026

Abstract. For large-sample hydrological studies over large
spatial domains, large-scale meteorological forcing data are
often desired. For Europe, the EStreams dataset and cata-
logue satisfies this demand. In EStreams, the meteorologi-
cal time series are obtained from the Ensemble Observation
(E-OBS) product which is available for all of Europe. Due
to the large spatial extent of this dataset, limitations and re-
gional variations of data quality have to be expected when the
dataset is compared to smaller-scale datasets, e.g., at national
level. In this study, we compare the meteorological time
series included for 2682 catchments in EStreams to eight
smaller datasets (mostly CAMELS datasets). We assess how
the different meteorological data impact the performance of
a bucket-type hydrological model. For most catchments, the
precipitation amounts derived from E-OBS are lower than
the ones from the CAMELS data, while the temperature and
the potential evapotranspiration values are higher. Model per-
formances tend to be lower when the E-OBS data are used
than when the CAMELS datasets are used for calibration.
Exceptions arise when the station density in the E-OBS data
is high. This study provides the first assessment of the E-
OBS data at a continental scale for hydrological applications
and shows that, despite some limitations, the dataset offers
a reasonable basis for large-sample hydrological modelling
across Europe.

1 Introduction

Driven by their enormous value for hydrological modelling
studies, large-sample hydrology (LSH) datasets have devel-
oped at a rapid pace in the past decades, and the development
continues to gain momentum: Since 2017, more than a dozen
“CAMELS” datasets were released or are being developed
(Addor et al., 2017; Alvarez-Garreton et al., 2018; Bushra
et al., 2025; Chagas et al., 2020; Coxon et al., 2020a; De-
laigue et al., 2025a; Fowler et al., 2021; Hoge et al., 2023;
Jimenez et al., 2025; Liu et al., 2025; Loritz et al., 2024;
Mangukiya et al., 2025; Nijzink et al., 2025; Teutschbein,
2024a). Other animals entered the LSH stage as well: Lla-
mas (Helgason and Nijssen, 2024; Klingler et al., 2021), a
goat (cabra in Portuguese; Almagro et al., 2021), and a bull
(Senent-Aparicio et al., 2024b).

In the past years, efforts also went into the creation of more
overarching products, i.e., datasets covering not only one
country or region. The Caravan dataset (Kratzert et al., 2023)
combined the streamflow data from thousands of catchments
in already published open source LSH datasets with meteoro-
logical time series and catchment attributes from the global
ERAS-Land reanalysis (Mufioz-Sabater et al., 2021). Cara-
van is growing further and has become a quasi-global dataset
(Farber et al., 2024). For Europe, a dynamic dataset and a cat-
alogue that provides detailed guidance for retrieving stream-
flow data from national providers were introduced in ES-
treams (https://www.estreams.eawag.ch, last access: 22 De-
cember 2025) by do Nascimento et al. (2024a).

Although these collections of large-sample datasets are
valuable resources, the combination of catchments dis-
tributed across different regions and especially across dif-
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ferent countries in one dataset almost always goes hand in
hand with difficulties in providing high-quality streamflow
and forcing data. This is due to the lower availability of high-
quality data for larger spatial extents, while smaller datasets
typically benefit from more thorough quality control. Fur-
thermore, data processing choices (e.g., gap filling, interpo-
lation) are more often required at large scales and might in-
troduce added uncertainty in the outcomes (McMillan et al.,
2018).

In an earlier study, Clerc-Schwarzenbach et al. (2024)
showed that the globally available meteorological data ob-
tained from ERAS5-Land (Mufioz-Sabater et al., 2021) in the
Caravan dataset (Kratzert et al., 2023) led to a consistently
lower hydrological model performance for catchments in the
US, Brazil, and Great Britain, compared to when the me-
teorological forcing data from the corresponding CAMELS
datasets (Addor et al., 2017; Chagas et al., 2020; Coxon et al.,
2020a) were used. This demonstrates the importance of pro-
moting awareness of potential data quality losses when it
comes to large-scale meteorological datasets.

Similar to the ERAS5-Land data in Caravan, the meteoro-
logical data were also obtained from a large-scale dataset in
EStreams (do Nascimento et al., 2024a). For EStreams, the
data were obtained from the European Ensemble Observa-
tion (E-OBS) product (Cornes et al., 2018). After the publica-
tion of EStreams, questions on the quality of the meteorolog-
ical forcing data from E-OBS arose in the LSH community.
Recent studies have evaluated the accuracy of the E-OBS
precipitation product against reference datasets and meteo-
rological stations in some parts of Europe, including Greece
(Mavromatis and Voulanas, 2021), the central Alps, east-
ern Europe and Scandinavia (Bandhauer et al., 2022). These
evaluations indicated that the quality of the E-OBS precip-
itation data, when compared to data from high-resolution
datasets focusing on a smaller area, is higher in regions with
a high density of E-OBS stations, such as in central Europe,
while the reanalysis product ERAS5 (Hersbach et al., 2020)
partly outperformed E-OBS in regions with a sparse station
network (Bandhauer et al., 2022). Yet, evaluations of the E-
OBS data over a larger extent, and specifically for hydrolog-
ical modelling, remain unexplored.

To be able to inform the users of EStreams (and of the E-
OBS data in general) about the effects of the harmonized me-
teorological data on hydrological applications, a comparison
to the meteorological data contained in different national and
regional datasets (i.e., CAMELS datasets and similar prod-
ucts) is required.

For this study, we used 2682 catchments from eight Eu-
ropean countries and assessed the hydrological efficacy of
the meteorological data provided in EStreams (obtained
from E-OBS). We did so by comparing the meteorological
forcing data from E-OBS to the analogous data contained
for the same catchments in national or regional datasets,
namely in CAMELS-DK (Liu et al., 2025) for Denmark,
CAMELS-FR (Delaigue et al., 2025a) for France, CAMELS-
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DE (Loritz et al., 2024) for Germany, CAMELS-GB (Coxon
et al., 2020a) for Great Britain, the BULL Database
(Senent-Aparicio et al., 2024b) for Spain, CAMELS-SE
(Teutschbein, 2024a) for Sweden, and CAMELS-CH (Hoge
et al., 2023) for Switzerland. In addition, we also included
catchments from Czechia, with data from the not yet pub-
lished CAMELS-CZ dataset (Jenicek et al., 2024). The me-
teorological data in the smaller datasets stem from sources
that were created specifically for the respective country.

