Articles | Volume 29, issue 3
https://doi.org/10.5194/hess-29-613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing recovery time of ecosystems in China: insights into flash drought impacts on gross primary productivity
Mengge Lu
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 22362 Lund, Sweden
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, China
Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Yong Yang
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Jie Xue
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
Hongbo Ling
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
Hong Zhang
School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4222, Australia
Wenxin Zhang
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 22362 Lund, Sweden
Related authors
No articles found.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-420, https://doi.org/10.5194/essd-2024-420, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Traditional methods for estimating ocean heat flux often introduce large uncertainties due to complex parameterizations and reliance on wind speed. To tackle this issue, we developed a novel framework based on MEP theory. By incorporating heat storage effects and refining the Bowen ratio, we enhanced the MEP method’s accuracy. This research derives a new long-term global ocean latent heat flux dataset that offers high accuracy, enhancing our understanding of ocean energy dynamics.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Dongwei Gui, Jie Xue, Yi Liu, Jiaqiang Lei, and Fanjiang Zeng
Solid Earth Discuss., https://doi.org/10.5194/se-2017-59, https://doi.org/10.5194/se-2017-59, 2017
Revised manuscript not accepted
Short summary
Short summary
This paper clarifies the dialectical relationship between oasification and desertification in arid regions, and it also elucidates the significance of oasification research in Northwest China. Furthermore, the study points out the key point in the oasification research.
Jie Xue, Dongwei Gui, Jiaqiang Lei, Fanjiang Zeng, Rong Huang, and Donglei Mao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-618, https://doi.org/10.5194/hess-2016-618, 2016
Preprint retracted
Short summary
Short summary
There is an increasing consensus on the importance of integrating ecosystem services into integrated water resource management due to a wide range of benefits to human from the ecosystem services. This paper develops a participatory Bayesian network model to perform an ecosystem services-based water management framework under public participation. The participatory Bayesian network effectively provides the support of transdisciplinary water management.
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Theory development
Combined impacts of climate change and human activities on blue and green water resources in a high-intensity development watershed
Future response of ecosystem water use efficiency to CO2 effects in the Yellow River Basin, China
Temporal shift in groundwater fauna in southwestern Germany
Root zone in the Earth system
Drought Research Exhibits Shifting Priorities, Trends and Geographic Patterns
Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods
Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability
Biocrust-reduced soil water retention and soil infiltration in an alpine Kobresia meadow
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Vegetation optimality explains the convergence of catchments on the Budyko curve
Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Hydrology without dimensions
Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes
Groundwater fauna in an urban area – natural or affected?
Age and origin of leaf wax n-alkanes in fluvial sediment–paleosol sequences and implications for paleoenvironmental reconstructions
Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis
The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem
Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
Potential evaporation at eddy-covariance sites across the globe
Scaling properties reveal regulation of river flows in the Amazon through a “forest reservoir”
Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties
Large-scale vegetation responses to terrestrial moisture storage changes
Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework
Leaf-scale experiments reveal an important omission in the Penman–Monteith equation
The Budyko functions under non-steady-state conditions
Matching the Budyko functions with the complementary evaporation relationship: consequences for the drying power of the air and the Priestley–Taylor coefficient
Hydrological recovery in two large forested watersheds of southeastern China: the importance of watershed properties in determining hydrological responses to reforestation
The socioecohydrology of rainwater harvesting in India: understanding water storage and release dynamics across spatial scales
Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment
Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream
Estimation of crop water requirements: extending the one-step approach to dual crop coefficients
Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements
Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models
Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics
Regional and local patterns in depth to water table, hydrochemistry and peat properties of bogs and their laggs in coastal British Columbia
Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China
A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
Thermodynamic constraints on effective energy and mass transfer and catchment function
Can we predict groundwater discharge from terrestrial ecosystems using existing eco-hydrological concepts?
Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream
Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment
Forest decline caused by high soil water conditions in a permafrost region
Xuejin Tan, Bingjun Liu, Xuezhi Tan, Zeqin Huang, and Jianyu Fu
Hydrol. Earth Syst. Sci., 29, 427–445, https://doi.org/10.5194/hess-29-427-2025, https://doi.org/10.5194/hess-29-427-2025, 2025
Short summary
Short summary
We assess changes in blue and green water scarcity in an anthropogenic highly impacted watershed and their association with climate change and land use change, using the multi-water-flux validated Soil and Water Assessment Tool. Observed streamflow, evapotranspiration, and soil moisture are integrated into model calibration and validation. Results show that both climate change and land use change decrease blue water, while land use change increases green water.
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024, https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary
Short summary
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River basin. Using updated climate models, we found that future climate change significantly impacts water use efficiency, leading to improved plant resilience against moderate droughts. These findings help predict how ecosystems might adapt to environmental changes, providing essential insights into ways of managing water resources under varying climate conditions.
Fabien Koch, Philipp Blum, Heide Stein, Andreas Fuchs, Hans Jürgen Hahn, and Kathrin Menberg
Hydrol. Earth Syst. Sci., 28, 4927–4946, https://doi.org/10.5194/hess-28-4927-2024, https://doi.org/10.5194/hess-28-4927-2024, 2024
Short summary
Short summary
In this study, we identify shifts in groundwater fauna due to natural or human impacts over 2 decades. We find no overall temporal or large-scale trends in fauna or abiotic parameters. However, at a local level, six monitoring wells show shifting or fluctuating faunal parameters. Our findings indicate that changes in surface conditions should be assessed in line with hydrochemical parameters to better understand changes in groundwater fauna and to obtain reliable biomonitoring results.
