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Abstract. Recovery time, referring to the duration that an
ecosystem needs to return to its pre-drought condition, is
a fundamental indicator of ecological resilience. Recently,
flash droughts – characterised by rapid onset and develop-
ment – have gained increasing attention. Nevertheless, the
spatiotemporal patterns in gross primary productivity (GPP)
recovery time and the factors influencing it remain largely
unknown. In this study, we investigate the recovery time pat-
terns in a terrestrial ecosystem in China based on GPP us-
ing a random forest regression model and the SHapley Ad-
ditive exPlanations (SHAP) method. A random forest regres-
sion model was developed to analyse the factors influenc-
ing recovery time and establish response functions through
partial correlation for typical flash drought recovery periods.
The dominant driving factors of recovery time were deter-
mined using the SHAP method. The results reveal that the
average recovery time across China is approximately 37.5 d,
with central and southern regions experiencing the longest
durations. Post-flash-drought radiation emerges as the pri-
mary environmental factor, followed by the aridity index and
post-flash-drought temperature, particularly in semi-arid and
sub-humid areas. Temperature exhibits a non-monotonic re-
lationship with recovery time, where both excessively cold
and hot conditions lead to longer recovery periods. Herba-
ceous vegetation recovers more rapidly than woody forests,
with deciduous broadleaf forests demonstrating the shortest

recovery time. This study provides valuable insights for com-
prehensive water resource and ecosystem management and
contributes to large-scale drought monitoring efforts.

1 Introduction

Climate change has exacerbated drought, which has signif-
icant implications for the achievement the Sustainable De-
velopment Goals (SDGs) (Lindoso et al., 2018). Among the
17 SDGs outlined in the 2030 Agenda for Sustainable De-
velopment, at least five are directly linked to drought: Goal
6 “Clean water and sanitation”, Goal 11 “Sustainable cities
and communities”, Goal 12 “Responsible consumption and
production”, Goal 13 “Climate action”, and Goal 15 “Life
on land” (Zhang et al., 2019; Nilsson et al., 2016). Flash
droughts – characterised by rapid onset and intensification
– have gained increasing recognition among hydrologist and
the general public globally (Yuan et al., 2023). These events
significantly impact terrestrial ecosystem productivity, pho-
tosynthesis, and latent heat fluxes (Zhang and Yuan, 2020;
Yang et al., 2023). The effects of flash droughts are not only
felt during the events but also persist in their aftermath, with
legacy effects following such droughts (Liu et al., 2023a).
Recovery time – defined as the duration required for an
ecosystem to return to its pre-drought state – is a fundamen-
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tal aspect of ecological resilience (Schwalm et al., 2017; Wu
et al., 2018). Recovery time is related to ecological thresh-
olds, as it may trigger a critical “tipping point” that leads to
shifts into a new ecosystem state (Lenton et al., 2008). With
the expectation of more frequent and severe flash droughts
in the future (Sreeparvathy and Srinivas, 2022), exploring
post-flash-drought recovery trajectories is of paramount im-
portance (Jiao et al., 2021).

Drought recovery characteristics have been extensively
observed at the ecosystem scale, typically using tree ring
records, productivity or greenness measurements, and satel-
lite data (Gazol et al., 2017; Kannenberg et al., 2019). These
studies have identified varied recovery times across regions
and ecosystems. Grasslands exhibit longer recovery times
compared with other land covers types due to shallow-rooted
plants and lower soil water retention capacity (Hao and Choi,
2023). Conversely, recovery in croplands is more influenced
by human farming practices (Darnhofer et al., 2016). In
forests, mixed forests tend to recover more quickly, whereas
deciduous broadleaf forests have the longest recovery peri-
ods (He et al., 2018). Hydrometeorological conditions also
play a role, with semi-arid and semi-humid regions experi-
encing longer recovery times than humid and arid regions
(Zhang et al., 2021). The longer recovery time in semi-arid
and semi-humid regions may be related to the specific chal-
lenges that these regions face, such as soil conditions, water
availability, and climatic variability (Huxman et al., 2004;
Zhang et al., 2021).