The methodology used in this work is based on the one
presented by Clerc-Schwarzenbach et al. (2024). Follow-
ing their approach, we did not only compare the meteo-
rological data itself, but also the model performances that
were achieved with the different meteorological forcings
(but same streamflow data) when calibrating the bucket-type
HBV (Hydrologiska Byrans Vattenbalansavdelning) model
(Bergstrom, 1992, 1995; Seibert and Vis, 2012). This al-
lowed us to assess the overall hydrological efficacy of the
forcing data.

The reasoning behind this approach is that hydrological
models are not only useful for simulating streamflow but can
also be used as diagnostic tools to evaluate the efficacy of
the input data (Beck et al., 2017; Tarek et al., 2020). The
rationale is that, although hydrological models are inherently
imperfect representations of reality, systematic differences in
their performance when driven by different datasets are un-
likely to be random. As noted by Linsley (1982, p. 13), “if
the data are too poor for the use of a good simulation model,
they are also inadequate for any other model”. Building on
this idea, our study uses the HBV model as a means to assess
the hydrological reliability of different meteorological forc-
ing data across Europe. Therefore, we assume that if a model
consistently performs better with one dataset than with the
other, this difference likely reflects a closer alignment of the
corresponding meteorological data with the actual processes
in the catchment.

2 Data and Methods
2.1 Subset of catchments

We conducted this study for 2682 catchments that are
available in the EStreams dataset and catalogue and in
one of the following datasets: CAMELS-CZ, CAMELS-
DK, CAMELS-FR, CAMELS-DE, CAMELS-GB, BULL,
CAMELS-SE, CAMELS-CH, for simplicity’s sake referred
to as the “CAMELS datasets” throughout the remainder of
the paper (Table 1). These catchments fulfilled the follow-
ing cascade of criteria (with the number of catchments still
included after each step in brackets, see also Fig. S1 in the
Supplement):

— Located in a country with access to a CAMELS dataset
at the time of data preparation, i.e., Austria, Czechia,
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Denmark, France, Germany, Great Britain, Iceland,
Spain, Sweden, or Switzerland [12019]

— High-quality catchment delineation in EStreams, as de-
scribed by do Nascimento et al. (2024a) [10434]

— Catchment area (obtained from EStreams) below
2000 km? [9115]

— No redundancy among the EStreams catchments (the
catchment with the longer streamflow time series was
kept) [8909]

— Availability of at least 90 % of the potential evapo-
transpiration (Epo) data between October 1990 and
September 2015 [8846]

— Availability of the catchment in one of the CAMELS
datasets [3557]

— CAMELS forcing data coming from a smaller-scale
dataset (catchments from LamaH-CE (Austria) ex-
cluded as meteorological forcings are from ERAS-
Land) [3097]

— Availability of at least 90 % of the streamflow data
(in the CAMELS dataset) between October 1995 and
September 2015 [3097]

— Maximum five lakes

EStreams) [2841]

upstream (obtained from

— Normalized upstream capacity of reservoirs, calculated
using Eq. (9) from Salwey et al. (2023), and derived
from the EStreams dataset, smaller or equal than 0.2
[2741]

— Runoff ratio (based on the precipitation data from the
CAMELS dataset) between October 1995 and Septem-
ber 2015 below 1.1 [2741]

— Runoff ratio (based on the precipitation data in ES-
treams) between October 1995 and September 2015 be-
low 1.1 [2682]

We excluded catchments with an area of more than 2000 km?
as a bucket-type hydrological model is not the most suitable
choice for larger catchments.

Unlike the other national datasets, the LamaH-CE dataset
for Austria uses ERAS-Land as its meteorological forcing.
As the comparison of E-OBS data to globally available data
is a different question than the comparison to smaller-scale
(national) products, we excluded the Austrian dataset from
the analyses. Moreover, a previous study already highlighted
several limitations of ERAS5-Land as forcing for hydrological
models (Clerc-Schwarzenbach et al., 2024).

To minimize the inclusion of catchments potentially af-
fected by human regulation (e.g., reservoirs or diversions),
we applied two attribute-based criteria. The maximal number
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of lakes was chosen arbitrarily, with the goal of excluding
highly regulated catchments. The second criterion, the nor-
malized upstream capacity, was calculated following Salwey
et al. (2023), and a threshold of 0.2 was adopted based on
their findings. While these filters may exclude some basins
that are only weakly influenced by regulation, we preferred a
conservative approach. Moreover, we selected these two cri-
teria because the relevant information (number of lakes and
upstream capacity) is consistently available across Europe in
the EStreams dataset, allowing for a uniform filtering proce-
dure even where metadata on human influence are not pro-
vided in the national CAMELS datasets.

Following a similar reasoning, we excluded catchments
with runoff ratios greater than 1.1, as natural streamflow
rarely exceeds precipitation by such large margins in unreg-
ulated basins. Such cases likely reflect data inconsistencies
or strong anthropogenic influence (e.g., diversions or regula-
tion).

Finally, to make sure that the streamflow data (obtained
from the CAMELS datasets) were reasonable, we checked
that the average streamflow was not unrealistically high (i.e.,
not exceeding 10mmd~" as this may indicate issues with the
data) which was the case for all 2682 catchments.

2.2 Meteorological data

For the data comparison and the modelling experiments, we
investigated and used daily precipitation, Epo, and temper-
ature data from the EStreams dataset and from the different
CAMELS datasets (Table 1). We used the latest released ver-
sion of EStreams (version 1.4), for which precipitation and
temperature data were obtained from the E-OBS ensemble
mean product with a spatial resolution of 0.1° in both latitude
and longitude (do Nascimento et al., 2025). E-OBS provides
a pan-European observational dataset of surface climate vari-
ables that is derived by statistical interpolation of in-situ mea-
surements, collected from national data providers (Cornes
et al., 2018). E}o time series in EStreams were calculated
with the Hargreaves formula (Hargreaves and Samani, 1982),
using the E-OBS temperature data and catchment elevation
as input. Note that there is also a version of E-OBS at a res-
olution of 0.25° available and originally represented in ES-
treams. Users should be aware that different resolutions of
a forcing dataset can lead to slightly different performances.
Similarly, there are different Epo products available from E-
OBS as derived indices, but here, we used the E}o¢ product
provided in EStreams. The CAMELS meteorological data
are usually based on in-situ observations. When more than
one option was available, we chose the data with the high-
est spatial and (original) temporal resolution to represent the
CAMELS data for this study (Table 2). While E-OBS was de-
veloped specifically for Europe, one can still expect a lower
data quality than for datasets created for a smaller region
(e.g., national datasets) due to the lower spatial resolution
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Table 1. Overview of catchments and data sources used in this study.

