Articles | Volume 29, issue 23
https://doi.org/10.5194/hess-29-6863-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6863-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projections of actual and potential evapotranspiration from downscaled high-resolution CMIP6 climate simulations in Australia
Climate Projections and Services, Queensland Treasury, Queensland Government, GPO Box 2454, Brisbane QLD 4001, Australia
Sarah Chapman
Climate Projections and Services, Queensland Treasury, Queensland Government, GPO Box 2454, Brisbane QLD 4001, Australia
School of the Environment, The University of Queensland, Brisbane QLD 4001, Australia
Ralph Trancoso
Climate Projections and Services, Queensland Treasury, Queensland Government, GPO Box 2454, Brisbane QLD 4001, Australia
School of the Environment, The University of Queensland, Brisbane QLD 4001, Australia
Rohan Eccles
Climate Projections and Services, Queensland Treasury, Queensland Government, GPO Box 2454, Brisbane QLD 4001, Australia
School of the Environment, The University of Queensland, Brisbane QLD 4001, Australia
Jozef Syktus
School of the Environment, The University of Queensland, Brisbane QLD 4001, Australia
Nathan Toombs
Climate Projections and Services, Queensland Treasury, Queensland Government, GPO Box 2454, Brisbane QLD 4001, Australia
Related authors
Rohan Eccles, Ralph Trancoso, Jozef Syktus, Sarah Chapman, Nathan Toombs, Hong Zhang, Shaoxiu Ma, and Ryan McGloin
Hydrol. Earth Syst. Sci., 29, 4689–4710, https://doi.org/10.5194/hess-29-4689-2025, https://doi.org/10.5194/hess-29-4689-2025, 2025
Short summary
Short summary
Rainfall and evaporation are two key variables influencing when droughts occur and their severity. We use the latest climate simulations for Australia to see how changes to rainfall and evaporation influence future droughts for Australia and show increases are likely over most of Australia, especially in the south. Increases in evaporation are shown to be larger than changes to rainfall over most of the continent. We show that keeping emissions to lower levels can work to mitigate these impacts.
Rohan Eccles, Ralph Trancoso, Jozef Syktus, Sarah Chapman, Nathan Toombs, Hong Zhang, Shaoxiu Ma, and Ryan McGloin
Hydrol. Earth Syst. Sci., 29, 4689–4710, https://doi.org/10.5194/hess-29-4689-2025, https://doi.org/10.5194/hess-29-4689-2025, 2025
Short summary
Short summary
Rainfall and evaporation are two key variables influencing when droughts occur and their severity. We use the latest climate simulations for Australia to see how changes to rainfall and evaporation influence future droughts for Australia and show increases are likely over most of Australia, especially in the south. Increases in evaporation are shown to be larger than changes to rainfall over most of the continent. We show that keeping emissions to lower levels can work to mitigate these impacts.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56, ISBN 92-5-104219-5, 1998.
Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E.: Evapotranspiration information reporting: I. Factors governing measurement accuracy, Agric. Water Manag., 98, 899–920, https://doi.org/10.1016/j.agwat.2010.12.015, 2011.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016.
Beringer, J., Moore, C. E., Cleverly, J., Campbell, D. I., Cleugh, H., De Kauwe, M. G., Kirschbaum, M. U. F., Griebel, A., Grover, S., Huete, A., Hutley, L. B., Laubach, J., Van Niel, T., Arndt, S. K., Bennett, A. C., Cernusak, L. A., Eamus, D., Ewenz, C. M., Goodrich, J. P., Jiang, M., Hinko-Najera, N., Isaac, P., Hobeichi, S., Knauer, J., Koerber, G. R., Liddell, M., Ma, X., Macfarlane, C., McHugh, I. D., Medlyn, B. E., Meyer, W. S., Norton, A. J., Owens, J., Pitman, A., Pendall, E., Prober, S. M., Ray, R. L., Restrepo-Coupe, N., Rifai, S. W., Rowlings, D., Schipper, L., Silberstein, R. P., Teckentrup, L., Thompson, S. E., Ukkola, A. M., Wall, A., Wang, Y.-P., Wardlaw, T. J., and Woodgate, W.: Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network, Glob. Change Biol., 28, 3489–3514, https://doi.org/10.1111/gcb.16141, 2022.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Bureau of Meteorology: Climatic Atlas of Australia, Australian Government Publishing Service, Canberra, ACT, https://www.bom.gov.au/climate/averages/climatology/evapotrans/text/et-txt.shtml (last access: 1 June 2024), 1988.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?, J. Clim., 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
Chapman, S., Syktus, J., Trancoso, R., Thatcher, M., Toombs, N., Wong, K. K.-H., and Takbash, A.: Evaluation of Dynamically Downscaled CMIP6-CCAM Models Over Australia, Earths Future, 11, e2023EF003548, https://doi.org/10.1029/2023EF003548, 2023.