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
EGUsphere, https://doi.org/10.5194/egusphere-2024-1069, https://doi.org/10.5194/egusphere-2024-1069, 2024
Short summary
Short summary
Our analysis of over 130,000 peer-reviewed articles on drought research reveals critical shifts towards interdisciplinary approaches. Research priorities are identified in methodological advancements of drought forecasting and in plant genetics. The systemic nature of drought impacts is demonstrated. Challenges identified are the integration of plant physiological response in forecasting, fostering machine learning and early warning systems, and more systemic drought resilience frameworks.
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024, https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Short summary
Precipitation, ground ice, and snow meltwater accounted for approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. Snow is completely melted in the heavy ablation period and the end of the ablation period, and precipitation contributed about 90 % and 94 % of soil water, respectively. These recharges also vary markedly with altitude and vegetation type.
Max Berkelhammer, Gerald F. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carter, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark Raleigh, Eric Small, and Kenneth H. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-3063, https://doi.org/10.5194/egusphere-2023-3063, 2024
Short summary
Short summary
Warming in montane systems is affecting the amount of snowmelt inputs. This will affect subalpine forests globally that rely on spring snowmelt to support their water demands. We use a network of sensors across in the Upper Colorado Basin to show that changing spring primarily impacts dense forest stands that have high peak water demands. On the other hand, open forest stands show a higher reliance on summer rain and were minimally sensitive to even historically low snow conditions like 2019.
Licong Dai, Ruiyu Fu, Xiaowei Guo, Yangong Du, Guangmin Cao, Huakun Zhou, and Zhongmin Hu
Hydrol. Earth Syst. Sci., 27, 4247–4256, https://doi.org/10.5194/hess-27-4247-2023, https://doi.org/10.5194/hess-27-4247-2023, 2023
Short summary
Short summary
We found that, in the 0–30 cm soil layer, soil water retention and soil water content in normal Kobresia meadow (NM) were higher than those in biocrust meadow (BM), whereas the 30–40 cm layer's soil water retention and soil water content in NM were lower than those in BM. The topsoil infiltration rate in BM was lower than that in NM. Our findings revealed that the establishment of biocrust did not improve soil water retention and infiltration.
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023, https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Short summary
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023, https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Short summary
As the transition zone between the Tibetan Plateau and the arid region, the Qilian Mountains are important ecological barriers and source regions of inland rivers in northwest China. In recent decades, drastic changes in the cryosphere have had a significant impact on the quantity and formation process of water resources in the Qilian Mountains. The mountain runoff of the Qilian Mountains mainly comes from the cryosphere belt, which contributes to approximately 80 % runoff.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022, https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu
Hydrol. Earth Syst. Sci., 26, 4995–5013, https://doi.org/10.5194/hess-26-4995-2022, https://doi.org/10.5194/hess-26-4995-2022, 2022
Short summary
Short summary
Whether rainwater-recharged soil water (RRS) uptake can increase plant transpiration after rainfall pulses requires investigation. Our results indicate a differential response of plant transpiration to RRS uptake. Mixed afforestation enhances these water relationships and decreases soil water source competition in deep soil. Our results suggest that plant species or plantation types that can enhance RRS uptake and reduce water competition should be considered for use in water-limited regions.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Amilcare Porporato
Hydrol. Earth Syst. Sci., 26, 355–374, https://doi.org/10.5194/hess-26-355-2022, https://doi.org/10.5194/hess-26-355-2022, 2022
Short summary
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.
Olivia Carpino, Kristine Haynes, Ryan Connon, James Craig, Élise Devoie, and William Quinton
Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021, https://doi.org/10.5194/hess-25-3301-2021, 2021
Short summary
Short summary
This study demonstrates how climate warming in peatland-dominated regions of discontinuous permafrost is changing the form and function of the landscape. Key insights into the rates and patterns of such changes in the coming decades are provided through careful identification of land cover transitional stages and characterization of the hydrological and energy balance regimes for each stage.
Fabien Koch, Kathrin Menberg, Svenja Schweikert, Cornelia Spengler, Hans Jürgen Hahn, and Philipp Blum
Hydrol. Earth Syst. Sci., 25, 3053–3070, https://doi.org/10.5194/hess-25-3053-2021, https://doi.org/10.5194/hess-25-3053-2021, 2021
Short summary
Short summary
In this study, we address the question of whether groundwater fauna in an urban area is natural or affected in comparison to forested land. We find noticeable differences in the spatial distribution of groundwater species and abiotic parameters. An ecological assessment reveals that conditions in the urban area are mainly not good. Yet, there is no clear spatial pattern in terms of land use and anthropogenic impacts. These are significant findings for conservation and usage of urban groundwater.
Marcel Bliedtner, Hans von Suchodoletz, Imke Schäfer, Caroline Welte, Gary Salazar, Sönke Szidat, Mischa Haas, Nathalie Dubois, and Roland Zech
Hydrol. Earth Syst. Sci., 24, 2105–2120, https://doi.org/10.5194/hess-24-2105-2020, https://doi.org/10.5194/hess-24-2105-2020, 2020
Short summary
Short summary
This study investigates the age and origin of leaf wax n-alkanes from a fluvial sediment–paleosol sequence (FSPS) by compound-class 14C dating. Our results show varying age offsets between the formation and sedimentation of leaf wax n-alkanes from well-developed (paleo)soils and fluvial sediments that are mostly due to their complex origin in such sequences. Thus, dating the leaf wax n-alkanes is an important step for more robust leaf-wax-based paleoenvironmental reconstructions in FSPSs.