Country Number of catchments CAMELS dataset  Publication Dataset

included in this study
Czechia 244 CAMELS-CZ unpublished unpublished
Denmark 120 CAMELS-DK Liu et al. (2025) Koch et al. (2025)
France 496 CAMELS-FR Delaigue et al. (2025a) Delaigue et al. (2025b)
Germany 986 CAMELS-DE Loritz et al. (2024) Dolich et al. (2024)
Great Britain 489 CAMELS-GB Coxon et al. (2020a) Coxon et al. (2020b)
Spain 211  BULL Senent-Aparicio et al. (2024b)  Senent-Aparicio et al. (2024a)
Sweden 3 CAMELS-SE Teutschbein (2024a) Teutschbein (2024b)
Switzerland 133 CAMELS-CH Hoge et al. (2023) Hoge et al. (2025)

and interpolation choices used to achieve the larger spatial
extent of the dataset.

Note that the shapefiles that were used in EStreams and in
CAMELS to calculate the areal averages for the meteorolog-
ical forcings potentially differed. In addition to the different
data sources, this can affect the forcing data.

2.3 Calculations of the differences in the CAMELS and
E-OBS data

We compared the precipitation, Epo, and temperature data
from EStreams (i.e., the E-OBS data) to the corresponding
data from the different CAMELS datasets (Table 2) for the
twenty years between October 1995 and September 2015 to
get an overview of the differences in the data. For precipi-
tation and Epor, we determined the relative difference in the
mean annual sums. For temperature, we determined the mean
absolute difference for the daily data. When comparing the
two datasets, we used the E-OBS data obtained from ES-
treams as minuend and the analogous data obtained from the
CAMELS datasets as subtrahend, i.e., positive differences in-
dicate higher values in the E-OBS data, while negative dif-
ferences indicate lower values in the E-OBS data than the
CAMELS data. To calculate relative differences (for precip-
itation and Epq), we divided by the mean annual sum de-
termined from the CAMELS dataset. Thus, for example, a
value of —20 % indicates that the mean annual sum obtained
from E-OBS is 80 % of the mean annual sum obtained from
the CAMELS dataset, and a value of 40 % indicates that the
mean annual sum obtained from E-OBS equals 140 % of the
mean annual sum obtained from the CAMELS dataset.

2.4 Modelling experiments

Following the methodology of Clerc-Schwarzenbach et al.
(2024), we defined different combinations of forcing data
(“scenarios”) to calibrate the hydrological model (Table 3).
This allowed us to determine how the forcing data and their
individual variables impacted hydrological model perfor-
mance. Since EStreams does not provide daily streamflow
data, but where to find them, we used the observed stream-
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flow data contained in the CAMELS datasets for all mod-
elling experiments. Thus, we made sure that the hydrological
model performance was not affected by different streamflow
data.

In the first two scenarios, we used the CAMELS forcing
data (scenario I) or the E-OBS data obtained from EStreams
(scenario II). To isolate the impact of the forcing variables,
we additionally defined three mixed scenarios. Scenario III
used precipitation from CAMELS and Epo and temperature
from E-OBS. Similarly, scenario IV evaluated the effect of
using only Epo from CAMELS, and consequently if using
different Ejpo formulations would change our results, while
scenario V assessed the effect of using only temperature from
CAMELS. Note that due to the dependency of the E-OBS
Epot data on the E-OBS temperature data, model calibration
was influenced by the E-OBS temperature data even when
replacing the temperature data from E-OBS with those from
CAMELS (scenario V).

Analogously to Clerc-Schwarzenbach et al. (2024), we
calibrated the HBV model (Bergstrom, 1992, 1995) in the
version HBV-light (Seibert and Vis, 2012) with a genetic al-
gorithm (Seibert, 2000). Each catchment was divided into
elevation zones of 200 m elevation difference, whereby an
elevation zone had to account for at least 5 % of the catch-
ment area. For the determination of the elevation zones, we
used the shapefiles provided by EStreams, and the Coperni-
cus DEM at a resolution of 30 m (European Space Agency
and Airbus, 2022).

We used the five years from October 1990 to September
1995 as the warming-up period for the model, and the twenty
years from October 1995 to September 2015 as the simula-
tion period for which we optimized daily streamflow simu-
lation in terms of the Kling—Gupta efficiency KGE (Gupta
et al., 2009). One calibration consisted of a total of 3500
model runs. We conducted each calibration ten times to ac-
count for equifinality. We used equal weights on the ten sim-
ulated hydrographs to calculate an ensemble mean hydro-
graph. We determined the model performance (using again
the KGE as well as the PBIAS, i.e., the percent bias of the
simulated streamflow compared to the observed one) for each
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Table 2. Overview of the data sources for the meteorological data (precipitation P, temperature 7', and potential evapotranspiration Epot)
for the different CAMELS datasets in this study.

Country Variable(s)  Source/equation Resolution  Dataset type ~ Reference(s)
Czechia P, T unpublished data from Czech 500 m station-based  Stpanek et al. (2011, 2013)
Hydrometeorological Institute (M.
Jenic¢ek/O. Ledvinka, pers. comm.)
Epot unpublished data based on Oudin * - Oudin et al. (2005)
equation (M. Jenicek/O. Ledvinka,
pers. comm.)
Denmark P Danish Meteorological Inst. 10km station-based ~ Scharling (1999b)
T Danish Meteorological Inst. 20km station-based  Scharling (1999a)
Epot Makkink 40 km - van Kraalingen and Stol (1997)
France P, T SAFRAN by Météo-France 8km reanalysis Quintana-Seguf et al. (2008);
Vidal et al. (2010)
Epot Oudin * - Oudin et al. (2005)
Germany P HYRAS by Deutscher Wetterdienst 1 km station-based  Rauthe et al. (2013)
(DWD)
T HYRAS by DWD Skm station-based = Razafimaharo et al. (2020)
Epot Modified Hargreaves * - Adam et al. (2006); Droogers
and Allen (2002); Hargreaves
and Samani (1982)
Great Britain P CEH-GEAR 1km station-based  Keller et al. (2015); Tanguy
et al. (2016)
T CHESS-met 1km station-based  Robinson et al. (2017a)
Epot CHESS-PE (based on 1km - Robinson et al. (2016, 2017b)
Penman—Monteith)
Spain P,T,Epot  Spanish Meteorological Agency Skm station-based  Peral Garcia et al. (2017)
(AEMET)
Sweden P, T PTHBYV database by Swedish 4 km station-based = SMHI (2025)
Meteorological and Hydrological
Institute (SMHI)
Epot unpublished data based on Hamon * - Hamon (1963)
equation (C. Teutschbein, pers. comm.)
Switzerland P RhiresD by MeteoSwiss 2km station-based  MeteoSwiss (2021b)
T TabsD by MeteoSwiss 2km station-based  MeteoSwiss (2021a)
Epot Penman—Monteith without interception ~ * - Viviroli et al. (2007)