However, the contribution of driving factors to flash
drought recovery remains unclear. Some studies have in-
dicated that the background value, drought return interval,
post-drought hydrometeorological conditions, and drought
attributes (such as duration and intensity) are critical with
respect to regulating recovery (Kannenberg et al., 2020). A
lower background value may result in more severe dam-
age, abnormal post-drought hydrometeorological conditions,
and longer recovery times (Fu et al., 2017). Greater drought
intensity and longer drought duration can lead to signifi-
cant ecosystem losses (Godde et al., 2019). Favourable post-
drought hydrometeorological conditions (e.g. increased pre-
cipitation and suitable temperature) improve the chance of
complete recovery (Jiao et al., 2021). Plant physiological
responses, including changes in leaf water potential and
phenology, also play a crucial role in the recovery process
(Miyashita et al., 2005).

While the impacts of flash droughts on ecosystems have
been well documented, the recovery process remains under-
explored. For instance, studies have shown that solar-induced
fluorescence (SIF) and SIF yield values decline in the pe-
riod following flash drought (Yao et al., 2022), and 95 %
of the gross primary production (GPP) in the Indian region
responded to flash droughts with an average response time
of 10–19 d (Poonia et al., 2022). However, most research
has focused on the immediate ecological responses to flash
droughts, rather than on the recovery process (Otkin et al.,

2019). Notably, a substantial contrast exists in the defini-
tion of recovery stages between flash droughts and traditional
slow droughts (Wang et al., 2016). These results have led to
the conclusion that recovery is a part of the former, whereas
the recovery phase of the latter usually occurs at the end
of the event (Qing et al., 2022). Furthermore, some studies
have suggested that flash drought recovery is more reliant on
changes in soil moisture or peak evapotranspiration, while
traditional slow drought recovery is typically assessed us-
ing ecological or hydrological indicators (Xu et al., 2023).
China experienced frequent flash drought in the period be-
tween 1980 and 2021, particularly in southwestern and cen-
tral regions (Wang and Yuan, 2022). Moreover, there may be
more severe and frequent flash droughts in the future (Chris-
tian et al., 2023). Research on flash drought recovery in Xi-
ang and Wei basins found that most events were associated
with a recovery time of 28 d (Wang and Yuan, 2023). How-
ever, there remains a lack of comprehensive studies on flash
drought recovery and the factors influencing its spatiotempo-
ral patterns across China.

Drought can lead to water shortages, limiting access to
clean drinking water. Effective drought management is there-
fore crucial for achieving the SDGs. By utilising newly avail-
able datasets and hydrometeorological variables in China,
this study assesses the extent of post-flash-drought impacts,
documents recovery times, and analyses the factors con-
tributing to variations in ecosystem recovery. The objectives
of this study are to (1) investigate the spatial pattern of post-
flash-drought recovery, (2) identify the most critical deter-
minants of recovery, and (3) analyse the impact of various
factors on flash drought recovery times. The remainder of
the paper is structured as follows: Sect. 2 provides a brief
description of the data and methods; Sect. 3 outlines the re-
sults, which are presented with respect to the novel methods
applied; Sect. 4 entails a detailed discussion; Sect. 5 gives
the conclusions; and the related Supplement provides further
information.

2 Data and methods

2.1 Data

2.1.1 Soil moisture datasets

Daily root zone soil moisture (SM) data for the period from
2001 to 2018 were obtained from the Global Land Evapora-
tion Amsterdam Model (GLEAM) (https://www.gleam.eu/,
last access: 2 February 2024). GLEAM estimates root zone
soil moisture using a multilayer water balance approach. The
depth of the root zone varies based on the type of land cover.
For tall vegetation (e.g. trees), the depth is divided into three
layers (0–10, 10–100, and 100–250 cm); for low vegetation
(e.g. grass), there are two layers (0–10 and 10–100 cm); and
bare soil only has one layer (0–10 cm) (Martínez-Vilalta and
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Garcia-Forner, 2017). This model has been widely applied
in the identification and impact assessment of flash drought
events (Zha et al., 2023). We utilised the bilinear interpo-
lation method to resample SM from a spatial resolution of
0.25–0.1°, aligning it with the accuracy of other datasets.
This method is appropriate for continuous input values, easy
to implement, and generally effective in converting coarse
input data into spatially refined output (Chen et al., 2020).