James W. Kirchner and Scott T. Allen
Hydrol. Earth Syst. Sci., 24, 17–39, https://doi.org/10.5194/hess-24-17-2020, https://doi.org/10.5194/hess-24-17-2020, 2020
Short summary
Short summary
Perhaps the oldest question in hydrology is
Where does water go when it rains?. Here we present a new way to measure how the terrestrial water cycle partitions precipitation into its two ultimate fates:
green waterthat is evaporated or transpired back to the atmosphere and
blue waterthat is discharged to stream channels. Our analysis may help in gauging the vulnerability of both water resources and terrestrial ecosystems to changes in rainfall patterns.
Yu Liu, Zeng Cui, Ze Huang, Hai-Tao Miao, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 23, 2481–2490, https://doi.org/10.5194/hess-23-2481-2019, https://doi.org/10.5194/hess-23-2481-2019, 2019
Short summary
Short summary
We focus on the positive effects of litter crusts on soil water holding capacity and water interception capacity compared with biocrusts. Litter crusts can significantly improve sandy water content and organic matter. Water-holding capacity increased with development of litter crusts in the sandy interface. Water infiltration rate is increased by sandy and litter crusts' interface properties. Litter crusts provided a better microhabitat conducive to plant growth in sandy lands.
Adrià Barbeta, Sam P. Jones, Laura Clavé, Lisa Wingate, Teresa E. Gimeno, Bastien Fréjaville, Steve Wohl, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, https://doi.org/10.5194/hess-23-2129-2019, 2019
Short summary
Short summary
Plant water sources of a beech riparian forest were monitored using stable isotopes. Isotopic fractionation during root water uptake is usually neglected but may be more common than previously accepted. Xylem water was always more depleted in δ2H than all sources considered, suggesting isotopic discrimination during water uptake or within plant tissues. Thus, the identification and quantification of tree water sources was affected. Still, oxygen isotopes were a good tracer of plant source water.
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary
Short summary
This paper synthesizes nearly three decades of eco-hydrological field and modelling studies at Scotty Creek, Northwest Territories, Canada, highlighting the key insights into the major water flux and storage processes operating within and between the major land cover types of this wetland-dominated region of discontinuous permafrost. It also examines the rate and pattern of permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the region.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Juan Fernando Salazar, Juan Camilo Villegas, Angela María Rendón, Estiven Rodríguez, Isabel Hoyos, Daniel Mercado-Bettín, and Germán Poveda
Hydrol. Earth Syst. Sci., 22, 1735–1748, https://doi.org/10.5194/hess-22-1735-2018, https://doi.org/10.5194/hess-22-1735-2018, 2018
Short summary
Short summary
River flow regimes are being altered by global change. Understanding the mechanisms behind such alterations is crucial for hydrological prediction. We introduce a novel interpretation of river flow metrics (scaling) that allows any river basin to be classified as regulated or unregulated, and to identify transitions between these states. We propose the
forest reservoirhypothesis to explain how forest loss can force the Amazonian river basins from regulated to unregulated states.
Félicien Meunier, Valentin Couvreur, Xavier Draye, Mohsen Zarebanadkouki, Jan Vanderborght, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 21, 6519–6540, https://doi.org/10.5194/hess-21-6519-2017, https://doi.org/10.5194/hess-21-6519-2017, 2017
Short summary
Short summary
To maintain its yield, a plant needs to transpire water that it acquires from the soil. A deep understanding of the mechanisms that lead to water uptake location and intensity is required to correctly simulate the water transfer in the soil to the atmosphere. This work presents novel and general solutions of the water flow equation in roots with varying hydraulic properties that deeply affect the uptake pattern and the transpiration rate and can be used in ecohydrological models.
Robert L. Andrew, Huade Guan, and Okke Batelaan
Hydrol. Earth Syst. Sci., 21, 4469–4478, https://doi.org/10.5194/hess-21-4469-2017, https://doi.org/10.5194/hess-21-4469-2017, 2017
Short summary
Short summary
In this study we statistically analyse the relationship between vegetation cover and components of total water storage. Splitting water storage into different components allows for a more comprehensive understanding of the temporal response of vegetation to changes in water storage. Generally, vegetation appears to be more sensitive to interannual changes in water storage than to shorter changes, though this varies in different land use types.
Tingting Ning, Zhi Li, and Wenzhao Liu
Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, https://doi.org/10.5194/hess-21-1515-2017, 2017
Short summary
Short summary
The relationship between controlling parameters of annual catchment water balance and climate seasonality (S) and vegetation coverage (M) was discussed under the Budyko framework and an empirical equation was further developed so that the contributions from M to actual evapotranspiration (ET) could be determined more accurately. The results showed that the effects of landscape condition changes to ET variation will be estimated with a large error if the impacts of S are ignored.
Stanislaus J. Schymanski and Dani Or
Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, https://doi.org/10.5194/hess-21-685-2017, 2017
Short summary
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.
Roger Moussa and Jean-Paul Lhomme
Hydrol. Earth Syst. Sci., 20, 4867–4879, https://doi.org/10.5194/hess-20-4867-2016, https://doi.org/10.5194/hess-20-4867-2016, 2016
Short summary
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016, https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary
Short summary
The Budyko functions are matched with the complementary evaporation relationship. We show that there is a functional dependence between the Budyko functions and the drying power of the air. Examining the case where potential evaporation is calculated by means of a Priestley–Taylor type equation with a varying coefficient, we show that this coefficient should have a specified value as a function of the Budyko shape parameter and the aridity index.
