Articles | Volume 29, issue 21
https://doi.org/10.5194/hess-29-5975-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5975-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The hydrological archetypes of wetlands
Abigail E. Robinson
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden
Anna Scaini
Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden
Francisco J. Peña
Division of Health Informatics and Logistics, KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
Peter A. Hambäck
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
Christoph Humborg
Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden
Fernando Jaramillo
Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden
Related authors
No articles found.
Julika Zinke, Joakim P. Hansen, Martijn Hermans, Alexis Fonseca, Sofia A. Wikström, Linda Kumblad, Emil Rydin, Marc Geibel, Matthew E. Salter, and Christoph Humborg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4446, https://doi.org/10.5194/egusphere-2025-4446, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study presents one of the few studies to simultaneously measure all three major greenhouse gases across multiple shallow coastal bays in the Baltic Sea. Our findings reveal that these bays are highly variable and significant sources of greenhouse gases, with fluxes strongly influenced by bay characteristics and seasonal variation. By linking concentrations to environmental drivers, our work provides novel insights into overlooked but important components of coastal greenhouse gas budgets.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Cited articles
Acreman, M. and Holden, J.: How Wetlands Affect Floods, Wetlands, 33, 773–786, https://doi.org/10.1007/s13157-013-0473-2, 2013.
Adeli, S., Salehi, B., Mahdianpari, M., Quackenbush, L. J., and Chapman, B.: Moving Toward L-Band NASA-ISRO SAR Mission (NISAR) Dense Time Series: Multipolarization Object-Based Classification of Wetlands Using Two Machine Learning Algorithms, Earth and Space Science, 8, https://doi.org/10.1029/2021EA001742, 2021.
Åhlén, I., Hambäck, P., Thorslund, J., Frampton, A., Destouni, G., and Jarsjö, J.: Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden, Science of The Total Environment, 704, 135452, https://doi.org/10.1016/j.scitotenv.2019.135452, 2020.
Åhlén, I., Vigouroux, G., Destouni, G., Pietroń, J., Ghajarnia, N., Anaya, J., Blanco, J., Borja, S., Chalov, S., Chun, K. P., Clerici, N., Desormeaux, A., Girard, P., Gorelits, O., Hansen, A., Jaramillo, F., Kalantari, Z., Labbaci, A., Licero-Villanueva, L., Livsey, J., Maneas, G., Pisarello, K. L. M., Pahani, D. M., Palomino-Ángel, S., Price, R., Ricaurte-Villota, C., Fernanda Ricaurte, L., Rivera-Monroy, V. H., Rodriguez, A., Rodriguez, E., Salgado, J., Sannel, B., Seifollahi-Aghmiuni, S., Simard, M., Sjöberg, Y., Terskii, P., Thorslund, J., Zamora, D. A., and Jarsjö, J.: Hydro-climatic changes of wetlandscapes across the world, Sci. Rep., 11, 2754, https://doi.org/10.1038/s41598-021-81137-3, 2021.
Åhlén, I., Thorslund, J., Hambäck, P., Destouni, G., and Jarsjö, J.: Wetland position in the landscape: Impact on water storage and flood buffering, Ecohydrology, 15, e2458, https://doi.org/10.1002/eco.2458, 2022.
Ameli, A. A. and Creed, I. F.: Quantifying hydrologic connectivity of wetlands to surface water systems, Hydrol. Earth Syst. Sci., 21, 1791–1808, https://doi.org/10.5194/hess-21-1791-2017, 2017.
Ameli, A. A. and Creed, I. F.: Does Wetland Location Matter When Managing Wetlands for Watershed-Scale Flood and Drought Resilience?, JAWRA Journal of the American Water Resources Association, 55, 529–542, https://doi.org/10.1111/1752-1688.12737, 2019.
Andersson, K.: Multifunctional Wetlands and Stakeholder Engagement: Lessons from Sweden, Stockholm Environment Institute, https://www.sei.org/mediamanager/documents/Publications/Air-land-water-resources/sei-wp-2012-08-sweden-wetlands.pdf (last access: 20 September 2024), 2012.
Barbier, E. B., Acreman, M., and Knowler, D.: Economic valuation of wetlands: a guide for policy makers and planners, https://www.ramsar.org/sites/default/files/documents/pdf/lib/lib_valuation_e.pdf (last access: 30 June 2023), 1997.
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci. Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022.