2.1.2 Hydrometeorological datasets of variables
affecting recovery time

We analyse the recovery time by considering multi-
ple influencing factors, such as meteorological vari-
ables, drought-related variables, and land cover (He et
al., 2018). Meteorological data from the China Me-
teorological Forcing Dataset (CMFD), accessible at
https://doi.org/10.6084/m9.figshare.c.4557599, is utilised
for the period spanning from 2001 to 2018 (He et al., 2020).
The near-surface air temperature, downward short-wave
radiation, downward long-wave radiation, precipitation rate,
and wind speed are used in this study. The vapour pressure
deficit (VPD) is calculated based on temperature and specific
humidity using Eqs. (1)–(3) (Peixoto and Oort, 1996):

SVP= 0.618exp(
17.27T

T + 273.73
), (1)

AVP≈
qs ·p

ε
, (2)

VPD= SVP−AVP, (3)

where SVP and AVP are the respective saturated vapour pres-
sure and actual vapour pressure (kPa), T is temperature (°C),
qs is the specific humidity, p is the atmospheric pressure
(kPa), and ε = 6.22 is the ratio of the water vapour molec-
ular weight to the dry-air weight.

The aridity index (AI) is calculated as the ratio of
precipitation to potential evapotranspiration. Typically, the
multiyear average of the AI serves as an indicator of
water availability and drought timing within a particu-
lar region (Huang et al., 2016). The AI is obtained from
https://doi.org/10.6084/m9.figshare.7504448.v5 (Zomer et
al., 2022). To analyse the distinct responses of different veg-
etation types, we employ the MCD12C1 Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) dataset from the
International Geosphere–Biosphere Programme (Fig. S1 in
the Supplement; Friedl et al., 2002).

2.1.3 Gross primary productivity

Gross primary productivity (GPP) is widely used as an in-
dicator to monitor post-drought photosynthesis dynamics
(Gazol et al., 2018). The FluxSat GPP dataset (version 2), de-
rived from MODIS, is calibrated using FLUXNET2015 and
OneFlux tier-1 data and validated with independent datasets
(Joiner and Yoshida, 2021).

The FluxSat GPP dataset shows strong agreement with
flux data at most sites and performs reliably across the ma-
jority of global regions (Bennett et al., 2021). Additionally,
it has been widely used to examine the impacts of extreme
climate events on the terrestrial carbon cycle (Byrne et al.,
2021). The dataset provides a spatial resolution of 0.05° and
a daily temporal resolution. To match the flash drought event,
daily soil moisture data were resampled to 0.1° and aggre-
gated to pentad-mean (5 d mean) data. This study chooses
the growing seasons (April–October) from 2001 to 2023 as
the study period.

2.2 Method

2.2.1 The identification of flash drought events and
recovery time

In this study, we identify flash drought events by analysing
changes in soil moisture, taking the rapid intensification
and duration of these events into account. Although evap-
orative demand is often used as a warning indicator for
flash droughts, it may overestimate the occurrence of flash
droughts (Lesinger and Tian, 2022). Therefore, in this study,
we employ an alternative approach by using soil moisture
data, which are aggregated into pentad-mean values to iden-
tify flash drought events. These averages are then converted
into percentiles based on the climatology of each pentad pe-
riod during the growing season. The identification of flash
droughts should meet the following criteria: soil moisture
(SM) must decrease from above the 40th percentile to be-
low the 20th percentile within a 5 d period, with an average
rate of decline per pentad of no less than the 5th percentile. A
flash drought terminates if the declining SM rises back to the
20th percentile. The duration of a flash drought event must
be at least four pentads (20 d) (Yuan et al., 2019; Zhang and
Yuan, 2020). The speed of flash drought (Ospd) is the ratio
of the difference between the 40th percentile and the lowest
percentile of the onset stage to the length of onset. The fre-
quency refers to the overall number of occurrences within a
given time frame (e.g. per year or per decade). Severity is the
accumulated soil moisture percentile deficits from the thresh-
old of the 40th percentile. We employed a GPP anomaly to
estimate post-flash-drought vegetation recovery times at the
pixel scale. The recovery time was defined as the period be-
tween the point at which the GPP reached its maximum loss
and when it returned to its pre-flash-drought level (Wang and
Yuan, 2022) (Fig. 1). To ensure data consistency and min-
imise noise, we first applied a smoothing process to the pen-
tad GPP data using a three-pentad forward-moving window
at the pixel scale. After smoothing the data, we calculate the
GPP anomaly using the following equation:

GPP anomaly=
GPP−µGPP

σGPP
, (4)
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Figure 1. The identification of recovery time. The GPP anomaly is
a detrended vegetation production index on a time series. Zero (0) is
defined as the threshold of a negative anomaly. The area below the
dashed line represents that vegetation production is in a negative
abnormal state. We quantify recovery time as follows: the recovery
time begins when the vegetation production loss reaches the max-
imum and ends when the detrended vegetation production index is
above 0.

where µGPP and σGPP are the respective mean and standard
deviation of the pentad time series of GPP.

The beginning of the recovery stage is identified when the
post-flash-drought GPP anomaly is negative and reaches its
minimum value, indicating the point of maximum GPP loss.
The recovery stage concludes when the GPP anomaly returns
to a positive value, signifying that productivity has reached or
exceeded its pre-drought level. However, if no flash drought
event occurs during the period of negative GPP anomaly, if
the GPP anomaly is already negative before the onset of the
flash drought event, or if negative GPP anomalies only oc-
cur for one pentad, the corresponding GPP data series is ex-
cluded from the analysis to prevent misleading results.

2.2.2 Response functions

Partial dependence plots based on the random forest algo-
rithm are utilised to visualise response functions (Schwalm
et al., 2017; Sun et al., 2016). The analysis of partial depen-
dence focuses on evaluating the marginal impact of a covari-
ate (or independent variable) on the response variable, while
keeping other covariates constant (Breiman et al., 2002). It
facilitates the exploration of insights within large datasets,
particularly when random forests are primarily influenced
by low-order interactions (Martin, 2014). In addition, it is
a valuable tool to identify significant features, detect non-
linear relationships, and gain insights into the overall be-
haviour of a predictive model.

2.2.3 Attribution analysis of ecosystem recovery

In order to better understand the potential factors driving ter-
restrial ecosystem productivity recovery after flash droughts,
we conduct attribution analysis. We selected the downward
radiation (the sum of downward short-wave radiation and

downward short-wave radiation), temperature, wind speed,
precipitation rate, VPD, flash drought speed (Ospd), flash
drought severity (Osev), flash drought duration (Odur), AI,
and land cover type as explanatory variables. It should be
noted that these variables are considered within the recovery
period. The feature importance of random forest can only in-
dicate the extent to which the input variables influence the
model’s output, but it does not reveal how these input vari-
ables specifically impact the model’s output (Wang et al.,
2022). The SHapley Additive exPlanations (SHAP) method
has emerged as a valuable tool that addresses the limita-
tions of traditional machine learning methods (Štrumbelj and
Kononenko, 2014). As a result, the SHAP method is widely
utilised in the attribution analysis of variables (Wang et al.,
2022; Lundberg and Lee, 2017).

ϕm(v)=
∑

S⊆N\{m}

|S|!(|N | − |S| − 1)!
|N |!

(v(S ∪ {m})− v(S)), (5)

where ϕm(v) represents the contribution of covariate m, N
denotes the set of all covariates, S is a subset of N , and v(S)
represents the value of that subset.

We utilised a random forest model and employed these
variables as predictive factors to estimate the productivity re-
covery time for all study grid cells. Then, we used the SHAP
value to quantify the marginal contribution of each predic-
tive variable and rank their relative importance based on the
average absolute SHAP value.

3 Results

3.1 Characteristics of flash droughts

Figure 2 presents the frequency, duration, severity, and speed
of flash droughts over China during the 2001–2019 pe-
riod. Approximately 7 % of grids did not experience a flash
drought event, while the remaining 93 % of grids experi-
enced at least one event. The middle and lower reaches of the
Yangtze River exhibited a high frequency value (with above
12 events per decade), whereas other regions mainly ranged
from 0 to 9 events per decade. There is a clear spatial pat-
tern in the flash drought duration, which ranges from 0 to
20 d over China. The southwestern and the middle and lower
reaches of the Yangtze River had longer durations, exceed-
ing 90 d (Fig. S2). In addition to the higher severity of flash
droughts in the southwestern region, a similar spatial pattern
was observed in the severity and speed. Regarding speed, ar-
eas with a faster speed were primarily concentrated in the
lower reaches of the Yangtze River. Overall, the middle and
lower reaches of the Yangtze River and the southwestern re-
gion are considered hot spots, although the latter’s speed is
not rapid.
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Figure 2. Frequency (a), duration (b), severity (c), and speed (d) of flash drought over China during the 2001–2023 period. Publisher’s
remark: please note that the above figure contains disputed territories.