Wenfei Liu, Xiaohua Wei, Qiang Li, Houbao Fan, Honglang Duan, Jianping Wu, Krysta Giles-Hansen, and Hao Zhang
Hydrol. Earth Syst. Sci., 20, 4747–4756, https://doi.org/10.5194/hess-20-4747-2016, https://doi.org/10.5194/hess-20-4747-2016, 2016
Short summary
Short summary
In recent decades, limited research has been conducted to examine the role of watershed properties in hydrological responses in large watersheds. Based on pair-wise comparisons, we conclude that reforestation decreased high flows but increased low flows in the watersheds studied. Hydrological recovery through reforestation is largely dependent on watershed properties when forest change and climate are similar and comparable. This finding has important implications for designing reforestation.
Kimberly J. Van Meter, Michael Steiff, Daniel L. McLaughlin, and Nandita B. Basu
Hydrol. Earth Syst. Sci., 20, 2629–2647, https://doi.org/10.5194/hess-20-2629-2016, https://doi.org/10.5194/hess-20-2629-2016, 2016
Short summary
Short summary
Although village-scale rainwater harvesting (RWH) structures have been used for millennia in India, many of these structures have fallen into disrepair due to increased dependence on groundwater. This dependence has contributed to declines in groundwater resources, and in turn to efforts to revive older RWH systems. In the present study, we use field data to quantify water fluxes in a cascade of irrigation tanks to better our understanding of the impact of RWH systems on the water balance in con
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
M. Majerova, B. T. Neilson, N. M. Schmadel, J. M. Wheaton, and C. J. Snow
Hydrol. Earth Syst. Sci., 19, 3541–3556, https://doi.org/10.5194/hess-19-3541-2015, https://doi.org/10.5194/hess-19-3541-2015, 2015
Short summary
Short summary
This study quantifies the impacts of beaver on hydrologic and temperature regimes, as well as highlights the importance of understanding the spatial and temporal scales of those impacts.
Reach-scale discharge showed shift from losing to gaining. Temperature increased by 0.38°C (3.8%) and mean residence time by 230%. At the sub-reach scale, discharge gains and losses increased in variability. At the beaver dam scale, we observed increase in thermal heterogeneity with warmer and cooler niches.
J. P. Lhomme, N. Boudhina, M. M. Masmoudi, and A. Chehbouni
Hydrol. Earth Syst. Sci., 19, 3287–3299, https://doi.org/10.5194/hess-19-3287-2015, https://doi.org/10.5194/hess-19-3287-2015, 2015
J. P. Lhomme, N. Boudhina, and M. M. Masmoudi
Hydrol. Earth Syst. Sci., 18, 4341–4348, https://doi.org/10.5194/hess-18-4341-2014, https://doi.org/10.5194/hess-18-4341-2014, 2014
V. Couvreur, J. Vanderborght, L. Beff, and M. Javaux
Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, https://doi.org/10.5194/hess-18-1723-2014, 2014
A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin
Hydrol. Earth Syst. Sci., 18, 1151–1164, https://doi.org/10.5194/hess-18-1151-2014, https://doi.org/10.5194/hess-18-1151-2014, 2014
S. A. Howie and H. J. van Meerveld
Hydrol. Earth Syst. Sci., 17, 3421–3435, https://doi.org/10.5194/hess-17-3421-2013, https://doi.org/10.5194/hess-17-3421-2013, 2013
X. Cui, S. Liu, and X. Wei
Hydrol. Earth Syst. Sci., 16, 4279–4290, https://doi.org/10.5194/hess-16-4279-2012, https://doi.org/10.5194/hess-16-4279-2012, 2012
V. Couvreur, J. Vanderborght, and M. Javaux
Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, https://doi.org/10.5194/hess-16-2957-2012, 2012
M. E. McClain, L. Chícharo, N. Fohrer, M. Gaviño Novillo, W. Windhorst, and M. Zalewski
Hydrol. Earth Syst. Sci., 16, 1685–1696, https://doi.org/10.5194/hess-16-1685-2012, https://doi.org/10.5194/hess-16-1685-2012, 2012
C. Rasmussen
Hydrol. Earth Syst. Sci., 16, 725–739, https://doi.org/10.5194/hess-16-725-2012, https://doi.org/10.5194/hess-16-725-2012, 2012
A. P. O'Grady, J. L. Carter, and J. Bruce
Hydrol. Earth Syst. Sci., 15, 3731–3739, https://doi.org/10.5194/hess-15-3731-2011, https://doi.org/10.5194/hess-15-3731-2011, 2011
J. D. Muehlbauer, M. W. Doyle, and E. S. Bernhardt
Hydrol. Earth Syst. Sci., 15, 1771–1783, https://doi.org/10.5194/hess-15-1771-2011, https://doi.org/10.5194/hess-15-1771-2011, 2011
K. Edmaier, P. Burlando, and P. Perona
Hydrol. Earth Syst. Sci., 15, 1615–1627, https://doi.org/10.5194/hess-15-1615-2011, https://doi.org/10.5194/hess-15-1615-2011, 2011
H. Iwasaki, H. Saito, K. Kuwao, T. C. Maximov, and S. Hasegawa
Hydrol. Earth Syst. Sci., 14, 301–307, https://doi.org/10.5194/hess-14-301-2010, https://doi.org/10.5194/hess-14-301-2010, 2010
Cited articles
Bartlett, M. K., Klein, T., Jansen, S., Choat, B., and Sack, L.: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought, P. Natl. Acad. Sci. USA, 113, 13098–13103, https://doi.org/10.1073/pnas.1604088113, 2016.