Bullock, A. and Acreman, M.: The role of wetlands in the hydrological cycle, Hydrol. Earth Syst. Sci., 7, 358–389, https://doi.org/10.5194/hess-7-358-2003, 2003.
Canisius, F., Brisco, B., Murnaghan, K., Van Der Kooij, M., and Keizer, E.: SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland, Remote Sensing, 11, 720, https://doi.org/10.3390/rs11060720, 2019.
Swedish Meteorological and Hydrological Institute (SMHI): Climate indicator – Snow, https://www.smhi.se/en/climate/climate-indicators/climate-indicator-snow-1.188971, last access: 8 May 2024.
Colvin, S. A. R., Sullivan, S. M. P., Shirey, P. D., Colvin, R. W., Winemiller, K. O., Hughes, R. M., Fausch, K. D., Infante, D. M., Olden, J. D., Bestgen, K. R., Danehy, R. J., and Eby, L.: Headwater Streams and Wetlands are Critical for Sustaining Fish, Fisheries, and Ecosystem Services, Fisheries, 44, 73–91, https://doi.org/10.1002/fsh.10229, 2019.
Cornes, R. C., Van Der Schrier, G., Van Den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, JGR Atmospheres [data set], 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Cuevas, J. G., Valladares, M., Glasner, L., Bresciani, E., Núñez, P., Rojas, J. L., and González, M.: Varied hydrological regime of a semi-arid coastal wetland, Journal of Hydrology and Hydromechanics, 72, 238–251, https://doi.org/10.2478/johh-2024-0007, 2024.
Cutler, A. and Breiman, L.: Archetypal Analysis, Technometrics, 36, 338–347, https://doi.org/10.1080/00401706.1994.10485840, 1994.
Davidson, N. C., Dam, A. A. van, Finlayson, C. M., and McInnes, R. J.: Worth of wetlands: revised global monetary values of coastal and inland wetland ecosystem services, Mar. Freshwater Res., 70, 1189–1194, https://doi.org/10.1071/MF18391, 2019.
Doherty, J. M., Miller, J. F., Prellwitz, S. G., Thompson, A. M., Loheide, S. P., and Zedler, J. B.: Hydrologic Regimes Revealed Bundles and Tradeoffs Among Six Wetland Services, Ecosystems, 17, 1026–1039, https://doi.org/10.1007/s10021-014-9775-3, 2014.
Everitt, B. S., Landau, S., Leese, M., and Stahl, D.: Cluster Analysis, 1st edn., Wiley, https://doi.org/10.1002/9780470977811, 2011.
Fluet-Chouinard, E., Stocker, B. D., Zhang, Z., Malhotra, A., Melton, J. R., Poulter, B., Kaplan, J. O., Goldewijk, K. K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A. M., Davidson, N., Finlayson, C. M., Lehner, B., Jackson, R. B., and McIntyre, P. B.: Extensive global wetland loss over the past three centuries, Nature, 614, 281–286, https://doi.org/10.1038/s41586-022-05572-6, 2023.
Gerakēs, P. A.: Conservation and Management of Greek Wetlands, in: Proceedings of a Workshop on Greek Wetlands, Thessaloniki, Greece, 17–21 April, 1989, IUCN, 512 pp., https://portals.iucn.org/library/sites/library/files/documents/WTL-002.pdf (last access: 28 March 2024), 1992.
Golden, H. E., Lane, C. R., Rajib, A., and Wu, Q.: Improving global flood and drought predictions: integrating non-floodplain wetlands into watershed hydrologic models, Environ. Res. Lett., 16, 091002, https://doi.org/10.1088/1748-9326/ac1fbc, 2021.
Graversgaard, M., Jacobsen, B. H., Hoffmann, C. C., Dalgaard, T., Odgaard, M. V., Kjaergaard, C., Powell, N., Strand, J. A., Feuerbach, P., and Tonderski, K.: Policies for wetlands implementation in Denmark and Sweden – historical lessons and emerging issues, Land Use Policy, 101, 105206, https://doi.org/10.1016/j.landusepol.2020.105206, 2021.
Gunnarsson, U. and Löfroth, M.: Våtmarksinventeringen: resultat från 25 års inventeringar; nationell slutrapport för våtmarksinventeringen (VMI) i Sverige, Naturvårdsverket, Stockholm, 119 pp., https://www.naturvardsverket.se/globalassets/media/publikationer-pdf/5900/978-91-620-5925-5.pdf (last access: June 2024), 2009.