Chapman, S., Syktus, J., Trancoso, R., Toombs, N., and Eccles, R.: Projected Changes in Mean Climate and Extremes from Downscaled High-Resolution Cmip6 Simulations in Australia, SSRN, https://doi.org/10.2139/ssrn.4836517, 21 May 2024.
Crago, R. D., Qualls, R., and Szilagyi, J.: Complementary Relationship for evaporation performance at different spatial and temporal scales, J. Hydrol., 608, 127575, https://doi.org/10.1016/j.jhydrol.2022.127575, 2022.
CSIRO: Regional Climate Change Explorer, https://www.climatechangeinaustralia.gov.au/en/projections-tools/regional-climate-change-explorer/clusters/ (last access: 1 June 2024), 2020.
Department of Agriculture Water and the Environment: National Climate Resilience and Adaptation Strategy, 1–47, ISBN 978-1-76003-484-9, 2021.
Department of Climate Change, Energy, the Environment and Water: National Climate Risk Assessment, First pass assessment report, https://www.dcceew.gov.au/sites/default/files/documents/national-climate-risk-assessment-first-pass-assessment-report-2024.pdf (last access: 5 May 2024), 2024a.
Department of Climate Change, Energy, the Environment and Water: Safeguard Mechanism, https://www.dcceew.gov.au/sites/default/files/documents/safeguard-mechanism-reforms-factsheet-2023.pdf (last access: 25 June 2024), 2024b.
Dowdy, A.: A bias correction method designed for weather and climate extremes, Bureau Research Report - 087, https://nla.gov.au/nla.obj-3243228235/view (last access: 23 March 2024), 2023.
Falalakis, G. and Gemitzi, A.: A simple method for water balance estimation based on the empirical method and remotely sensed evapotranspiration estimates, J. Hydroinformatics, 22, 440–451, https://doi.org/10.2166/hydro.2020.182, 2020.
Frost, A., Ramchurn, A., Hafeez, M., Zhao, F., Haverd, V., Beringer, J., and Briggs, P.: Evaluation of AWRA-L: the Australian Water Resource Assessment model, 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015, https://www.mssanz.org.au/modsim2015/L2/frost.pdf (last access: 14 June 2024), 2015.
Fuentes, I., Vervoort, R. W., and McPhee, J.: Global evapotranspiration models and their performance at different spatial scales: Contrasting a latitudinal gradient against global catchments, J. Hydrol., 628, 130477, https://doi.org/10.1016/j.jhydrol.2023.130477, 2024.
Gallant, J., Wilson, N., Tickle, P. K., Dowling, T., and Read, A.: 3 second SRTM Derived Digital Elevation Model (DEM) Version 1.0, Commonwealth of Australia (Geoscience Australia) [data set], http://pid.geoscience.gov.au/dataset/ga/69888 (last access: 15 June 2024), 2009.
Glenn, E. P., Doody, T. M., Guerschman, J. P., Huete, A. R., King, E. A., McVicar, T. R., Van Dijk, A. I. J. M., Van Niel, T. G., Yebra, M., and Zhang, Y.: Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience, Hydrol. Process., 25, 4103–4116, https://doi.org/10.1002/hyp.8391, 2011.
Guerschman, J. P., McVicar, T. R., Vleeshower, J., Niel, T. G. V., Peña-Arancibia, J. L., and Chen, Y.: Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data, J. Hydrol., 605, 127318, https://doi.org/10.1016/j.jhydrol.2021.127318, 2022.
Guo, D., Westra, S., and Maier, H. R.: Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones, Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, 2017.
Guo, N., Chen, H., Han, Q., and Wang, T.: Evaluating data-driven and hybrid modeling of terrestrial actual evapotranspiration based on an automatic machine learning approach, J. Hydrol., 628, 130594, https://doi.org/10.1016/j.jhydrol.2023.130594, 2024.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dyn., 37, 407–418, https://doi.org/10.1007/s00382-010-0810-6, 2011.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Hobeichi, S., Abramowitz, G., and Evans, J. P.: Robust historical evapotranspiration trends across climate regimes, Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, 2021.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environ. Model. Softw., 16, 309–330, https://doi.org/10.1016/S1364-8152(01)00008-1, 2001.