Bennett, B. F., Joiner, J., and Yoshida, Y.: Validating satellite based FluxSat v2.0 Gross Primary Production (GPP) trends with FluxNet 2015 eddy covariance observations, in: AGU Fall Meeting 2021: AGU, https://ui.adsabs.harvard.edu/abs/2021AGUFM.B55F1272B (last access: 2 February 2024), 2021.
Breiman, L., Cutler, A., Liaw, A., and Wiener, M.: RandomForest: Breiman and Cutlers Random Forests for Classification and Regression, CRAN: Contributed Packages, The R Foundation, https://doi.org/10.32614/cran.package.randomforest, 2002.
Byrne, B., Liu, J., Lee, M., Yin, Y., Bowman, K. W., Miyazaki, K., Norton, A. J., Joiner, J., Pollard, D. F., Griffith, D. W. T., Velazco, V. A., Deutscher, N. M., Jones, N. B., and Paton-Walsh, C.: The carbon cycle of southeast Australia during 2019–2020: Drought, fires, and subsequent recovery, AGU Advances, 2, e2021AV000469, https://doi.org/10.1029/2021av000469, 2021.
Chen, S., Xiong, L., Ma, Q., Kim, J. S., Chen, J., and Xu, C. Y.: Improving daily spatial precipitation estimates by merging gauge observation with multiple satellite-based precipitation products based on the geographically weighted ridge regression method, J. Hydrol., 589, 125156, https://doi.org/10.1016/j.jhydrol.2020.125156, 2020.
Christina, M., Nouvellon, Y., Laclau, J. P., Stape, J. L., Bouillet, J., Lambais, G. R., and Maire, G.: Importance of deep water uptake in tropical eucalypt forest, Funct. Ecol., 31, 509–519, 2017.
Christian, J. I., Martin, E. R., Basara, J. B., Furtado, J. C., Otkin, J. A., Lowman, L. L., Hunt, E. D., Mishra, V., and Xiao, X. M.: Global projections of flash drought show increased risk in a warming climate, Commun. Earth. Environ., 4, 165, https://doi.org/10.1038/s43247-023-00826-1, 2023.
Craine, J. M., Ocheltree, T. W., Nippert, J. B., Gene Towne, E., Skibbe, A. M., Kembel, S. W., and Fargione, J. E.: Global diversity of drought tolerance and grassland climate-change resilience, Nat. Clim. Change, 3, 63–67, 2013.
Cravens, A. E., McEvoy, J., Zoanni, D., Crausbay, S., Ramirez, A., and Cooper, A. E.: Integrating Ecological Impacts: Perspectives on Drought in the Upper Missouri Headwaters, Montana, United States, Weather Clim. Soc., 13, 363–376, 2021.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and Anchukaitis, K. J.: Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios, Earth Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461, 2020.
Darnhofer, I., Lamine, C., Strauss, A., and Navarrete, M.: The resilience of family farms: Towards a relational approach, J. Rural Stud., 44, 111–122, 2016.
Douris, J. and Kim, G.: The Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes, Climate Change and Law Collection, https://coilink.org/20.500.12592/b3d1n6 (last access: 2 February 2024), 2021.
Fathi-Taperasht, A., Shafizadeh-Moghadam, H., Minaei, M., and Xu, T.: Influence of drought duration and severity on drought recovery period for different land cover types: evaluation using MODIS-based indices, Ecol. Indic., 141, 109146, https://doi.org/10.1016/j.ecolind.2022.109146, 2022.
Friedl, M. and Sulla-Menashe, D.: MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes distributed Active Archive Center, USGS [data set], https://doi.org/10.5067/MODIS/MCD12C1.006, 2015.
Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., and Cooper, A.: Global land cover mapping from MODIS: algorithms and early results, Remote Sens. Environ., 83, 287–302, 2002.
Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., and Niu, S.: Recovery time and state change of terrestrial carbon cycle after disturbance, Environ. Res. Lett., 12, 104004, https://doi.org/10.1088/1748-9326/aa8a5c, 2017.
Gazol, A., Camarero, J. J., Anderegg, W. R. L., and Vicente-Serrano, S. M.: Impacts of droughts on the growth resilience of Northern Hemisphere forests, Glob. Ecol. Biogeogr., 26, 166–176, https://doi.org/10.1111/geb.12526, 2017.
Gazol, A., Camarero, J. J., Vicente-Serrano, S. M., Sánchez-Salguero, R., Gutiérrez, E., de Luis, M., Sangüesa-Barreda, G., Novak, K., Rozas, V., Tíscar, P. A., Linares, J. C., Martín-Hernández, N., Martínez del Castillo, E., Ribas, M., García-González, I., Silla, F., Camisón, A., Génova, M., Olano, J. M., Longares, L. A., Hevia, A., Tomás-Burguera, M., and Galván, J. D.: Forest resilience to drought varies across biomes, Glob. Change Biol., 24, 2143–2158, 2018.
Germon, A., Laclau, J.-P., Robin, A., and Jourdan, C.: Tamm Review: Deep fine roots in forest ecosystems: Why dig deeper?, Forest Ecol. Manag., 466, 118135, https://doi.org/10.1016/j.foreco.2020.118135, 2020.
Gessler, A., Schaub, M., and McDowell, N. G.: The role of nutrients in drought-induced tree mortality and recovery, New Phytol., 214, 513–520, 2017.
GLEAM: Method GLEAM, Global Land Evaporation Amsterdam Model, GLEAM [data set], https://www.gleam.eu/#downloads, last access: 2 February 2024.