3.2 Spatial pattern of the ecosystem recovery time and
recovery rate

Vegetation productivity showed a clear response to flash
droughts, and this response typically had a certain lag
(Fig. S3). Ecosystems exhibited distinct spatial differences
in recovery times to flash droughts (Fig. 3). The mean recov-
ery time for Chinese ecosystems was 37.5 d (7.5 pentads),
calculated by GPP. Most regions were able to recover to their
normal state within 50 d. However, certain areas, such as cen-
tral China and southern China, required 90 d or more to re-
cover. In terms of time series, there was no evident trend in
the mean recovery time, with fluctuations occurring within
7.5 pentads. On average, the recovery rate of grids in China
ranged from 0–2g C m−2 d−1 pentad−1 per pentad, and ap-
proximately 90 % of grids had a recovery rate of less than
1 per pentad. There is no significant trend in the recovery
rate over time. To further illustrate the impact and recovery
of flash droughts on different vegetation types, we calculated
the recovery time and recovery rate for each type (Fig. 4).
Among the different vegetation types, deciduous broadleaf
forest (DBF) had a shorter recovery time and a higher re-
covery rate. Additionally, croplands (CRP) showed moder-
ate recovery rates, whereas grasslands (GRS) had relatively
low rates of recovery. This reflects the fact that flash droughts
had a more significant impact on GRS and resulted in greater
productivity losses. By employing various recovery thresh-

olds (80 %, 90 %, 100 %, or 110 % of the original state), we
confirmed that, although the recovery time of some grid pix-
els can vary, the overall spatial pattern of the recovery time
remains consistent regardless of the threshold used (Fig. S4).

3.3 Response functions for flash drought recovery time

The random forest regression model explained 55 % of
the out-of-bag variance in recovery time (Fig. 5). Radia-
tion emerged as the most influential factor impacting flash
drought recovery time, with lower-solar-radiation conditions
leading to a prolonged the recovery time (Fig. 5a). Temper-
ature did not exhibit a monotonic response in relation to re-
covery time. Excessively cold or hot temperatures resulted
in longer recovery times, whereas slightly higher tempera-
tures promoted vegetation recovery (Fig. 5b). Specifically, a
slight increase in temperature facilitated vegetation restora-
tion, while higher temperatures extended the recovery time
with respect to flash droughts. This suggests that the pro-
jected rise in extreme high temperatures will further lengthen
the recovery time (Li et al., 2019). In terms of flash drought
characteristics, the difference in recovery time was related to
the discrepancy in severity and duration, albeit to a lesser ex-
tent than speed (Fig. 5c, h, i). Recovery time increased in a
stepwise manner as the duration increased. Ecosystems ex-
periencing prolonged flash drought durations typically ex-
hibit longer recovery times. In addition, semi-arid and sub-
humid areas (0.2<AI< 0.65) have longer recovery times
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Figure 3. Spatial pattern of recovery time (a–c) and recovery rate (d–f). Panels (a) and (d) represent the recovery time (pentad) and recovery
rate (g C m−2 d−1 pentad−1) calculated using GPP data, respectively. Panels (b) and (e) represent the density of different recovery times
and the recovery rate, respectively; the horizontal axis represents the recovery time (pentad) or recovery rate (g C m−2 d−1 pentad−1),
respectively, and the vertical axis is the density. Regions with a sparse GPP or no droughts are masked using white. Publisher’s remark:
please note that the above figure contains disputed territories.