Jiang, Y. and Liu, Z.: Simulation of Actual Evapotranspiration and Evaluation of Three Complementary Relationships in Three Parallel River Basins, Water Resour. Manag., 36, 5107–5126, https://doi.org/10.1007/s11269-022-03294-y, 2022.
Karahan, H., Cetin, M., Can, M. E., and Alsenjar, O.: Developing a New ANN Model to Estimate Daily Actual Evapotranspiration Using Limited Climatic Data and Remote Sensing Techniques for Sustainable Water Management, Sustainability, 16, https://doi.org/10.3390/su16062481, 2024.
Khan, M. S., Baik, J., and Choi, M.: Inter-comparison of evapotranspiration datasets over heterogeneous landscapes across Australia, Adv. Space Res., 66, 533–545, https://doi.org/10.1016/j.asr.2020.04.037, 2020.
Kim, H. and Kaluarachchi, J.: Developing an Integrated Complementary Relationship for Estimating Evapotranspiration, Nat. Resour., 09, 89–109, https://doi.org/10.4236/nr.2018.94007, 2018.
Li, S., Wang, G., Zhu, C., Lu, J., Ullah, W., Hagan, D. F. T., Kattel, G., and Peng, J.: Attribution of global evapotranspiration trends based on the Budyko framework, Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, 2022.
Liaw, A. and Wiener, M.: Classification and Regression by RandomForest, R News, 2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (last access: 29 August 2024), 2002.
Liu, H., Song, D., Kong, J., Mu, Z., Wang, X., Jiang, Y., and Zhang, J.: Complementarity Characteristics of Actual and Potential Evapotranspiration and Spatiotemporal Changes in Evapotranspiration Drought Index over Ningxia in the Upper Reaches of the Yellow River in China, Remote Sens., 14, https://doi.org/10.3390/rs14235953, 2022a.
Liu, M., Adam, J. C., Richey, A. S., Zhu, Z., and Myneni, R. B.: Factors controlling changes in evapotranspiration, runoff, and soil moisture over the conterminous U.S.: Accounting for vegetation dynamics, J. Hydrol., 565, 123–137, https://doi.org/10.1016/j.jhydrol.2018.07.068, 2018.
Liu, Q., Wang, T., Han, Q., Sun, S., Liu, C., and Chen, X.: Diagnosing environmental controls on actual evapotranspiration and evaporative fraction in a water-limited region from northwest China, J. Hydrol., 578, 124045, https://doi.org/10.1016/j.jhydrol.2019.124045, 2019.
Liu, Y., Jiang, Q., Wang, Q., Jin, Y., Yue, Q., Yu, J., Zheng, Y., Jiang, W., and Yao, X.: The divergence between potential and actual evapotranspiration: An insight from climate, water, and vegetation change, Sci. Total Environ., 807, 150648, https://doi.org/10.1016/j.scitotenv.2021.150648, 2022b.
Ma, N., Zhang, Y., Xu, C.-Y., and Szilagyi, J.: Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications, J. Geophys. Res. Biogeosciences, 120, 1638–1657, https://doi.org/10.1002/2015JG003006, 2015.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
McMahon, T. A., Finlayson, B. L., and Peel, M. C.: Historical developments of models for estimating evaporation using standard meteorological data, WIREs Water, 3, 788–818, https://doi.org/10.1002/wat2.1172, 2016.
McVicar, T., Vleeshouwer, J., Van Niel, T., and Guerschman, J.: Actual Evapotranspiration for Australia using CMRSET algorithm. Terrestrial Ecosystem Research Network, TERN Ecosystem Research Infrastructure [data set], https://doi.org/10.25901/gg27-ck96, 2022.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Mobilia, M. and Longobardi, A.: Prediction of Potential and Actual Evapotranspiration Fluxes Using Six Meteorological Data-Based Approaches for a Range of Climate and Land Cover Types, ISPRS Int. J. Geo-Inf., 10, https://doi.org/10.3390/ijgi10030192, 2021.
Morton, F.: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, J. Hydrol., 66, 1–76, https://doi.org/10.1016/0022-1694(83)90177-4, 1983.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Pan, X., Yang, Z., Liu, Y., Yuan, J., Wang, Z., Liu, S., and Yang, Y.: A non-parametric method combined with surface flux equilibrium for estimating terrestrial evapotranspiration: Validation at eddy covariance sites, J. Hydrol., 631, 130682, https://doi.org/10.1016/j.jhydrol.2024.130682, 2024.
