Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the cumulative impact of on-farm reservoirs on modeled surface hydrology
Vinicius Perin
Planet Labs Inc., San Francisco, CA 94107, USA
Mirela G. Tulbure
CORRESPONDING AUTHOR
Center for Geospatial Analytics, North Carolina State University, 2800 Faucette Drive, Raleigh, NC 27606, USA
Shiqi Fang
Department of Civil, Construction and Environmental Engineering, North Carolina State University, 961 Partners Way, Raleigh 27695, USA
Sankarasubramanian Arumugam
Department of Civil, Construction and Environmental Engineering, North Carolina State University, 961 Partners Way, Raleigh 27695, USA
Michele L. Reba
USDA-ARS Delta Water Management Research Unit, P.O. Box 2, State University, AR 2467-0002, USA
Mary A. Yaeger
Center for Applied Earth Science and Engineering Research, The University of Memphis, 3675 Alumni Drive, Memphis, TN 38152, USA
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013.
Althoff, D., Rodrigues, L. N., and da Silva, D. D.: Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah, Clim. Change, 159, 215–232, https://doi.org/10.1007/s10584-020-02656-y, 2020.
Arkansas GIS Office: Arkansas GIS Office | Elevation datasets, Arkansas Spatial Data Infrastructure, https://gis.arkansas.gov (last access: 11 November 2022), 2022.
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., M. J. White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.: SWAT: Model Use, Calibration, and Validation, Trans. ASABE, 55, 1491–1508, https://doi.org/10.13031/2013.42256, 2012.
Arnold, J. G., Bieger, K., White, M. J., Srinivasan, R., Dunbar, J. A., and Allen, P. M.: Use of Decision Tables to Simulate Management in SWAT+, Water, 10, 713, https://doi.org/10.3390/w10060713, 2018.
Arvor, D., Daher, F. R. G., Briand, D., Dufour, S., Rollet, A.-J., Simões, M., and Ferraz, R. P. D.: Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series, ISPRS J. Photogramm. Remote Sens., 145, 225–237, https://doi.org/10.1016/j.isprsjprs.2018.03.015, 2018.
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, 2017.
Ayalew, T. B., Krajewski, W. F., Mantilla, R., Wright, D. B., and Small, S. J.: Effect of Spatially Distributed Small Dams on Flood Frequency: Insights from the Soap Creek Watershed, J. Hydrol. Eng., 22, 04017011, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001513, 2017.
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool, JAWRA J. Am. Water Resour. Assoc., 53, 115–130, https://doi.org/10.1111/1752-1688.12482, 2017.
Brochet, E., Grusson, Y., Sauvage, S., Lhuissier, L., and Demarez, V.: How to account for irrigation withdrawals in a watershed model, Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, 2024.
Canter, L. W. and Kamath, J.: Questionnaire checklist for cumulative impacts, Environ. Impact Assess. Rev., 15, 311–339, https://doi.org/10.1016/0195-9255(95)00010-C, 1995.
Chalise, D. R., Sankarasubramanian, A., and Ruhi, A.: Dams and Climate Interact to Alter River Flow Regimes Across the United States, Earth's Future, 9, https://doi.org/10.1029/2020EF001816, 2021.
Chawanda, C. J., Arnold, J., Thiery, W., and van Griensven, A.: Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+, Clim. Change, 163, 1307–1327, https://doi.org/10.1007/s10584-020-02924-x, 2020.
Culler, R. C., Hadley, R. F., and Schumm, S. A.: Hydrology of the upper Cheyenne River basin: Part A. Hydrology of stock-water reservoirs in upper Cheyenne River basin; Part B. Sediment sources and drainage-basin characteristics in upper Cheyenne River basin, U.S. Geological Survey, https://doi.org/10.3133/wsp1531, 1961.
Dile, Y., Daggupati, P., George, C., Srinivasan, R., and Arnold, J: Introducing a new open source GIS user interface for the SWAT model, Environmental Modelling & Software, 85, 32–40, https://doi.org/10.1016/j.envsoft.2016.08.004, 2016.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Downing, J. A.: Emerging global role of small lakes and ponds: little things mean a lot, Limnetica, 29, 9–24, https://doi.org/10.23818/limn.29.02, 2010.
Dubreuil, P. and Girard, G.: Influence of a very large number of small reservoirs on the annual flow regime of a tropical stream, Wash. DC Am. Geophys. Union Geophys. Monogr. Ser., 17, 295–299, 1973.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) Mission, Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010.
Evenson, G. R., Jones, C. N., McLaughlin, D. L., Golden, H. E., Lane, C. R., DeVries, B., Alexander, L. C., Lang, M. W., McCarty, G. W., and Sharifi, A.: A watershed-scale model for depressional wetland-rich landscapes, J. Hydrol. X, 1, 100002, https://doi.org/10.1016/j.hydroa.2018.10.002, 2018.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, https://doi.org/10.1029/2005RG000183, 2007.