Gunnarsson, U. and Löfroth, M.: The Swedish Wetland Survey: Compiled Excerpts From The National Final Report, Naturvårdsverket [data set], https://www.diva-portal.org/smash/record.jsf?pid=diva2:1609890&dswid=-9307 (last access: 29 October 2025), 2014.
Hahn, N. and Wester, K.: Satellitbaserad kartering av vegetationstyper inom öppen våtmark, Naturvårdsverket, 2023.
Hamoudzadeh, A., Ravanelli, R., and Crespi, M.: SWOT Level 2 Lake Single-Pass Product: The L2_HR_LakeSP Data Preliminary Analysis for Water Level Monitoring, Remote Sensing, 16, 1244, https://doi.org/10.3390/rs16071244, 2024.
Hansson, L.-A., Brönmark, C., Anders Nilsson, P., and Åbjörnsson, K.: Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both?, Freshwater Biology, 50, 705–714, https://doi.org/10.1111/j.1365-2427.2005.01352.x, 2005.
Helmschrot, J.: Surface Water and the Maintenance of Hydrological Regimes, in: The Wetland Book, edited by: Finlayson, C. M., Everard, M., Irvine, K., McInnes, R. J., Middleton, B. A., Van Dam, A. A., and Davidson, N. C., Springer Netherlands, Dordrecht, 1–10, https://doi.org/10.1007/978-94-007-6172-8_233-2, 2016.
Huggins, X., Gleeson, T., Villholth, K. G., Rocha, J. C., and Famiglietti, J. S.: Groundwaterscapes: A Global Classification and Mapping of Groundwater's Large-Scale Socioeconomic, Ecological, and Earth System Functions, Water Resources Research, 60, e2023WR036287, https://doi.org/10.1029/2023WR036287, 2024.
Jaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J. A., Guittard, A., Hylin, A., Bolaños, J., Jawitz, J., Wdowinski, S., Martínez, O., and Espinosa, L. F.: Effects of Hydroclimatic Change and Rehabilitation Activities on Salinity and Mangroves in the Ciénaga Grande de Santa Marta, Colombia, Wetlands, 38, 755–767, https://doi.org/10.1007/s13157-018-1024-7, 2018.
Jaramillo, F., Desormeaux, A., Hedlund, J., Jawitz, J., Clerici, N., Piemontese, L., Rodríguez-Rodriguez, J., Anaya, J., Blanco-Libreros, J., Borja, S., Celi, J., Chalov, S., Chun, K., Cresso, M., Destouni, G., Dessu, S., Di Baldassarre, G., Downing, A., Espinosa, L., Ghajarnia, N., Girard, P., Gutiérrez, Á., Hansen, A., Hu, T., Jarsjö, J., Kalantari, Z., Labbaci, A., Licero-Villanueva, L., Livsey, J., Machotka, E., McCurley, K., Palomino-Ángel, S., Pietron, J., Price, R., Ramchunder, S., Ricaurte-Villota, C., Ricaurte, L., Dahir, L., Rodríguez, E., Salgado, J., Sannel, A., Santos, A., Seifollahi-Aghmiuni, S., Sjöberg, Y., Sun, L., Thorslund, J., Vigouroux, G., Wang-Erlandsson, L., Xu, D., Zamora, D., Ziegler, A., and Åhlén, I.: Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands, Water, 11, 619, https://doi.org/10.3390/w11030619, 2019.
Jaramillo, F., Aminjafari, S., Castellazzi, P., Fleischmann, A., Fluet-Chouinard, E., Hashemi, H., Hubinger, C., Martens, H. R., Papa, F., Schöne, T., Tarpanelli, A., Virkki, V., Wang-Erlandsson, L., Abarca-del-Rio, R., Borsa, A., Destouni, G., Di Baldassarre, G., Moore, M.-L., Posada-Marín, J. A., Wdowinski, S., Werth, S., Allen, G. H., Argus, D., Elmi, O., Fenoglio, L., Frappart, F., Huggins, X., Kalantari, Z., Munier, S., Palomino-Ángel, S., Robinson, A., Rubiano, K., Siles, G., Simard, M., Song, C., Spence, C., Tourian, M. J., Wada, Y., Wang, C., Wang, J., Yao, F., Berghuijs, W. R., Cretaux, J.-F., Famiglietti, J., Fassoni-Andrade, A., Fayne, J. V., Girard, F., Kummu, M., Larson, K. M., Marañon, M., Moreira, D. M., Nielsen, K., Pavelsky, T., Pena, F., Reager, J. T., Rulli, M. C., and Salazar, J. F.: The Potential of Hydrogeodesy to Address Water-Related and Sustainability Challenges, Water Resources Research, 60, e2023WR037020, https://doi.org/10.1029/2023WR037020, 2024.