Peter, J., Vogel, E., Sharples, W., Bende-Michl, U., Wilson, L., Hope, P., Dowdy, A., Kociuba, G., Srikanthan, S., Duong, V. C., Roussis, J., Matic, V., Khan, Z., Oke, A., Turner, M., Baron-Hay, S., Johnson, F., Mehrotra, R., Sharma, A., Thatcher, M., Azarvinand, A., Thomas, S., Boschat, G., Donnelly, C., and Argent, R.: Continental-scale bias-corrected climate and hydrological projections for Australia, Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, 2024.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Queensland Government and the University of Queensland: 10 and 20 km Regional Projections from the Queensland Future Climate Science Program, NCI Data Catalogue [data set], https://doi.org/10.25914/8fve-1910, 2024a.
Queensland Government and the University of Queensland: 10 km regional projections from the Queensland Future Climate Science Program, NCI Data Catalogue [data set], https://doi.org/10.25914/2c0z-8t40, 2024b.
Raja, P., Sona, F., Surendran, U., Srinivas, C. V., Kannan, K., Madhu, M., Mahesh, P., Annepu, S. K., Ahmed, M., Chandrasekar, K., Suguna, A. R., Kumar, V., and Jagadesh, M.: Performance evaluation of different empirical models for reference evapotranspiration estimation over Udhagamandalm, The Nilgiris, India, Sci. Rep., 14, 12429, https://doi.org/10.1038/s41598-024-60952-4, 2024.
Roderick, M. L. and Farquhar, G. D.: Changes in Australian pan evaporation from 1970 to 2002, Int. J. Climatol., 24, 1077–1090, https://doi.org/10.1002/joc.1061, 2004.
Shang, C., Wu, T., Ma, N., Wang, J., Li, X., Zhu, X., Wang, T., Hu, G., Li, R., Yang, S., Chen, J., Yao, J., and Yang, C.: Assessment of Different Complementary-Relationship-Based Models for Estimating Actual Terrestrial Evapotranspiration in the Frozen Ground Regions of the Qinghai-Tibet Plateau, Remote Sens., 14, https://doi.org/10.3390/rs14092047, 2022.
Shi, L., Feng, P., Wang, B., Liu, D. L., Cleverly, J., Fang, Q., and Yu, Q.: Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia, J. Hydrol., 584, 124756, https://doi.org/10.1016/j.jhydrol.2020.124756, 2020.
Shrestha, A. K., Thapa, A., and Gautam, H.: Solar Radiation, Air Temperature, Relative Humidity, and Dew Point Study: Damak, Jhapa, Nepal, Int. J. Photoenergy, 2019, 8369231, https://doi.org/10.1155/2019/8369231, 2019.
Steffen, W., Vertessy, R., Dean, A., Hughes, L., Bambrick, H., Gergis, J., and Rice, M.: Deluge and drought: Australia's water security in a changing climate, Climate Council of Australia, ISBN 978-1-925573-80-0, 2018.
Syktus, J., Toombs, N., Wong, K. K.-H., Trancoso, R., and Ahrens, D.: Queensland Future Climate Dataset – Downscaled CMIP5 climate projections for RCP8.5 and RCP4.5, 1.0.2, Terrestrial Ecosystem Research Network [data set], https://doi.org/10.25901/5e3ba30f141b7, 2020a.
Syktus, J., Trancoso, R., Ahrens, D., Toombs, N., and Wong, K.: Queensland Future Climate Dashboard: Downscaled CMIP5 climate projections for Queensland, Queensland Government [data set], https://www.longpaddock.qld.gov.au/qld-future-climate/data-info/tern/ (last access: 20 September 2024), 2020b.
Taheri, M., Mohammadian, A., Ganji, F., Bigdeli, M., and Nasseri, M.: Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges, Energies, 15, https://doi.org/10.3390/en15041264, 2022.
TERN: AET explorer (v2.2), https://tern-landscapes.earthengine.app/view/cmrset-landsat-v22 (last access: 21 November 2025), 2024.
Trancoso, R., Larsen, J., Mcalpine, C., McVicar, T., and Phinn, S.: Linking the Budyko framework and the Dunne diagram, J. Hydrol., 535, 581–597, https://doi.org/10.1016/j.jhydrol.2016.02.017, 2016a.