correction

* calculation for each catchment based on its meteorological data

Table 3. Combinations of forcing data (“scenarios”) for the modelling experiments.

Scenario  Description Precipitation Epot Temperature

I CAMELS CAMELS CAMELS CAMELS

I E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams)
111 E-OBS with CAMELS precipitation = CAMELS E-OBS (EStreams) E-OBS (EStreams)
v E-OBS with CAMELS Epot E-OBS (EStreams) CAMELS E-OBS (EStreams)
\' E-OBS with CAMELS temperature ~ E-OBS (EStreams) E-OBS (EStreams) CAMELS
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catchment and each scenario by comparing this ensemble
mean hydrograph to the observed hydrograph.

2.5 Statistical tests

We used the Spearman rank correlation coefficient (r) and
corresponding p-values to assess the relationships between
the model performance differences in terms of the KGE and
different catchment attributes. We used the locally-weighted
polynomial regression (lowess; Cleveland, 1979) to visu-
ally represent the relationships. In addition, we used the
Wilcoxon signed-rank test (Wilcoxon, 1945) on paired me-
dian KGE values to evaluate whether the differences in
model performance between the scenarios were statistically
significant.

3 Results
3.1 Comparison of the meteorological data

The mean annual precipitation sums in the E-OBS data
were lower than the mean annual precipitation sums in the
CAMELS data for 2362 catchments (88 %). For 758 catch-
ments (28 %), the deviation of the mean annual precipitation
sums in E-OBS from the ones in CAMELS exceeded —10 %.
Conversely, there were only 33 catchments (1 %) for which
the mean annual precipitation sums in E-OBS were overes-
timated by +10 % or more from the ones in CAMELS. Dif-
ferences between the two data sources were largest for the
catchments in Spain and smallest for the catchments in Ger-
many (Fig. 1).

The opposite was found for the annual sums of Eje: For
2508 catchments (94 %), the mean annual E}o calculated
from the E-OBS data was higher than for the CAMELS data.
For 1353 catchments (50 %), the deviation of the E-OBS
Epot sums from the CAMELS Ej,c sums were at least 10 %.
Clearly lower E,, sums derived from E-OBS than from
CAMELS could only be observed for catchments in Sweden,
on the Danish islands, in southern Switzerland, and for some
catchments in northern Spain (Fig. 2). As different equations
or data sources were used in the different CAMELS datasets
(see Table 2) to obtain the Epo data, the order of magnitude
of the deviations changed abruptly along the national bor-
ders in some cases (e.g., along the border between Czechia
and Germany). It is noteworthy that for E}, there tend to be
small differences between the two datasets for Spain (while
this was not the case for precipitation).

Due to the differences in the precipitation and the Epo
data, the aridity indices (Epot/P) calculated from the two
data sources differed, although they were still highly cor-
related (Pearson’s correlation coefficient of 0.94) (Fig. 3).
Given the lower precipitation and higher Epo; sums for most
catchments, the aridity indices were generally higher when
the E-OBS data obtained from EStreams were used than
when the CAMELS data were used. This did not apply for
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Sweden, as the Epor sums based on E-OBS were lower than
the ones from CAMELS for this country. The two calculated
aridity indices aligned best for Germany and worst for Spain,
Great Britain, and Czechia. Spatially, the aridity indices de-
rived from both datasets followed the expected pattern, with
more arid catchments in southern Europe and north-eastern
Germany and more humid catchments in the other regions
(see Fig. Al for the CAMELS data and Fig. A2 for the E-
OBS data).

Comparison of the temperature data in the two datasets
revealed that the average temperature in E-OBS was higher
(median difference: 0.3 °C) for most catchments than the av-
erage temperature in CAMELS (see Fig. S2 in the Supple-
ment). There were 636 catchments (24 %) for which the av-
erage temperature was lower in E-OBS than in the CAMELS
datasets. Note that in the HBV model, temperature has an
effect on the snow routine, with higher temperatures result-
ing in a larger fraction of precipitation falling as rain (and
thus faster streamflow generation). However, as the threshold
temperature for the differentiation between rain and snow is
adapted during calibration, it is expected that the model can
compensate comparably well for biased temperature time se-
ries. Thus, the main effect of the differences in temperature
are the differences in Epo which are highly affected by the
temperature data used as input to the calculations.

3.2 Model performances

3.2.1 Model performances with the CAMELS and the
E-OBS forcing data

Overall, high model performances were achieved for most
catchments when the CAMELS data (scenario I) were used
for model calibration (Fig. A3). For 2507 of the 2682 catch-
ments (93 %) the KGE was higher than 0.70, with a median
performance of 0.89.

The model performances were also high for most catch-
ments when the E-OBS forcing data (scenario II) were used
for model calibration (Fig. 4). For 2434 of the catchments
(91 %) the KGE was higher than 0.70, which is compara-
ble to the 2507 catchments that fulfilled this criterion for the
CAMELS data (scenario I). Furthermore, the median perfor-
mance achieved with the E-OBS data from EStreams (sce-
nario II) of 0.87 was very similar to the 0.88 achieved with
the CAMELS data (scenario I). However, differences were
still statistically significant between the two scenarios.