Figure 4. The recovery time and recovery rate across different vegetation types. The vegetation types are as follows: ENF (evergreen
coniferous forest), EBF (evergreen broadleaf forest), DNF (deciduous coniferous forest), DBF (deciduous broadleaf forest), MF (mixed
forests), WS (closed shrubland, open shrubland, and woody savannas), SAV (savannas (temperate)), GRS (grasslands), and CRP (croplands).

(Fig. 5d). The wind speed exhibited a bimodal pattern, in-
dicating that the recovery time was shortest when it closely
aligned with the multiyear average or was 3.5 times higher
than the multiyear average (Fig. 5e). Adequate precipitation
following a flash drought assisted in recovery, although ex-
cessively extreme precipitation could also hinder it (Fig. 5f).
An extreme VPD, whether high or low, prolonged the recov-
ery time (Fig. 5g). Among different vegetation types, herba-
ceous vegetation recovered more rapidly than woody forests.
DBF demonstrated the shortest recovery time (Fig. 5j).

3.4 Drivers of flash drought recovery time

We then performed an attribution analysis using the SHAP
method to quantify the relative importance of the consid-
ered variables. The results were consistent with the results
given in Sect. 3.3. In general, radiation and the aridity in-
dex were the most relevant controls on spatial variations in
post-flash-drought recovery time (Fig. 6). Temperature was
the third most impactful variable overall, primarily due to its
high impact on predicting the recovery time (absolute mean
SHAP value of 0.62). Compared with other variables, the
impacts of flash drought speed and duration were relatively
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Figure 5. Response functions for flash drought recovery time, reflecting the response of recovery time to a single dependent variable when
others are unchanged. Note difference in the y-axis scales. The covariates in panels (a) to (j) are the deviations from the baseline. Positive
(negative) indicates above (below) the average value.

low. In addition, during the process of flash drought recovery,
the losses caused by flash droughts can also affect produc-
tivity recovery. The relationship between recovery time and
the attributes of flash drought (speed, severity, and duration)
is usually negative. That is to say, faster, more severe, and
longer-lasting flash droughts often have a longer recovery
time. Specifically, the speed of flash droughts is one of the
main controlling factors with respect to the recovery time.

4 Discussion

4.1 Assessment of flash drought recovery time based on
vegetation productivity

Given the prevalence of drought in widespread regions over
the past few decades, it is a major natural disaster world-
wide (Douris and Kim, 2021). In addition, regions’ expo-
sure, vulnerability, and risk are expected to further increase
due to future climate and socio-economic changes (Tabari
and Willems, 2018; Cook et al., 2020). Flash drought is
widely recognised as a sub-seasonal phenomenon that devel-
ops rapidly (Tyagi et al., 2022). Flash droughts have vary-
ing degrees of impact on the photosynthesis, productivity,
and respiration of ecosystems (Mohammadi et al., 2022). Re-
ducing drought risks and strengthening social drought resis-
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Figure 6. Identifying the drivers of patterns of post-flash-drought recovery time. (a) The summary plot of SHAP values in random forest
machine learning. (b) The SHAP importance (averaged absolute SHAP values) for recovery time. Considered drivers include flash drought
characteristics (in red) and post-flash-drought hydrometeorological conditions (in blue).

tance are also important tasks in order to achieve the SDGs
by 2030 (Tabari and Willems, 2023). Flash droughts inter-
act with ecological droughts: ecological droughts potentially
make ecosystems more vulnerable to flash droughts, while
flash droughts can exacerbate the effects of persistent eco-
logical droughts (Cravens et al., 2021; Xi et al., 2024). The
interplay between these two types of droughts can intensify
the pressure on ecosystems, complicating and prolonging
the recovery process. The SIF response frequency to flash
droughts in the Pearl River Basin of China exceeds 80 %,
with 96.85 % of the regional response occurring within 16 d
(Yang et al., 2023). Previous studies have calculated that the
recovery time with respect to flash drought based on changes
in soil moisture ranges from 8 to 40 d (Otkin et al., 2019).
Additionally, the recovery time is generally longer in hu-
mid areas compared with arid areas. However, not all flash
drought events result in a decrease in ecosystem productiv-
ity (Liu et al., 2019). For instance, a study conducted by
Zhang et al. (2020) revealed that 81 % of flash droughts in
China between 2003 and 2018 displayed negative normalised
GPP anomalies, while the remaining 19 % of events did not
exhibit such negative anomalies. Therefore, GPP serves as
a more appropriate indicator for monitoring post-drought
photosynthesis-related dynamics and evaluating ecosystem
recovery time (Yu et al., 2017). Based on GPP, most flash
drought events in the Xiang and Weihe basins recovered
within 2 to 8 d. Moreover, the recovery time in the Xiang
Basin, which is located in a humid area, tended to be longer
(Wang and Yuan, 2022). It should be noted that this study
only investigated the aforementioned two watersheds and did
not include semi-humid/semi-arid areas. Our study revealed
that the average recovery time with respect to flash droughts
in China is approximately 37.5 d (7.5 pentads) (Fig. 3).