Fowler, K., Morden, R., Lowe, L., and Nathan, R.: Advances in assessing the impact of hillside farm dams on streamflow, Australas. J. Water Resour., 19, 96–108, https://doi.org/10.1080/13241583.2015.1116182, 2015.
Galéa, G., Vasquez-Paulus, B., Renard, B., and Breil, P.: L'impact des prélèvements d'eau pour l'irrigation sur les régimes hydrologiques des sous-bassins du Tescou et de la Séoune (bassin Adour-Garonne, France), Rev. Sci. Eau J. Water Sci., 18, 273–305, https://doi.org/10.7202/705560ar, 2005.
George, C.: Using SSURGO soil data with QSWAT and QSWAT+ (Version 3.1), https://swat.tamu.edu/media/116594/us_soilsv3.pdf (last access: 10 November 2022), 2020.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Habets, F., Philippe, E., Martin, E., David, C. H., and Leseur, F.: Small farm dams: impact on river flows and sustainability in a context of climate change, Hydrol. Earth Syst. Sci., 18, 4207–4222, https://doi.org/10.5194/hess-18-4207-2014, 2014.
Habets, F., Molénat, J., Carluer, N., Douez, O., and Leenhardt, D.: The cumulative impacts of small reservoirs on hydrology: A review, Sci. Total Environ., 643, 850–867, https://doi.org/10.1016/j.scitotenv.2018.06.188, 2018.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm. Remote Sens., 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Hwang, J., Kumar, H., Ruhi, A., Sankarasubramanian, A., and Devineni, N.: Quantifying Dam-Induced Fluctuations in Streamflow Frequencies Across the Colorado River Basin, Water Resour. Res., 57, https://doi.org/10.1029/2021WR029753, 2021.
Jalowska, A. M. and Yuan, Y.: Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations, JAWRA J. Am. Water Resour. Assoc., 55, 209–227, https://doi.org/10.1111/1752-1688.12715, 2019.
Jones, S. K., Fremier, A. K., DeClerck, F. A., Smedley, D., Pieck, A. O., and Mulligan, M.: Big data and multiple methods for mapping small reservoirs: Comparing accuracies for applications in agricultural landscapes, Remote Sens., 9, https://doi.org/10.3390/rs9121307, 2017.
Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V. V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., Nemani, R. R., Zhengming Wan, Huete, A. R., van Leeuwen, W., Wolfe, R. E., Giglio, L., Muller, J., Lewis, P., and Barnsley, M. J.: The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research, IEEE T. Geosci. Remote, 36, 1228–1249, https://doi.org/10.1109/36.701075, 1998.
Kalman, R. E.: A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960.
Kennon, F. W.: Hydrologic effects of small reservoirs in Sandstone Creek Watershed, Beckham and Roger Mills Counties, western Oklahoma, U.S. G.P.O., 1966.
Khazaei, B., Read, L. K., Casali, M., Sampson, K. M., and Yates, D. N.: GLOBathy, the global lakes bathymetry dataset, Sci. Data, 9, 36, https://doi.org/10.1038/s41597-022-01132-9, 2022.
Kim, H. K. and Parajuli, P. B.: Impacts of Reservoir Outflow Estimation Methods in SWAT Model Calibration, Trans. ASABE, 1029–1042, https://doi.org/10.13031/trans.57.10156, 2014.
Kiptala, J. K., Mul, M. L., Mohamed, Y. A., and van der Zaag, P.: Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa, Hydrol. Earth Syst. Sci., 18, 2287–2303, https://doi.org/10.5194/hess-18-2287-2014, 2014.
Krol, M. S., de Vries, M. J., van Oel, P. R., and de Araújo, J. C.: Sustainability of Small Reservoirs and Large Scale Water Availability Under Current Conditions and Climate Change, Water Resour. Manag., 25, 3017–3026, https://doi.org/10.1007/s11269-011-9787-0, 2011.
Li, Y., Gao, H., Allen, G. H., and Zhang, Z.: Constructing Reservoir Area–Volume–Elevation Curve from TanDEM-X DEM Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 2249–2257, https://doi.org/10.1109/JSTARS.2021.3051103, 2021.
Liebe, J., van de Giesen, N., and Andreini, M.: Estimation of small reservoir storage capacities in a semi-arid environment, Phys. Chem. Earth, 30, 448–454, https://doi.org/10.1016/j.pce.2005.06.011, 2005.
Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses, Environ. Res. Commun., 2, 061002, https://doi.org/10.1088/2515-7620/ab92af, 2020.