Godde, C., Dizyee, K., Ash, A., Thornton, P., Sloat, L., Roura, E., Henderson, B., and Herrero, M.: Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi-arid Australian rangelands, Glob. Change Biol., 25, 3091–3109, 2019.
Gou, Q., Zhu, Y., Lü, H., Horton, R., Yu, X., Zhang, H., Wang, X., Su, J., Liu, E., and Ding, Z.: Application of an improved spatio-temporal identification method of flash droughts, J. Hydrol., 604, 127224, https://doi.org/10.1016/j.jhydrol.2021.127224, 2022.
Gupta, A., Rico-Medina, A., and Caño-Delgado, A. I.: The physiology of plant responses to drought, Science, 368, 266–269, https://doi.org/10.1126/science.aaz7614, 2020.
Hacke, U. G., Stiller, V., Sperry, J. S., Pittermann, J., and McCulloh, K. A.: Cavitation Fatigue. Embolism and Refilling Cycles Can Weaken the Cavitation Resistance of Xylem1, Plant Physiol., 125, 779–786, https://doi.org/10.1104/pp.125.2.779, 2001.
Hao, Y. and Choi, M.: Recovery of ecosystem carbon and water fluxes after drought in China, J. Hydrol., 622, 129766, https://doi.org/10.1016/j.jhydrol.2023.129766, 2023.
He, B., Liu, J., Guo, L., Wu, X., Xie, X., Zhang, Y., Chen, C., Zhong, Z., and Chen, Z.: Recovery of Ecosystem Carbon and Energy Fluxes From the 2003 Drought in Europe and the 2012 Drought in the United States, Geophys. Res. Lett., 45, 4879–4888, 2018.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first high-resolution meteorological forcing dataset for land process studies over China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020 (data available at: https://doi.org/10.6084/m9.figshare.c.4557599.v1).
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under climate change, Nat. Clim. Change, 6, 166–171, 2016.
Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., and Weltzin, J. F.: Convergence across biomes to a common rain-use efficiency, Nature, 429, 651–654, 2004.
Jiao, T., Williams, C. A., De Kauwe, M. G., Schwalm, C. R., and Medlyn, B. E.: Patterns of post-drought recovery are strongly influenced by drought duration, frequency, post-drought wetness, and bioclimatic setting, Glob. Change Biol., 27, 4630–4643, 2021.
Joiner, J. and Yoshida, Y.: Global MODIS and FLUXNET-derived Daily Gross Primary Production, V2, ORNL DAAC, Oak Ridge, Tennessee, USA, Earth Data [data set], https://doi.org/10.3334/ORNLDAAC/1835, 2021.
Kannenberg, S. A., Novick, K. A., Alexander, M. R., Maxwell, J. T., Moore, D. J. P., Phillips, R. P., and Anderegg, W. R. L.: Linking drought legacy effects across scales: From leaves to tree rings to ecosystems, Glob. Change Biol., 25, 2978–2992, https://doi.org/10.1111/gcb.14710, 2019.
Kannenberg, S. A., Schwalm, C. R., and Anderegg, W. R. L.: Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling, Ecol. Lett., 23, 891–901, 2020.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Lesinger, K. and Tian, D.: Trends, Variability, and Drivers of Flash Droughts in the Contiguous United States, Water Resour. Res., 58, e2022WR032186, https://doi.org/10.1029/2022WR032186, 2022.
Li, L., Yao, N., Li, Y., Li Liu, D., Wang, B., and Ayantobo, O. O.: Future projections of extreme temperature events in different sub-regions of China, Atmos. Res., 217, 150–164, 2019.
Li, T., Wang, S., Chen, B., Wang, Y., Chen, S., Chen, J., Xiao, Y., Xia, Y., Zhao, Z., and Chen, X.: Widespread reduction in gross primary productivity caused by the compound heat and drought in Yangtze River Basin in 2022, Environ. Res. Lett., 19, 034048, https://doi.org/10.1088/1748-9326/ad2cac, 2024.
Lindoso, D. P., Eiró, F., Bursztyn, M., Rodrigues-Filho, S., and Nasuti, S.: Harvesting water for living with drought: Insights from the Brazilian human coexistence with semi-aridity approach towards achieving the sustainable development goals, Sustainability, 10, 622, https://doi.org/10.3390/su10030622, 2018.
Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S. I.: Revisiting assessments of ecosystem drought recovery, Environ. Res. Lett., 14, 114028, https://doi.org/10.1088/1748-9326/ab4c61, 2019.
Liu, Y., Zhu, Y., Ren, L., Singh, V. P., and Yuan, S.: Flash drought fades away under the effect of accumulated water deficits: the persistence and transition to conventional drought, Environ. Res. Lett., 18, 114035, https://doi.org/10.1088/1748-9326/acfccb, 2023a.
Liu, Y., Yuan, S., Zhu, Y., Ren, L., Chen, R., Zhu, X., and Xia, R.: The patterns, magnitude, and drivers of unprecedented 2022 mega-drought in the Yangtze River Basin, China, Environ. Res. Lett., 18, 114006, https://doi.org/10.1088/1748-9326/acfe21, 2023b.
Liu, Y. Y., van Dijk, A. I., Miralles, D. G., McCabe, M. F., Evans, J. P., de Jeu, R. A., Gentine, P., Huete, A., Parinussa, R. M., and Wang, L.: Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts, Remote Sens. Environ., 211, 26–37, 2018.