4.2 Factors that affect drought recovery time

Solar radiation and the aridity index were the primary fac-
tors that influenced the recovery time (Figs. 5, 6, S5). The
recovery time was regulated by a combination of drought
characteristics (drought return interval, severity, and dura-
tion), post-drought hydrometeorological conditions, and veg-
etation physiological characteristics (Fathi-Taperasht et al.,
2022; Liu et al., 2019). Physiological responses, such as the
rate of productivity decline upon exposure to flash drought,
also influenced the recovery time. Notably, there is a signifi-
cant negative correlation between the rate of decline and the
recovery rate (Lu et al., 2024). In the case of flash droughts,
which are characterised by rapid development, the speed is
one of the most important factors controlling the recovery
time (Fig. 6). The Yangtze River Basin experienced one of
the most severe flash droughts on record during the sum-
mer of 2022, primarily driven by abnormally high temper-
atures and abrupt changes in precipitation (Liu et al., 2023b).
The high temperatures accelerated the onset of the drought
(Wang and Yuan, 2022). As a result, the total GPP loss from
July to October 2022 was 26.12± 16.09 Tg C, representing a
decrease of approximately 6.08 % compared with the 2001–
2021 average (Li et al., 2024). Ecological drought is charac-
terised by prolonged conditions lasting from months to years
and resulting in long-term changes in ecosystem function and
structure (Sadiqi et al., 2022). In contrast, flash droughts de-
velop rapidly, within days to weeks, due to extreme weather,
leading to immediate reductions in soil moisture and plant
health (Yuan et al., 2023). The long-term nature of ecological
drought can cause profound impacts, such as reduced plant
populations, increased soil erosion, and decreased biodiver-
sity, necessitating a longer recovery period (Cravens et al.,
2021). In contrast, flash droughts, while shorter in duration,
cause rapid plant wilting, reduced crop yields, and soil crack-
ing, with significant long-term consequences for ecosystem
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recovery (Xi et al., 2024). These two types of droughts can
interact: ecological droughts can potentially make ecosys-
tems more susceptible to flash droughts, while flash droughts
can exacerbate the impacts of ongoing ecological droughts
(Hacke et al., 2001; Schwalm et al., 2017). The combined ef-
fects of both types of drought can intensify stress on ecosys-
tems, complicating and prolonging the recovery process. Pre-
vious studies have shown that the spatial patterns of flash
drought recovery were similar to those of precipitation, tem-
perature, and radiation (Wang and Yuan, 2022). Increased ra-
diation energy and precipitation following a drought can pro-
mote vegetation photosynthesis (Zhang et al., 2021). Addi-
tionally, there are regional variations in the time required for
drought recovery. Generally, semi-arid and semi-humid ar-
eas took longer to recover to their pre-drought state (Fig. 5).
Ecosystems in these areas exhibited higher overall sensitivity
to drought (Vicente-Serrano et al., 2013; Yang et al., 2016).
Vegetation in arid areas adapted to long-term water deficit
through various physiological, anatomical, and functional
mechanisms, resulting in high drought resistance (Craine et
al., 2013). In humid areas, sufficient water storage helped re-
sist drought (Liu et al., 2018; Sun et al., 2023). Vegetation
also played a crucial role in regulating the recovery trajec-
tory. The drought resistance of plants was determined us-
ing various traits, such as stomatal conductance, hydraulic
conductivity, and cell turgor pressure (Bartlett et al., 2016;
Martínez-Vilalta et al., 2017). Grasslands and shrublands
could quickly recover from drought, whereas forest systems
required longer periods of time (Gessler et al., 2017). This
may be because grasslands and shrublands have relatively
simple vegetation structures, shorter life cycles, and faster
growth rates (Ru et al., 2023), whereas forest systems have
more complex vegetation structures and ecological processes
(Tuinenburg et al., 2022), which can lead to differing re-
sponses to environmental changes. Deep roots enhance tree
tolerance to drought (McDowell et al., 2008; Nardini et al.,
2016). Compared with shallow roots, deep roots have larger
conduit diameters and vessel cells, resulting in higher hy-
draulic conductivity. During droughts, deep roots may play
a critical role in water absorption, as increased root growth
with soil depth could represent an adaptation to drought con-
ditions (Germon et al., 2020), enabling rapid access to sub-
stantial water reserves stored in deeper soils (Christina et al.,
2017).