Meigh, J.: The impact of small farm reservoirs on urban water supplies in Botswana, Nat. Resour. Forum, 19, 71–83, https://doi.org/10.1111/j.1477-8947.1995.tb00594.x, 1995.
Molina-Navarro, E., Nielsen, A., and Trolle, D.: A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies, Environ. Model. Softw., 108, 67–71, https://doi.org/10.1016/j.envsoft.2018.07.003, 2018.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, Trans. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Mukhopadhyay, S., Sankarasubramanian, A., and de Queiroz, A. R.: Performance Comparison of Equivalent Reservoir and Multireservoir Models in Forecasting Hydropower Potential for Linking Water and Power Systems, J. Water Resour. Plan. Manag., 147, 04021005, https://doi.org/10.1061/(ASCE)WR.1943-5452.0001343, 2021.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nathan, R. and Lowe, L.: The Hydrologic Impacts of Farm Dams, Australas. J. Water Resour., 16, 75–83, https://doi.org/10.7158/13241583.2012.11465405, 2012.
National Agricultural Statistics Service of the United States Department of Agriculture (NASS-USDA): Census of Agriculture, https://www.nass.usda.gov/AgCensus/index.php, last access: 10 February 2021.
Ni, X. and Parajuli, P. B.: Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function, Agric. Water Manag., 210, 78–87, https://doi.org/10.1016/j.agwat.2018.07.027, 2018.
Ni, X., Parajuli, P. B., and Ouyang, Y.: Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale, Water Resour. Manag., 34, 1553–1566, https://doi.org/10.1007/s11269-020-02526-3, 2020.
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Malaterre, P.-O., and Calvez, R.: Combining Landsat observations with hydrological modelling for improved surface water monitoring of small lakes, J. Hydrol., 566, 109–121, https://doi.org/10.1016/j.jhydrol.2018.08.076, 2018.
Ogilvie, A., Poussin, J.-C., Bader, J.-C., Bayo, F., Bodian, A., Dacosta, H., Dia, D., Diop, L., Martin, D., and Sambou, S.: Combining Multi-Sensor Satellite Imagery to Improve Long-Term Monitoring of Temporary Surface Water Bodies in the Senegal River Floodplain, Remote Sens., 12, 3157, https://doi.org/10.3390/rs12193157, 2020.
Perin, V., Roy, S., Kington, J., Harris, T., Tulbure, M. G., Stone, N., Barsballe, T., Reba, M., and Yaeger, M. A.: Monitoring Small Water Bodies Using High Spatial and Temporal Resolution Analysis Ready Datasets, Remote Sens., 13, 5176, https://doi.org/10.3390/rs13245176, 2021a.
Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., and Yaeger, M. A.: On-farm reservoir monitoring using Landsat inundation datasets, Agric. Water Manag., 246, 106694, https://doi.org/10.1016/j.agwat.2020.106694, 2021b.
Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., and Yaeger, M. A.: A multi-sensor satellite imagery approach to monitor on-farm reservoirs, Remote Sens. Environ., https://doi.org/10.1016/j.rse.2021.112796, 2022.
Perrin, J., Ferrant, S., Massuel, S., Dewandel, B., Maréchal, J. C., Aulong, S., and Ahmed, S.: Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model, J. Hydrol., 460–461, 143–155, 2012.
Pinhati, F. S. C., Rodrigues, L. N., and Aires de Souza, S.: Modelling the impact of on-farm reservoirs on dry season water availability in an agricultural catchment area of the Brazilian savannah, Agric. Water Manag., 241, 106296, https://doi.org/10.1016/j.agwat.2020.106296, 2020.
PRISM Climate Group, PRISM Weather Data, Oregon State University, https://prism.oregonstate.edu/, last access: 2 January 2022.
Rabelo, U. P., Dietrich, J., Costa, A. C., Simshäuser, M. N., Scholz, F. E., Nguyen, V. T., and Lima Neto, I. E.: Representing a dense network of ponds and reservoirs in a semi-distributed dryland catchment model, J. Hydrol., 603, 127103, https://doi.org/10.1016/j.jhydrol.2021.127103, 2021.
Renwick, W. H., Smith, S. V., Bartley, J. D., and Buddemeier, R. W.: The role of impoundments in the sediment budget of the conterminous United States, Geomorphology, 71, 99–111, https://doi.org/10.1016/j.geomorph.2004.01.010, 2005.
Robertson, D. E., Zheng, H., Peña-Arancibia, J. L., Chiew, F. H. S., Aryal, S. Malerba, M., and Wright, N.: How sensitive are catchment runoff estimates to on-farm storages under current and future climates?, Journal of Hydrology, 626, 13018, https://doi.org/10.1016/j.jhydrol.2023.130185, 2023.