Lu, M., Sun, H., Cheng, L., Li, S., Qin, H., Yi, S., Zhang, H., and Zhang, W.: Heterogeneity in vegetation recovery rates post-flash droughts across different ecosystems, Environ. Res. Lett., 19, 074028, https://doi.org/10.1088/1748-9326/ad5570, 2024.
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 4–9 December 2017, 4768-477, https://doi.org/10.48550/arXiv.1705.07874, 2017.
Martin, D. P.: Partial dependence plots, http://dpmartin42.github.io/posts/r/partial-dependence (last access: 2 February 2024), 2014.
Martínez-Vilalta, J. and Garcia-Forner, N.: Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept, Plant Cell Environ., 40, 962–976, https://doi.org/10.1111/pce.12846, 2017.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., and Yepez, E. A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?, New Phytol., 178, 719–739, https://doi.org/10.1111/j.1469-8137.2008.02436.x, 2008.
Miyashita, K., Tanakamaru, S., Maitani, T., and Kimura, K.: Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress, Environ. Exp. Bot., 53, 205–214, 2005.
Mohammadi, K., Jiang, Y., and Wang, G.: Flash drought early warning based on the trajectory of solar-induced chlorophyll fluorescence, P. Natl. Acad. Sci. USA, 119, e2202767119, https://doi.org/10.1073/pnas.2202767119, 2022.
Nardini, A., Casolo, V., Dal Borgo, A., Savi, T., Stenni, B., Bertoncin, P., Zini, L., and McDowell, N. G.: Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought, Plant Cell Environ., 39, 618–627, https://doi.org/10.1111/pce.12646, 2016.
Nilsson, M., Griggs, D., and Visbeck, M.: Policy: map the interactions between Sustainable Development Goals, Nature, 534, 320–322, 2016.
Otkin, J. A., Zhong, Y., Hunt, E. D., Basara, J., Svoboda, M., Anderson, M. C., and Hain, C.: Assessing the evolution of soil moisture and vegetation conditions during a flash drought–flash recovery sequence over the South-Central United States, J. Hydrometeorol., 20, 549–562, 2019.
Peixoto, J. and Oort, A. H.: The Climatology of Relative Humidity in the Atmosphere, J. Climate, 9, 3443–3463, 1996.
Poonia, V., Goyal, M. K., Jha, S., and Dubey, S.: Terrestrial ecosystem response to flash droughts over India, J. Hydrol., 605, 127402, https://doi.org/10.1016/j.jhydrol.2021.127402, 2022.
Qing, Y., Wang, S., Ancell, B. C., and Yang, Z.-L.: Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity, Nat. Commun., 13, 1139, https://doi.org/10.1038/s41467-022-28752-4, 2022.
Rigden, A., Mueller, N. v., Holbrook, N., Pillai, N., and Huybers, P.: Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields, Nat. Food., 1, 127–133, 2020.
Ru, J., Wan, S., Hui, D., and Song, J.: Overcompensation of ecosystem productivity following sustained extreme drought in a semiarid grassland, Ecology, 104, e3997, https://doi.org/10.1002/ecy.3997, 2023.
Sadiqi, S. S. J., Hong, E.-M., Nam, W.-H., and Kim, T.: An integrated framework for understanding ecological drought and drought resistance, Sci. Total Environ., 846, 157477, https://doi.org/10.1016/j.scitotenv.2022.157477, 2022.
Schwalm, C. R., Anderegg, W. R., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Wolf, A., Huntzinger, D. N., Schaefer, K., Cook, R., Wei, Y. X., Fang, Y. Y., Hayes, D., Huang, M. Y., Jain, A., and Tian, H.: Global patterns of drought recovery, Nature, 548, 202–205, https://doi.org/10.1038/nature23021, 2017.
Sreeparvathy, V. and Srinivas, V.: Meteorological flash droughts risk projections based on CMIP6 climate change scenarios, npj Clim. Atmos. Sci., 5, 77, https://doi.org/10.1038/s41612-022-00302-1, 2022.
Štrumbelj, E. and Kononenko, I.: Explaining prediction models and individual predictions with feature contributions, Knowl. Inf. Syst., 41, 647–665, 2014.
Sun, H., Gui, D., Yan, B., Liu, Y., Liao, W., Zhu, Y., Lu, C., and Zhao, N.: Assessing the potential of random forest method for estimating solar radiation using air pollution index, Energy Conv. Manag., 119, 121–129, 2016.
Sun, H., Lu, M., Yang, Y., Chen, J., Wang, J., Yan, D., Xue, J., and Zhang, W.: Revisiting the role of transpiration in the variation of ecosystem water use efficiency in China, Agr. Forest Meteorol., 332, 109344, https://doi.org/10.1016/j.agrformet.2023.109344, 2023.
Tabari, H. and Willems, P.: More prolonged droughts by the end of the century in the Middle East, Environ. Res. Lett., 13, 104005, https://doi.org/10.1088/1748-9326/aae09c, 2018.
Tabari, H. and Willems, P.: Sustainable development substantially reduces the risk of future drought impacts, Commun. Earth Environ., 4, 180, https://doi.org/10.1038/s43247-023-00840-3, 2023.
Tuinenburg, O. A., Bosmans, J. H., and Staal, A.: The global potential of forest restoration for drought mitigation, Environ. Res. Lett., 17, 034045, https://doi.org/10.1088/1748-9326/ac55b8, 2022.
Tyagi, S., Zhang, X., Saraswat, D., Sahany, S., Mishra, S. K., and Niyogi, D.: Flash Drought: Review of Concept, Prediction and the Potential for Machine Learning, Deep Learning Methods, Earth Future., 10, e2022EF002723, https://doi.org/10.1029/2022EF002723, 2022.