Johansson, B.: Estimation of areal precipitation for hydrological modelling in Sweden, https://gupea.ub.gu.se/handle/2077/15575 (last access: 29 August 2024), 2002.
Johnston, C. A.: Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality, Critical Reviews in Environmental Control, 21, 491–565, https://doi.org/10.1080/10643389109388425, 1991.
Kadykalo, A. N. and Findlay, C. S.: The flow regulation services of wetlands, Ecosystem Services, 20, 91–103, https://doi.org/10.1016/j.ecoser.2016.06.005, 2016.
Kirpotin, S., Polishchuk, Y., Bryksina, N., Sugaipova, A., Kouraev, A., Zakharova, E., Pokrovsky, O. S., Shirokova, L., Kolmakova, M., Manassypov, R., and Dupre, B.: West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO2 cycle, International Journal of Environmental Studies, 68, 603–623, https://doi.org/10.1080/00207233.2011.593901, 2011.
Kovacs, J. M., Lu, X. X., Flores-Verdugo, F., Zhang, C., Flores de Santiago, F., and Jiao, X.: Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest, ISPRS Journal of Photogrammetry and Remote Sensing, 82, 102–111, https://doi.org/10.1016/j.isprsjprs.2013.05.004, 2013.
Lane, C. R., Leibowitz, S. G., Autrey, B. C., LeDuc, S. D., and Alexander, L. C.: Hydrological, Physical, and Chemical Functions and Connectivity of Non-Floodplain Wetlands to Downstream Waters: A Review, JAWRA Journal of the American Water Resources Association, 54, 346–371, https://doi.org/10.1111/1752-1688.12633, 2018.
Lantmateriet: Produktbeskrivning: Markhöjdmodell Nedladdning, grid 50+ NH [data set], https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/markhojdmodell-nedladdning-grid-50/ (last access: 5 August 2024), 2022.
Le, P. V. V. and Kumar, P.: Power law scaling of topographic depressions and their hydrologic connectivity, Geophysical Research Letters, 41, 1553–1559, https://doi.org/10.1002/2013GL059114, 2014.
Magilligan, F. J. and Nislow, K. H.: Changes in hydrologic regime by dams, Geomorphology, 71, 61–78, https://doi.org/10.1016/j.geomorph.2004.08.017, 2005.
Margaryan, L., Prince, S., Ioannides, D., and Röslmaier, M.: Dancing with cranes: a humanist perspective on cultural ecosystem services of wetlands, Tourism Geographies, 24, 501–522, https://doi.org/10.1080/14616688.2018.1522512, 2022.
Matthew, M., Lisa-Maria, R., Sonali, S. S., and de Sanjiv, S.: Wetlands, agriculture and poverty reduction, IWMI, 44 pp., https://cgspace.cgiar.org/server/api/core/bitstreams/a9396ccc-acc9-4028-953f-b52875de4333/content (last access: 30 June 2023), 2010.
Matti, B., Dahlke, H. E., Dieppois, B., Lawler, D. M., and Lyon, S. W.: Flood seasonality across Scandinavia – Evidence of a shifting hydrograph?, Hydrological Processes, 31, 4354–4370, https://doi.org/10.1002/hyp.11365, 2017.
McLaughlin, D. L. and Cohen, M. J.: Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition, Ecological Applications, 23, 1619–1631, https://doi.org/10.1890/12-1489.1, 2013.
Melack, J. M. and Hess, L. L.: Remote Sensing of the Distribution and Extent of Wetlands in the Amazon Basin, in: Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management, edited by: Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J., and Parolin, P., Springer Netherlands, Dordrecht, 43–59, https://doi.org/10.1007/978-90-481-8725-6_3, 2011.
Mitsch, W. J., Taylor, J. R., and Benson, K. B.: Estimating primary productivity of forested wetland communities in different hydrologic landscapes, Landscape Ecol., 5, 75–92, https://doi.org/10.1007/BF00124662, 1991.
Mitsch, W. J., Bernal, B., and Hernandez, M. E.: Ecosystem services of wetlands, International Journal of Biodiversity Science, Ecosystem Services & Management, 11, 1–4, https://doi.org/10.1080/21513732.2015.1006250, 2015.