Rodrigues, L. N., Sano, E. E., Steenhuis, T. S., and Passo, D. P.: Estimation of Small Reservoir Storage Capacities with Remote Sensing in the Brazilian Savannah Region, Water Resour. Manag., 26, 873–882, https://doi.org/10.1007/s11269-011-9941-8, 2012.
Sawunyama, T., Senzanje, A., and Mhizha, A.: Estimation of small reservoir storage capacities in Limpopo River Basin using geographical information systems (GIS) and remotely sensed surface areas: Case of Mzingwane catchment, Phys. Chem. Earth Parts ABC, 31, 935–943, https://doi.org/10.1016/j.pce.2006.08.008, 2006.
Schreider, S. Yu., Jakeman, A. J., Letcher, R. A., Nathan, R. J., Neal, B. P., and Beavis, S. G.: Detecting changes in streamflow response to changes in non-climatic catchment conditions: farm dam development in the Murray–Darling basin, Australia, J. Hydrol., 262, 84–98, https://doi.org/10.1016/S0022-1694(02)00023-9, 2002.
Soil Survey Staff, USDA-NRCS: Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States. United States Department of Agriculture, Natural Resources Conservation Service, https://gdg.sc.egov.usda.gov/ (last access: 10 January 2021), 2021.
SWAT+ Toolbox: https://celray.github.io/docs/swatplus-toolbox/v1.0/index.html, last access: 17 June 2022.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019920, 2004.
Thompson, J. C.: Impact and Management of Small Farm Dams in Hawke's Bay, New Zealand, thesis, Open Access Te Herenga Waka-Victoria University of Wellington, https://doi.org/10.26686/wgtn.16997929.v1, 2012.
U.S. Department of Agriculture, Economic Research Service (ERS-USDA): Irrigation & Water Use, https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use, last access: 22 September 2022.
United States Geological Survey Water Data for the Nation: https://waterdata.usgs.gov/nwis, last access: 22 June 2022.
Van Den Hoek, J., Getirana, A., Jung, H., Okeowo, M., and Lee, H.: Monitoring Reservoir Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern Brazil, Remote Sens., 11, 827, https://doi.org/10.3390/rs11070827, 2019.
Van Der Zaag, P. and Gupta, J.: Scale issues in the governance of water storage projects, Water Resour. Res., 44, https://doi.org/10.1029/2007WR006364, 2008.
Vanthof, V. and Kelly, R.: Water storage estimation in ungauged small reservoirs with the TanDEM-X DEM and multi-source satellite observations, Remote Sens. Environ., 235, 111437, https://doi.org/10.1016/j.rse.2019.111437, 2019.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010.
Yaeger, M. A., Reba, M. L., Massey, J. H., and Adviento-Borbe, M. A. A.: On-farm irrigation reservoirs in two Arkansas critical groundwater regions: A comparative inventory, Appl. Eng. Agric., 33, 869–878, https://doi.org/10.13031/aea.12352, 2017.
Yaeger, M. A., Massey, J. H., Reba, M. L., and Adviento-Borbe, M. A. A.: Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern, Agric. Water Manag., 208, 373–383, https://doi.org/10.1016/j.agwat.2018.06.040, 2018.
Yao, F., Wang, J., Yang, K., Wang, C., Walter, B. A., and Crétaux, J. F.: Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium, Environ. Res. Lett., 13, https://doi.org/10.1088/1748-9326/aab5d3, 2018.
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data, J. Hydrol., 181, 23–48, https://doi.org/10.1016/0022-1694(95)02918-4, 1996.
Yongbo, L., Wanhong, Y., Zhiqiang, Y., Ivana, L., Jim, Y., Jane, E., and Kevin, T.: Assessing Effects of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed, J. Hydrol. Eng., 19, 05014015, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001005, 2014.
Zhang, C., Peng, Y., Chu, J., Shoemaker, C. A., and Zhang, A.: Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China, Hydrol. Earth Syst. Sci., 16, 4033–4047, https://doi.org/10.5194/hess-16-4033-2012, 2012.
Zhang, S., Foerster, S., Medeiros, P., de Araújo, J. C., Motagh, M., and Waske, B.: Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data, Sci. Total Environ., 571, 575–593, https://doi.org/10.1016/j.scitotenv.2016.07.024, 2016.
Short summary
This study assesses how small on-farm reservoirs (OFRs) can impact surface hydrology using a new framework combining remote sensing and hydrological modeling. Findings show that reservoirs can reduce annual flow by 14–24 % and peak flow by 43–60 %, with effects varying by location and reservoir's capacity. This is relevant as the number of OFRs is expected to increase globally as an adaptation to climate change under severe drought conditions.
This study assesses how small on-farm reservoirs (OFRs) can impact surface hydrology using a new...