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A.: Response of vegetation to drought time-scales across global land biomes, P. Natl. Acad. Sci. USA, 110, 52–57, https://doi.org/10.1073/pnas.1207068110, 2013.
Wang, H., Zhu, Q., Wang, Y., and Zhang, H.: Spatio-temporal characteristics and driving factors of flash drought recovery: From the perspective of soil moisture and GPP changes, Weather Climate Extremes, 42, 100605, https://doi.org/10.1016/j.wace.2023.100605, 2023.
Wang, L., Yuan, X., Xie, Z., Wu, P., and Li, Y.: Increasing flash droughts over China during the recent global warming hiatus, Sci. Rep., 6, 30571, https://doi.org/10.1038/srep30571, 2016.
Wang, S., Peng, H., and Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach, J. Hydrol., 605, 127320, https://doi.org/10.1016/j.jhydrol.2021.127320, 2022.
Wang, Y. and Yuan, X.: Land-atmosphere coupling speeds up flash drought onset, Sci. Total Environ., 851, 158109, https://doi.org/10.1016/j.scitotenv.2022.158109, 2022.
Wang, Y. and Yuan, X.: High Temperature Accelerates Onset Speed of the 2022 Unprecedented Flash Drought Over the Yangtze River Basin, Geophys. Res. Lett., 50, e2023GL105375, https://doi.org/10.1029/2023GL105375, 2023.
Wu, X., Liu, H., Li, X., Ciais, P., Babst, F., Guo, W., Zhang, C., Magliulo, V., Pavelka, M., Liu, S., Huang, Y., Wang, P., Shi, C., and Ma, Y.: Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere, Glob. Change Biol., 24, 504–516, https://doi.org/10.1111/gcb.13920, 2018.
Xi, X., Liang, M., and Yuan, X.: Increased atmospheric water stress on gross primary productivity during flash droughts over China from 1961 to 2022, Weather Climate Extremes, 44, 100667, https://doi.org/10.1016/j.wace.2024.100667, 2024.
Xu, S., Wang, Y., Liu, Y., Li, J., Qian, K., Yang, X., and Ma, X.: Evaluating the cumulative and time-lag effects of vegetation response to drought in Central Asia under changing environments, J. Hydrol., 627, 130455, https://doi.org/10.1016/j.jhydrol.2023.130455, 2023.
Yang, L., Wang, W., and Wei, J.: Assessing the response of vegetation photosynthesis to flash drought events based on a new identification framework, Agr. Forest Meteorol., 339, 109545, https://doi.org/10.1016/j.agrformet.2023.109545, 2023.
Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang, W., Liu, B., Jin, Z., and Simmons, C. T.: Contrasting responses of water use efficiency to drought across global terrestrial ecosystems, Sci. Rep., 6, 23284, https://doi.org/10.1038/srep23284, 2016.
Yao, T., Liu, S., Hu, S., and Mo, X.: Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001–2019, J. Environ. Manage., 313, 114947, https://doi.org/10.1016/j.jenvman.2022.114947, 2022.
Yu, Z., Wang, J., Liu, S., Rentch, J. S., Sun, P., and Lu, C.: Global gross primary productivity and water use efficiency changes under drought stress, Environ. Res. Lett., 12, 014016, https://doi.org/10.1088/1748-9326/aa5258, 2017.
Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., and Zhang, M.: Anthropogenic shift towards higher risk of flash drought over China, Nat. Commun., 10, 4661, https://doi.org/10.1038/s41467-019-12692-7, 2019.
Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., and Otkin, J. A.: A global transition to flash droughts under climate change, Science, 380, 187–191, https://doi.org/10.1126/science.abn6301, 2023.
Zha, X., Xiong, L., Liu, C., Shu, P., and Xiong, B.: Identification and evaluation of soil moisture flash drought by a nonstationary framework considering climate and land cover changes, Sci. Total Environ., 856, 158953, https://doi.org/10.1016/j.scitotenv.2022.158953, 2023.
Zhang, M. and Yuan, X.: Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations, Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020, 2020.
Zhang, M., Yuan, X., and Otkin, J. A.: Remote sensing of the impact of flash drought events on terrestrial carbon dynamics over China, Carbon Balanc. Manag., 15, 20, https://doi.org/10.1186/s13021-020-00156-1, 2020.
Zhang, S., Yang, Y., Wu, X., Li, X., and Shi, F.: Postdrought recovery time across global terrestrial ecosystems, J. Geophys. Res.-Biogeo., 126, e2020JG005699, https://doi.org/10.1029/2020jg005699, 2021.
Zhang, X., Chen, N., Sheng, H., Ip, C., Yang, L., Chen, Y., Sang, Z., Tadesse, T., Lim, T. P. Y., and Rajabifard, A.: Urban drought challenge to 2030 sustainable development goals, Sci. Total Environ., 693, 133536, https://doi.org/10.1016/j.scitotenv.2019.07.342, 2019.
Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the global aridity index and potential evapotranspiration database, Sci. Data., 9, 409, https://doi.org/10.1038/s41597-022-01493-1, 2022.
Short summary
Our study explores how ecosystems recover after flash droughts. Using vegetation and soil moisture data, we found that recovery takes about 37.5 d on average (longer in central and southern regions) in China. Factors like post-drought radiation and temperature affect recovery, with extreme temperatures prolonging it. Herbaceous plants recover faster than forests. Our findings aid water resource management and drought monitoring on a large scale, offering insights into ecosystem resilience.
Our study explores how ecosystems recover after flash droughts. Using vegetation and soil...