Considering the PBIAS as an additional measure for
model performance (Fig. A4 for scenario I and Fig. 5 for
scenario II), we found a small PBIAS (between —10% and
10 %) for 2477 catchments for scenario I and 2468 catch-
ments for scenario II (both 92 %). There were more occur-
rences of streamflow overestimations (i.e., positive PBIAS)
when the CAMELS forcing data were used (scenario I) than
when the E-OBS data were used: For 176 catchments (7 %),
the PBIAS was larger than 10 %, and for 26 catchments
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..................................
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all, n=2682 CH, n=133

..................................

Figure 1. Relative difference in the mean annual precipitation (for a 20 yr period: 1995-2015) between the E-OBS data obtained from
EStreams and the different CAMELS datasets. Negative values and brown colours indicate less precipitation in E-OBS than in CAMELS,
positive values and blue colours more precipitation in E-OBS. On the map, the catchments with the largest deviations were plotted last to
increase their visibility. Note that there is no separate histogram for the three catchments in Sweden and that the number of catchments per
histogram differs. This is illustrated by the vertical lines indicating 10 % (rounded) of the number of catchments per histogram. The colour
scale was cut at =50 %. The scale bar refers to the map center. The base map was obtained from Natural Earth (naturalearthdata.com). The
colour palette used in this and all other maps are scientific colour palettes from Crameri (2023).

(1 %), it was larger than 100 %. Meanwhile, a streamflow
overestimation of at least 10 % only happened in 31 catch-
ments (1 %) with the E-OBS forcing data (scenario II), but
there was a considerable number of catchments for which the
streamflow was underestimated (181 catchments (7 %) with
a PBIAS smaller than —10 %).

3.2.2 Differences in model performance between
scenario IT and I

To directly assess the differences in model performances be-
tween scenario II and I, we looked at the performance dif-
ferences (Fig. 6). For 1669 catchments (62 %), model per-
formances were (at least slightly) higher when the CAMELS
data were used (scenario I), while for the other 38 % of all
catchments, the use of E-OBS data resulted in better model
performances. The strongest regional differences were found
for the catchments in Spain and Great Britain.

For France, there were notable improvements in model
performance when using the E-OBS dataset: 316 catchments
(64 %) had higher performances with the E-OBS data (me-
dian AKGE = 0.01). Note that the French catchments that
benefitted most from the E-OBS forcing data are the catch-
ments for which the PBIAS was strongly positive when
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the CAMELS forcing data were used (scenario I; Fig. A4).
For Sweden, all three catchments performed better with the
E-OBS data, but the differences were very small (median
AKGE = 0.006; Fig. 6). For the catchments in Spain, it was
the opposite: 200 catchments (95 %) performed better with
the CAMELS dataset, reaching a median AKGE of —0.10.
Higher KGE for scenario I was also observed for the catch-
ments in Great Britain (80 %), Czechia (66 %), Switzerland
(65 %), Denmark (61 %) and Germany (59 %).

The results also indicated some interesting intercountry
patterns (Fig. 6). In France, the most considerable positive
differences occurred for the catchments in the eastern, more
mountainous part of the country, while for Great Britain, the
CAMELS data resulted in clearly higher performances in
most regions but not in the area around London.

3.2.3 Differences in model performance between
scenario II and scenarios III, IV, and V

Replacing precipitation from E-OBS with data from
CAMELS had by far the strongest impact on model per-
formance (scenario III, Fig. A5). For most catchments, the
performance differences between scenarios II and III closely
mirrored the performance differences between scenarios II

Hydrol. Earth Syst. Sci., 30, 119-140, 2026
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Figure 2. Relative difference in the mean annual Epo (for a 20 yr period: 1995-2015) obtained from EStreams and calculated from the
E-OBS data compared to the mean annual Epo calculated from the different CAMELS datasets. Negative values and brown colours indicate
alower Epot in E-OBS than in the CAMELS datasets, positive values and blue colours a higher Epo in E-OBS. On the map, the catchments

with the largest deviations were plotted last to increase their visibility.
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CAMELS and the E-OBS data (for a 20 yr period: 1995-2015),
colour-coded by country. Note the logarithmic axes.
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and I, indicating that precipitation accounted for a large share
of the overall differences in performance. For only a few
catchments (mostly in Great Britain), the performance gap
between scenarios II and I was notably larger than between
scenarios II and III. The opposite occurred for very few
catchments (see Fig. S3 in the Supplement).

The effect of replacing the Ep, data (scenario 1V)
was quite limited. The higher Epy data based on E-OBS
were beneficial for a handful of catchments (AKGE > 0.30
for 19 catchments), but the median difference was 0.00
(Fig. A6). Replacing only the temperature time series with
the CAMELS data (scenario V) had virtually no effect on
model performance for most catchments. There were no
catchments for which the replacement of the temperature
data increased the KGE by more than 0.10 and no catch-
ments for which it decreased the KGE by more than —0.10
(see Fig. S4 in the Supplement). Note that only the temper-
ature time series provided as input data to the HBV model
were replaced, and not the data that were used to calculate
Epot-

3.3 Model performance linked to catchment attributes

We calculated the Spearman rank correlation between model
performance and several catchment attributes available in
EStreams (see Table S1 and Fig. S5 in the Supplement). The
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Figure 4. Model performance (Kling—Gupta efficiency, KGE) achieved for the 20 yr period between October 1995 and September 2015 when
the E-OBS data obtained from EStreams were used for model calibration (scenario II). Note that the lower limit of the colour scale was cut
at zero. Lower performances were plotted last to improve their visibility.

all, n=2682 CH, n=133

Figure 5. PBIAS (relative deviation of the simulated streamflow from the observed streamflow) for the 20 yr period between October 1995
and September 2015 when the E-OBS data obtained from EStreams were used for model calibration (scenario II). Note that the limits of the
colour scale were cut at 50 %. Largest deviations were plotted last to improve their visibility.
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Figure 6. Difference in model performance (Kling—Gupta efficiency, KGE) between scenario II and scenario I. Positive values and green
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higher performances when the CAMELS data were used. For the model performances, see Figs. 4 and A3. The catchments with the largest
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number of E-OBS precipitation stations and the aridity in-
dex emerged as particularly interesting variables given their
apparent relationships with model performance.