Morley, T. R., Reeve, A. S., and Calhoun, A. J. K.: The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment, JAWRA Journal of the American Water Resources Association, 47, 337–349, https://doi.org/10.1111/j.1752-1688.2010.00519.x, 2011.
Mupepi, O., Marambanyika, T., Matsa, M. M., and Dube, T.: A systematic review on remote sensing of wetland environments, Transactions of the Royal Society of South Africa, 79, 67–85, https://doi.org/10.1080/0035919X.2024.2322946, 2024.
Na, X. and Li, W.: Modeling Hydrological Regimes of Floodplain Wetlands Using Remote Sensing and Field Survey Data, Water, 14, 4126, https://doi.org/10.3390/w14244126, 2022.
Okruszko, T., Duel, H., Acreman, M., Grygoruk, M., Flörke, M., and Schneider, C.: Broad-scale ecosystem services of European wetlands – overview of the current situation and future perspectives under different climate and water management scenarios, Hydrological Sciences Journal, 56, 1501–1517, https://doi.org/10.1080/02626667.2011.631188, 2011.
Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydrologic indices for characterizing streamflow regimes, River Research and Applications, 19, 101–121, https://doi.org/10.1002/rra.700, 2003.
Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M., and Meadows, A. W.: Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale, JAWRA Journal of the American Water Resources Association, 46, 211–226, https://doi.org/10.1111/j.1752-1688.2010.00426.x, 2010.
Otsu, N.: A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66, https://doi.org/10.1109/TSMC.1979.4310076, 1979.
Park, J., Kumar, M., Lane, C. R., and Basu, N. B.: Seasonality of inundation in geographically isolated wetlands across the United States, Environ. Res. Lett., 17, 054005, https://doi.org/10.1088/1748-9326/ac6149, 2022.
Peña, F. J., Hübinger, C., Payberah, A. H., and Jaramillo, F.: DeepAqua: Semantic segmentation of wetland water surfaces with SAR imagery using deep neural networks without manually annotated data, International Journal of Applied Earth Observation and Geoinformation [code], 126, 103624, https://doi.org/10.1016/j.jag.2023.103624, 2024.
Piemontese, L., Castelli, G., Fetzer, I., Barron, J., Liniger, H., Harari, N., Bresci, E., and Jaramillo, F.: Estimating the global potential of water harvesting from successful case studies, Global Environmental Change, 63, https://doi.org/10.1016/j.gloenvcha.2020.102121, 2020.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The Natural Flow Regime, BioScience, 47, 769–784, https://doi.org/10.2307/1313099, 1997.
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B.: Remote sensing of global wetland dynamics with multiple satellite data sets, Geophysical Research Letters, 28, 4631–4634, 2001.
Ramsar Convention Secretariat: The Convention on Wetlands of International Importance, especially as Waterfowl Habitat, Ramsar, Iran, 2 February 1971, https://www.ramsar.org/, last access: 23 October 2025
Ramsar Convention (Ed.): The use of Earth Observation for wetland inventory, assessment and monitoring, in: Wetlands, Springer Netherlands, Dordrecht, 189–203, https://doi.org/10.1007/978-94-007-0551-7_11, 2011.
Ramsar Convention Secretariat: Ramsar Sites in Sweden, https://www.ramsar.org/wetland/sweden, last access: 28 June 2023.
Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., and Rossow, W. B.: An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales, Global Biogeochemical Cycles, 24, https://doi.org/10.1029/2008GB003354, 2010.
Robinson, A.: Supplementary data, Zenodo [data set], https://doi.org/10.5281/zenodo.16895265, 2024.
Robinson, A: Hydrological_archetypes, Zenodo [code], https://doi.org/10.5281/zenodo.17424880, 2025.
Robinson, J. S. and Sivapalan, M.: Temporal scales and hydrological regimes: Implications for flood frequency scaling, Water Resources Research, 33, 2981–2999, https://doi.org/10.1029/97WR01964, 1997.
Spence, C., Guan, X. J., and Phillips, R.: The Hydrological Functions of a Boreal Wetland, Wetlands, 31, 75–85, https://doi.org/10.1007/s13157-010-0123-x, 2011.
Stevaux, J. C., Macedo, H. de A., Assine, M. L., and Silva, A.: Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland, Geomorphology, 350, 106906, https://doi.org/10.1016/j.geomorph.2019.106906, 2020.
Swedish Meteorological and Hydrological Institute (SMHI): Water discharge data, SMHI [data set], https://www.smhi.se/data/sjoar-och-vattendrag/vattenforing/waterdischargeDaily/2612, last access: 23 October 2025.