4.3 Limitations and perspectives

We have emphasised that the post-flash-drought recovery
trajectory of an ecosystem is influenced by several factors,
including post-flash-drought hydrological conditions, flash
drought characteristics, and the physiological characteristics
of vegetation. However, we should note that the same per-
centile threshold (20 % or 40 %) was used in this study to
identify flash drought events based on empirical values from
previous research findings. Further investigation should ex-

amine how to determine region-specific thresholds and ex-
plore the sensitivity of these thresholds to flash drought
recognition (Gou et al., 2022). Furthermore, it is important
to consider that plant strategies for coping with flash drought
can vary due to species-specific differences (Gupta et al.,
2020). There is still a need for improved understanding of
the physiological and ecological mechanisms involved in
flash drought recovery. To gain a more comprehensive un-
derstanding, future research should explore the mechanism
of ecosystem restoration from multiple perspectives, such
as evaluating greenness and photosynthesis. Although flash
droughts can lead to significant short-term disruptions, there
remains a need to more comprehensively explore their long-
term effects. Future research should prioritise understand-
ing (1) how these intense, short-term drought events might
evolve into more conventional droughts and (2) the persis-
tence of their impacts over time (Liu et al., 2023a). Under-
standing these dynamics will be crucial for predicting and
managing the carbon balance and the resilience of ecosys-
tems under changing climate conditions.

5 Conclusions

Effectively reduction of drought risk and drought exposure is
crucial for achieving the SDGs related to health and food se-
curity. This study applied a random forest regression model
to analyse the factors influencing recovery time, and the re-
sponse functions were established using partial correlation
for typical flash drought recovery time. The most important
environmental factor affecting recovery time is post-flash-
drought radiation, followed by the aridity index and post-
flash-drought temperature. The recovery time is prolonged
under lower-solar-radiation conditions. Moreover, semi-arid
and sub-humid areas have a longer recovery time. Temper-
ature does not exhibit a monotonic response in relation to
recovery time: excessively cold or hot temperatures lead
to longer recovery times. Finally, herbaceous vegetation re-
covers more rapidly than woody forests, with deciduous
broadleaf forests demonstrating the shortest recovery time.

Our study assessed the recovery time of ecosystems to
flash droughts based on a GPP dataset and identified the
dominant factors affecting the recovery time. Results show
that 78 % of ecosystems could recover within 0 to 50 d.
However, certain areas, such as central China and south-
ern China, required 90 d or more to recover. An analysis of
the response functions showed that radiation emerged as the
most influential factor impacting flash drought recovery time,
with lower-solar-radiation conditions leading to a prolonged
recovery time. Additionally, temperature did not exhibit a
monotonic response in relation to recovery time. In terms of
flash drought characteristics, the difference in recovery time
is more associated with speed than with severity and dura-
tion.
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Although this study provides a good basis for further in-
vestigation of flash drought characteristics, it is important to
note that the further extension of this study may lead to a
more in-depth understanding of flash drought for hydrolog-
ical applications or worldwide practices. It is important to
determine region-specific thresholds and examine the sensi-
tivity of these thresholds to flash drought recognition. Fur-
thermore, plant strategies for coping with flash drought can
vary due to species-specific differences. To gain a more com-
prehensive understanding of flash drought recovery, future
research should also explore the mechanism of ecosystem
restoration from multiple perspectives, such as evaluating
greenness and photosynthesis.
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