3.3.1 Number of E-OBS precipitation stations

To assess the impact of the variable coverage of meteorolog-
ical stations used to produce the gridded E-OBS dataset, we
examined the relationships between the number of E-OBS
stations within or near each catchment and the model perfor-
mance for scenario II (i.e., using the E-OBS data contained
in EStreams for all meteorological variables; see Fig. 4).
Here, we present these relationship assessments per country
(Fig. 7). The number of E-OBS precipitation stations was ob-
tained from the EStreams dataset, defined as the count of sta-
tions located within a 10 km buffer of the catchment bound-
ary (do Nascimento et al., 2024a).

Model performances for scenario II tended to be higher
when more E-OBS stations were located in or around a catch-
ment. Except for Sweden (for which we only considered
three catchments), there was a significant positive correla-
tion (p-value < 0.05) between the station density and the
model performances achieved with the E-OBS forcing data
for all countries when all catchments were considered. To
avoid that correlations are only due to a tendency for higher
model performances in large catchments and more stations

Hydrol. Earth Syst. Sci., 30, 119-140, 2026

in large catchments, we also analysed the relationship for
only the catchments smaller than 100km?. For Spain, the
threshold was set to 500 km? due to the small number of
catchments smaller than 100 km?. There were still significant
positive correlations for all countries, but not for Denmark
and France. The correlations even increased for Switzer-
land (r =0.53 to r =0.71) and Great Britain (r =0.32 to
r =0.36).

The performances were generally the lowest for areas with
sparse station coverage, such as Spain and Great Britain
(Fig. 7). However, low E-OBS station density did not always
result in poor model performance. For catchments in France,
Great Britain, Denmark, and Sweden, KGE values remained
mostly above 0.5 despite a comparatively lower station den-
sity, suggesting that factors other than station density (such
as the spatial variability of the rainfall due to topography or
convective rainfall) also influence model accuracy. For ad-
ditional insights, we also provide the scatterplots of the dif-
ferences in model performance between scenarios II and 1
compared to the number of E-OBS stations per catchment
(see Fig. S6 in the Supplement), which further supports this
discussion.
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3.3.2 Aridity index

We also evaluated the model performances for scenarios I
and II in relation to the aridity indices derived from the re-
spective forcing data (Fig. 8). Despite some atypical cases
(Denmark in scenario I and Great Britain in scenario II),
the model performances tended to be significantly lower in
catchments with higher aridity indices (drier catchments).
This trend was particularly evident for the catchments in
Czechia, Germany, Spain, and Great Britain. Although the
pattern appeared with both forcing datasets, it was more pro-
nounced for the CAMELS data (scenario I), especially for
the catchments in Czechia, and Spain (both with » = —0.48).
For Switzerland and France, the Spearman rank correlations
were non-significant and close to zero for both forcing data

types.

4 Discussion
4.1 Differences in the meteorological data

Our results show that the mean annual precipitation sums in
E-OBS are systematically lower than those in the CAMELS
datasets for most catchments (Sect. 3.1), with the largest dif-
ferences occurring in Spain, whereas the smallest deviations
were found in Germany (Fig. 1). This pattern is consistent
with the findings of Bandhauer et al. (2022), who showed that
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E-OBS tends to underestimate precipitation to smooth spatial
contrasts in comparison to a reference dataset, particularly in
mountainous regions and in areas with sparse station cover-
age. In contrast, where E-OBS is supported by dense obser-
vation networks, such as in Germany, precipitation contrasts
were better represented and the agreement with reference
datasets was substantially improved (Bandhauer et al., 2022).
Taken together, this suggests that the lower precipitation es-
timates in E-OBS relative to CAMELS are largely driven by
the combination of coarser grid-resolution and lower under-
lying station density, especially in complex terrain. By con-
trast, mean temperatures from E-OBS and mean annual Epq
were generally higher than those from the CAMELS forc-
ings (Fig. 2). We do not have a clear explanation for this be-
haviour, but potential reasonings are homogenization proce-
dures, elevation corrections, and interpolation methods used
in the different national datasets, which is beyond the scope
of this study. The difference in Ejot is likely driven by the dif-
ferences in temperature and may be further amplified by dif-
ferences in the Epo formulations and parameterizations used
in the different products. The differences between the two
forcing sources are the smallest in Germany also for Ejot,
where there is both higher E-OBS station density, and a sim-
ilar equation used for E}q derivation in CAMELS to the one
in E-OBS (Table 2).
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4.2 Model performances

The HBV model is known for its capabilities in simulat-
ing streamflow, particularly in humid catchments, where wa-
ter flow is related to varying soil saturation and hydrolog-
ical connectivity (Knapp et al., 2022, 2024). This, in part,
seems to explain the consistently high model performances
achieved using either the CAMELS or the E-OBS forcing
data (Figs. 4 and A3 as well as Figs. 5 and A4) for the more
humid catchments, such as those in Sweden and Denmark.
In contrast, in Spain, where the most arid catchments are lo-
cated, the KGE values were the lowest and most variable for
both scenarios. These findings are reinforced by the observed
relationship between model performance and the aridity in-
dex shown in Fig. 8. The trend of decreasing performance
with increasing aridity further supports the assertion that
arid catchments pose significant challenges for hydrological
modelling. Several other studies have suggested that for dry
catchments more complex model structures may be needed
for streamflow simulation, and even then, they still tend to
yield lower model performance (Atkinson et al., 2002; David
et al., 2022; Massmann, 2020).

Yet, the lower model performance for the catchments in
Spain may be attributed not only to the inherent complexi-
ties of streamflow generation in arid environments, but also
to the higher variability and limited availability of observa-
tional hydrometeorological data in these regions, which com-
plicates model calibration and validation, as noted in previ-
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ous studies (do Nascimento et al., 2024b; Yu et al., 2011).
Additionally, previous studies have pointed out that many
Spanish catchments, including the ones available in the cur-
rently used BULL dataset, are highly regulated, with dams
and diversions (Klotz et al., 2025; Senent-Aparicio et al.,
2024b). Although we purposefully adopted the criteria based
on the number of lakes, and normalized upstream capacity
area discussed in Sect. 2.1, some of these heavily modified
catchments may still not be adequately filtered out, thereby
further impairing overall model performance.