Tang, Y., Leon, A. S., and Kavvas, M. L.: Impact of Size and Location of Wetlands on Watershed-Scale Flood Control, Water Resour. Manage., 34, 1693–1707, https://doi.org/10.1007/s11269-020-02518-3, 2020.
The Global Runoff Data Centre (GRDC): The Global Runoff Data Centre, 56068 Koblenz, Germany, GRDC [data set], https://grdc.bafg.de/, last access: 23 October 2025.
Vera-Herrera, L., Soria, J., Pérez, J., and Romo, S.: Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake, Hydrology, 8, 172, https://doi.org/10.3390/hydrology8040172, 2021.
Vilardy, S. P., González, J. A., Martín-López, B., and Montes, C.: Relationships between hydrological regime and ecosystem services supply in a Caribbean coastal wetland: a social-ecological approach, Hydrological Sciences Journal, 56, 1423–1435, https://doi.org/10.1080/02626667.2011.631497, 2011.
Villa, J. A. and Mitsch, W. J.: Carbon sequestration in different wetland plant communities in the Big Cypress Swamp region of southwest Florida, International Journal of Biodiversity Science, Ecosystem Services & Management, 11, 17–28, https://doi.org/10.1080/21513732.2014.973909, 2015.
Votrubova, J., Dohnal, M., Vogel, T., Sanda, M., and Tesar, M.: Episodic runoff generation at Central European headwater catchments studied using water isotope concentration signals, Journal of Hydrology and Hydromechanics, 65, 114–122, https://doi.org/10.1515/johh-2017-0002, 2017.
Widhalm, B., Bartsch, A., and Heim, B.: A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data, International Journal of Remote Sensing, 36, 5537–5556, https://doi.org/10.1080/01431161.2015.1101505, 2015.
Winter, T. C.: The Vulnerability of Wetlands to Climate Change: A Hydrologic Landscape Perspective, J. American Water Resour. Assoc., 36, 305–311, https://doi.org/10.1111/j.1752-1688.2000.tb04269.x, 2000.
Wood, K. A., Jupe, L. L., Aguiar, F. C., Collins, A. M., Davidson, S. J., Freeman, W., Kirkpatrick, L., Lobato-de Magalhães, T., McKinley, E., Nuno, A., Pagès, J. F., Petruzzella, A., Pritchard, D., Reeves, J. P., Thomaz, S. M., Thornton, S. A., Yamashita, H., and Newth, J. L.: A global systematic review of the cultural ecosystem services provided by wetlands, Ecosystem Services, 70, 101673, https://doi.org/10.1016/j.ecoser.2024.101673, 2024.
Xi, Y., Peng, S., Ciais, P., and Chen, Y.: Future impacts of climate change on inland Ramsar wetlands, Nat. Clim. Chang., 11, 45–51, https://doi.org/10.1038/s41558-020-00942-2, 2021.
Xu, D., Bisht, G., Tan, Z., Sinha, E., Di Vittorio, A. V., Zhou, T., Ivanov, V. Y., and Leung, L. R.: Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes, Nat. Commun., 15, 2438, https://doi.org/10.1038/s41467-024-45286-z, 2024.
Yanfeng W. U. and Guangxin Z.: A review of hydrological regulation functions of watershed wetlands, skxjz, 32, 458–469, https://doi.org/10.14042/j.cnki.32.1309.2021.03.014, 2021.
Zakharova, E. A., Kouraev, A. V., Rémy, F., Zemtsov, V. A., and Kirpotin, S. N.: Seasonal variability of the Western Siberia wetlands from satellite radar altimetry, Journal of Hydrology, 512, 366–378, https://doi.org/10.1016/j.jhydrol.2014.03.002, 2014.
Zhang, H., Huang, G. H., Wang, D., and Zhang, X.: Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands, Journal of Hydrology, 396, 94–103, https://doi.org/10.1016/j.jhydrol.2010.10.037, 2011.
Short summary
Wetlands provide vital benefits like flood control, drought resilience, and carbon storage, but these depend on how water moves and is stored within the wetland. Using satellite imagery and AI, we mapped water patterns in 43 Swedish wetlands, identifying five hydrological types. This approach reveals differences in flooding and drying, linking wetland water behaviour to the benefits they provide, offering a practical way to understand wetland functions.
Wetlands provide vital benefits like flood control, drought resilience, and carbon storage, but...