Trancoso, R., Phinn, S., McVicar, T., Larsen, J., and Mcalpine, C.: Regional variation in streamflow drivers across a continental climatic gradient, Ecohydrology, 10, https://doi.org/10.1002/eco.1816, 2016b.
Trancoso, R., Syktus, J., Toombs, N., and Chapman, S.: Assessing and selecting CMIP6 GCMs ensemble runs based on their ability to represent historical climate and future climate change signal, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11412, https://doi.org/10.5194/egusphere-egu23-11412, 2023.
Trancoso, R., Syktus, J., Allan, R. P., Croke, J., Hoegh-Guldberg, O., and Chadwick, R.: Significantly wetter or drier future conditions for one to two thirds of the world's population, Nat. Commun., 15, 483, https://doi.org/10.1038/s41467-023-44513-3, 2024.
Tu, Z., Yang, Y., Roderick, M. L., and McVicar, T. R.: Potential Evaporation and the Complementary Relationship, Water Resour. Res., 59, e2022WR033763, https://doi.org/10.1029/2022WR033763, 2023.
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, https://doi.org/10.1029/2011RG000373, 2012.
Wilson, L., Bende-Michl, U., Sharples, W., Vogel, E., Peter, J., Srikanthan, S., Khan, Z., Matic, V., Oke, A., Turner, M., Duong, V. C., Loh, S., Baron-Hay, S., Roussis, J., Kociuba, G., Hope, P., Dowdy, A., Donnelly, C., Argent, R., Thomas, S., Kitsios, A., and Bellhouse, J.: A national hydrological projections service for Australia, Clim. Serv., 28, 100331, https://doi.org/10.1016/j.cliser.2022.100331, 2022.
Wit, A., Elhaddad, A., Meyer zum Alten Borgloh, S., Turdukulov, U., and Hutjes, R.: Crop productivity and evapotranspiration indicators from 2000 to present derived from satellite observations, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.b2f6f9f6, 2022.
Xu, C.-Y. and Singh, V. P.: Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions, J. Hydrol., 308, 105–121, https://doi.org/10.1016/j.jhydrol.2004.10.024, 2005.
Yang, L., Feng, Q., Zhu, M., Wang, L., Alizadeh, M. R., Adamowski, J. F., Wen, X., and Yin, Z.: Variation in actual evapotranspiration and its ties to climate change and vegetation dynamics in northwest China, J. Hydrol., 607, 127533, https://doi.org/10.1016/j.jhydrol.2022.127533, 2022.
Yang, X., Smith, P., Yu, T., and Gao, H.: Estimating evapotranspiration from terrestrial groundwater-dependent ecosystems using Landsat images, Int. J. Digit. Earth, 4, 154–170, https://doi.org/10.1080/17538947.2010.491561, 2011.
You, G., Arain, M. A., Wang, S., Lin, N., Wu, D., McKenzie, S., Zou, C., Liu, B., Zhang, X., and Gao, J.: Trends of actual and potential evapotranspiration based on Bouchet's complementary concept in a cold and arid steppe site of Northeastern Asia, Agric. For. Meteorol., 279, 107684, https://doi.org/10.1016/j.agrformet.2019.107684, 2019.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate sensitivity in CMIP6 models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Zhang, X., Shen, B., Huang, L., Zhao, C., and Quan, Q.: Complementary relationship estimation of actual evapotranspiration in extreme cold and arid areas: A case study of the Hotan River Basin, northwest China, Hydrol. Res., 49, nh2017104, https://doi.org/10.2166/nh.2017.104, 2017.
Zhang, H., Chapman, S., Trancoso, R., Toombs, N. and Syktus, J.: Assessing the impact of bias correction approaches on climate extremes and the climate change signal, Meteorol. Appl., 31, e2204, https://doi.org/10.1002/met.2204, 2024.
Zhu, W., Tian, S., Wei, J., Jia, S., and Song, Z.: Multi-scale evaluation of global evapotranspiration products derived from remote sensing images: Accuracy and uncertainty, J. Hydrol., 611, 127982, https://doi.org/10.1016/j.jhydrol.2022.127982, 2022.
Short summary
In this study we evaluate the performances of observation-based and climate model-based evapotranspiration estimations and project future changes for evapotranspiration in Australia. Our results show that climate models can provide reasonably accurate estimations, compared to observation-based estimations. This study offers new insights into future water loss and demand changes in Australia with implications for agriculture production, water security, and environmental management.
In this study we evaluate the performances of observation-based and climate model-based...