4.3 Influence of forcing data characteristics on model
performance

Our findings indicate that model performance in scenario II
is strongly influenced by the density of stations used to ob-
tain the E-OBS data (see Sect. 3.3.1). As aresult, the reliabil-
ity of model outputs varies considerably across regions — an
observation that is consistent with previous research (Klotz
etal., 2025). This spatial dependency is visually supported by
Fig. 6 in the EStreams paper by do Nascimento et al. (2024a),
which shows the density of E-OBS stations across Europe.
Notably, for regions with a high density of stations, such as
Germany, the model achieved the highest KGE values with
E-OBS data, underscoring the critical role of data availability
and quality in hydrological modelling accuracy. Importantly,
the significant correlations also found on smaller catchments
(Fig. 7) confirmed that this relationship is not just an arti-
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fact of catchment size. To further understand the regional
variations in model performance, we also examined how the
type and characteristics of the CAMELS forcing data varied
across countries, extending the comparison to both scenario I
and II. This comparison provides insights into the role of data
resolution, origin, and processing methodology in shaping
the current model outcomes.

Germany presents a particularly consistent case: E-OBS
shows high station density over the country (Fig. 6 in do
Nascimento et al., 2024a), likely overlapping with the ground
observations used in the national HYRAS dataset (Rauthe
et al., 2013; Razafimaharo et al., 2020), which explains the
high agreement between the precipitation forcings (Fig. 1)
and the similar model accuracy obtained with both input
datasets (Fig. 6). Minor discrepancies are expected, given
HYRAS’s finer spatial resolution (1km for precipitation,
5 km for temperature) compared to E-OBS (0.1°).

In contrast, the national products for Spain, Switzerland,
and Great Britain are based on substantially denser station
networks than E-OBS (Table 2), which likely contributes to
their higher model accuracy in scenario I relative to sce-
nario II. As shown in Fig. 6 by do Nascimento et al. (2024a),
E-OBS displays sparse station coverage in these countries.
At the same time, it is worth noting that their respective na-
tional datasets — AEMET (5 km), RhiresD/TabsD (2 km), and
CEH-GEAR/CHESS (1 km) — offer much finer spatial detail,
which likely offer a better local representation of forcing pat-
terns.

The meteorological data in the CAMELS of Den-
mark and France stand out for their coarser spatial res-
olution (10 and 8km) compared to the other CAMELS
datasets. In Denmark, this likely reduced the performance
advantage of the CAMELS forcings, resulting in similar
outcomes between scenarios I and II. In France, however,
the situation differs: unlike the other CAMELS datasets,
the SAFRAN product combines reanalysis and station-based
data (Quintana-Segui et al., 2008; Vidal et al., 2010). The
KGE performances in scenario II being slightly better in
64 % of the French basins might suggest that SAFRAN’s
reanalysis nature, alongside coarser gridded-resolution, may
explain the marginally lower accuracy relative to the purely
station-based E-OBS forcing. However, note that the lower
precipitation data and higher Epo data in E-OBS compared
to CAMELS-FR can also just be advantageous for model cal-
ibration, e.g., if there are additional outflows from the catch-
ments that are not represented in the model structure (see
Sect. 4.4 for further discussion).

For Czechia, the CAMELS forcings resulted in clearly bet-
ter model performances than the E-OBS forcings, consistent
with its high-resolution station-based dataset, while Sweden,
represented by only three catchments, provides insufficient
evidence for interpretation.

Overall, these results indicate that differences in model
performance seem to be mainly driven by the station density
used to derive the forcing, spatial resolution, and type of the
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product (station-based or reanalysis), leading to variability in
the data quality even within the same source.

4.4 Influence of different E,,; data in model
performance

In this work, the differences in model performance across
the various sources of forcing data were mainly attributed to
the differences in precipitation inputs (scenario III), whereas
discrepancies in Epo and temperature data hardly affected
model performance (scenarios IV and V). These findings are
consistent with those of Clerc-Schwarzenbach et al. (2024),
who compared the Caravan and CAMELS datasets. Al-
though their analysis revealed larger differences in Epo than
in precipitation data, it was still the precipitation inputs that
exerted the greatest influence on model performance.

In this study, the differences between the Ejo data derived
from E-OBS and the Ep data derived from the CAMELS
datasets were much smaller, but still obvious (which makes
sense, considering the differences in the temperature data
that were generally used as input to the Epo calculations).
This demonstrates once again the large uncertainties that we
face when using different approaches to estimate Epot. Sev-
eral studies have already identified this issue as a persistent
“blind spot” in hydrological modelling (Bai et al., 2016; Fed-
erer et al., 1996; Hanselmann et al., 2024). Nevertheless, Epo
calculated with the Hargreaves equation, as in EStreams, has
been found to be a reliable method in various hydrologi-
cal modelling applications, including in Central Europe (Pi-
mentel et al., 2023), Germany (Loritz et al., 2024) and other
regions (Bangi and Soraganvi, 2023; Sperna Weiland et al.,
2012). Furthermore, as shown in Fig. A6, the differences in
Epot data did not affect model performance results strongly,
so it can be expected that the use of a different equation
would not notably change the findings of this study.

While the different Epo data had a very limited effect on
model performances in general, the higher E, data derived
from E-OBS were beneficial for the model performance in
some cases, as they likely allowed the model more flexibil-
ity to adjust the water balance. For example, the low perfor-
mances with the CAMELS-GB data for the catchments in
the karstic area around London can (partially) be explained
by the inability of the HBV model to simulate groundwa-
ter losses (Lane et al., 2019; Oldham et al., 2023; Seibert
etal., 2018). In such catchments, the higher Epq values from
E-OBS effectively helped to improve the water balance by
allowing for more evaporation, thereby compensating for the
unmodelled groundwater losses. This is supported by the fact
that the strong streamflow overestimation in this and other re-
gions (e.g., southeastern France) when the CAMELS forcing
data were used (Fig. A4) could be avoided when the E-OBS
forcing data were used (Fig. 5). However, it is important to
note that while this adjustment led to improved model per-
formance, such compensatory effects are not desirable when
the objective is to accurately represent internal catchment
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processes. Achieving realistic process representation should,
generally, remain a central goal in hydrological modelling
(Kirchner, 2006).

4.5 Limitations

As mentioned with the example of the compensation effects
due to higher E} data, a higher model performance does not
necessarily mean a better representation of the hydrological
processes. Still, we used the performance as an indicator for
the hydrological efficacy of different forcing data. Although
model performances are often used as an aggregated mea-
sure of data quality (Beck et al., 2017; Clerc-Schwarzenbach
et al., 2024; Tarek et al., 2020), model performance can also
be heavily influenced by the chosen model structure, partic-
ularly if it does not align well with the physical characteris-
tics of a given catchment. This structural sensitivity means
that performance differences may reflect model limitations
as much as data quality (Beven, 2018).

Beyond model structure, it is worth noting that here we
performed single-basin calibrations. While this allows for lo-
calized optimization, it does not reflect how models are typ-
ically regionalized for prediction in ungauged basins. Future
research should explore how the identified performance pat-
terns translate to a regionalization framework, which would
provide more practical insights for prediction in data-scarce
environments, and therefore, where model calibration is not
possible.

Finally, all simulations in this study were conducted at a
daily time step. For smaller catchments, a finer temporal res-
olution, such as hourly, could provide more meaningful in-
sights. With the increasing availability of temporally high-
resolution datasets (Coxon et al., 2025; Dolich et al., 2025;
Nijzink et al., 2025), future studies may benefit from repeat-
ing similar analyses at the sub-daily timescale.

5 Conclusions

In this study, we compared the meteorological time series for
2682 European catchments in the EStreams dataset with time
series from eight smaller-scale datasets (mostly CAMELS
datasets). Moreover, we evaluated how the different types of
meteorological forcing data influence the performance of a
bucket-type hydrological model.

Our results showed that for most catchments, mean annual
precipitation values obtained from the E-OBS dataset were
lower than those from the corresponding CAMELS datasets.
The opposite was true for the average temperature and thus
the annual sums of Epo (higher values in E-OBS than in
CAMELS). These discrepancies led to consistently higher
aridity indices computed with the E-OBS data in compar-
ison to the CAMELS data for most catchments, although
the spatial pattern remained similar. Such systematic differ-
ences highlight important inconsistencies across the two data
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sources that can affect the outcomes of hydrological synthe-
sis studies across large areas.

Despite these differences, model calibration using either
set of forcing data achieved good model performances for
most catchments (KGE of at least 0.70 in more than 90 %
of the catchments). However, performances were generally
slightly lower when using E-OBS data than when using
CAMELS data: For approximately 60 % of the catchments,
the model performance was higher when using CAMELS
forcing data. Considering the national curation and higher
resolution of the CAMELS datasets, this makes sense.

Our findings indicate that cross-country differences in
model performance are primarily driven by variations in sta-
tion density, spatial resolution, and the inclusion of reanaly-
sis components, rather than by substantial inconsistencies in
data quality between E-OBS and national products. We ob-
served that model performances using E-OBS forcing data
were lower in regions with a lower E-OBS station density.
This highlights the critical role of station coverage on hy-
drological model performance, an issue that becomes even
more pronounced in mountainous regions, where steep cli-
matic gradients in precipitation and temperature make dense
and spatially representative data essential for reliable simula-
tions, as well as in arid regions and regions where convective
rainfall is relevant.

Overall, while local or national datasets often yield the
best model performances, our results suggest that the me-
teorological forcing data from E-OBS that is included in ES-
treams represents a valuable and harmonized alternative for
pan-European studies. The advantage of E-OBS lies in its
observational basis, consistent methodology, and coverage
across all of Europe, making it especially useful when na-
tional datasets are unavailable or inconsistent. As such, E-
OBS and EStreams provide a practical foundation for ex-
panding large-sample hydrology beyond national boundaries
while maintaining sufficient data quality for robust model ap-
plications.
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Appendix A:
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Figure A1l. Aridity index (Epot/ P) calculated from the CAMELS data (for a 20 yr period: 1995-2015). Note that the colour scale was cut at
a value of two.
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Figure A2. Aridity index (Epot/ P) calculated from the E-OBS data obtained from EStreams (for a 20 yr period: 1995-2015). Note that the
colour scale was cut at a value of two.
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Figure A3. Model performance (Kling—-Gupta efficiency, KGE) achieved for the 20 yr period between October 1995 and September 2015
when the input data from the CAMELS datasets were used for model calibration (scenario I). Note that the lower limit of the colour scale
was cut at zero. Lower performances were plotted last to improve their visibility.
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Figure A4. PBIAS (relative deviation of the simulated streamflow from the observed streamflow) for the 20 yr period between October 1995
and September 2015 when the CAMELS data were used for model calibration (scenario I). Note that the limits of the colour scale were cut
at 50 %. Largest deviations were plotted last to improve their visibility.
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Figure AS. Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario II) and
when the precipitation data from E-OBS were replaced with those from CAMELS (scenario III). Positive values and green colours indicate
higher model performances with the precipitation data from E-OBS, negative values and pink colours indicate higher model performances
with the precipitation data from CAMELS. Note that the colour scale was cut at a difference in KGE of £0.3. The catchments with the
largest differences in model performance were plotted last to increase their visibility.

all, n=2682 CH, n=133

---------------------------------------------------------------------

Figure A6. Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario II) and
when the Epot data from E-OBS were replaced with those from CAMELS (scenario IV). Positive values and green colours indicate higher
model performances with the Epot data from E-OBS, negative values and pink colours indicate higher model performances with the Epot
data from CAMELS. Note that the colour scale was cut at a difference in KGE of +0.3. The catchments with the largest differences in model
performance were plotted last to increase their visibility.
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Code availability. All code used to analyse the resolute and derive
the figures for this manuscript are available at a GitHub reposi-
tory (https://github.com/thiagovmdon/EOBS-quality, last access: 9
January 2026; DOI: https://doi.org/10.5281/zenodo.17943610, do
Nascimento and Clerc-Schwarzenbach, 2025).

Data availability. The CAMELS-DK version 6 dataset is
available at  https://doi.org/10.22008/FK2/AZXSYP  (Koch
et al.,, 2025). The CAMELS-FR version 3 dataset is avail-
able at https://doi.org/10.57745/WH7FJR (Delaigue et al.,
2025b). The CAMELS-DE version 1 dataset is available
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2024). The CAMELS-GB version 1 dataset is available at
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(Coxon et al., 2020b). The BULL version 3 dataset is available
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et al., 2024a). The CAMELS-SE version 1 dataset is avail-
able at  https://doi.org/10.57804/t3rm-v029  (Teutschbein,
2024b). The CAMELS-CH version 0.9 dataset is available at
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Epot data for Sweden were provided by Claudia Teutschbein and
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These unpublished data are available upon reasonable request.
The current version 1.4 of the EStreams dataset is available at
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performances used in this study are stored at a GitHub repository
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