Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5493-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5493-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on spatial and temporal variability of soil moisture across a heterogeneous boreal forest landscape
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, Sweden
William Lidberg
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
Caroline Greiser
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, Sweden
Department of Physical Geography, Stockholm University, Stockholm, 10691, Sweden
Johannes Larson
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
Raúl Hoffrén
Department of Geography and Land Management, University of Zaragoza, Zaragoza, 50009, Spain
Anneli M. Ågren
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
Related authors
No articles found.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
SOIL, 8, 733–749, https://doi.org/10.5194/soil-8-733-2022, https://doi.org/10.5194/soil-8-733-2022, 2022
Short summary
Short summary
Historically, many peatlands in the boreal region have been drained for timber production. Given the prospects of a drier future due to climate change, wetland restorations are now increasing. Better maps hold the key to insights into restoration targets and land-use management policies, and maps are often the number one decision-support tool. We use an AI-developed soil moisture map based on laser scanning data to illustrate how the mapping of peatlands can be improved across an entire nation.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Cited articles
Aalto, J., le Roux, P. C., and Luoto, M.: Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments, Arct. Antarc. Alp. Res., 45, 429–439, https://doi.org/10.1657/1938-4246-45.4.429, 2013.
Aalto, J., Tyystjärvi, V., Niittynen, P., Kemppinen, J., Rissanen, T., Gregow, H., and Luoto, M.: Microclimate temperature variations from boreal forests to the tundra, Agr. Forest Meteorol., 323, 109037, https://doi.org/10.1016/j.agrformet.2022.109037, 2022.
Adobe Inc.: Adobe Illustrator, Version 28.2, Adobe Inc. [computer software], https://www.adobe.com/products/illustrator (last access: 20 August 2025), 2024.
Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014.
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, Geoderma, 404, 115280, https://doi.org/10.1016/j.geoderma.2021.115280, 2021.
Amooh, M. K. and Bonsu, M.: Effects of Soil Texture and Organic Matter on the Evaporative Loss of Soil Moisture, Journal of Global Agriculture and Ecology, 3, 152–161, 2015.
Baldwin, D., Naithani, K. J., and Lin, H.: Combined soil-terrain stratification for characterizing catchment-scale soil moisture variation, Geoderma, 285, 260–269, https://doi.org/10.1016/j.geoderma.2016.09.031, 2017.
Chai, Q., Wang, T., and Di, C.: Evaluating the impacts of environmental factors on soil moisture temporal dynamics at different time scales, J. Water Clim. Change, 12, 420–432, https://doi.org/10.2166/wcc.2020.011, 2020.
Chaparro, D., Vall-llossera, M., Piles, M., Camps, A., Rüdiger, C., and Riera-Tatché, R.: Predicting the Extent of Wildfires Using Remotely Sensed Soil Moisture and Temperature Trends, IEEE J. Sel. Top. Appl., 9, 2818–2829, https://doi.org/10.1109/JSTARS.2016.2571838, 2016.
Collow, T. W., Robock, A., and Wu, W.: Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains, J. Geophys. Res.-Atmos., 119, 9338–9358, https://doi.org/10.1002/2014JD021454, 2014.
Dobriyal, P., Qureshi, A., Badola, R., and Hussain, S. A.: A review of the methods available for estimating soil moisture and its implications for water resource management, J. Hydrol., 458–459, 110–117, https://doi.org/10.1016/j.jhydrol.2012.06.021, 2012.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Dymond, S. F., Wagenbrenner, J. W., Keppeler, E. T., and Bladon, K. D.: Dynamic Hillslope Soil Moisture in a Mediterranean Montane Watershed, Water Resour. Res., 57, e2020WR029170, https://doi.org/10.1029/2020WR029170, 2021.
Engstrom, R., Hope, A., Kwon, H., Stow, D., and Zamolodchikov, D.: Spatial distribution of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic coastal plain, Hydrol. Res., 36, 219–234, https://doi.org/10.2166/nh.2005.0016, 2005.
Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S., and Namkhai, A.: Temporal and spatial scales of observed soil moisture variations in the extratropics, J. Geophys. Res.-Atmos., 105, 11865–11877, https://doi.org/10.1029/2000JD900051, 2000.
Eriksson, L., Byrne, T., Johansson, E., Trygg, J., and Vikström, C.: Multi- and Megavariate Data Analysis Basic Principles and Applications, Third revised ed., Umetrics Academy, 509 pp., ISBN-13: 978-9197373050, 2013.
Esri Inc.: ArcGIS Pro, Version 3.1.1, Esri Inc. [computer software], Redlands, CA, https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (last access:), 2023.
Famiglietti, J. S., Rudnicki, J. W., and Rodell, M.: Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas, J. Hydrol., 210, 259–281, https://doi.org/10.1016/S0022-1694(98)00187-5, 1998.
Gao, L., Peng, X., and Biswas, A.: Temporal instability of soil moisture at a hillslope scale under subtropical hydroclimatic conditions, CATENA, 187, 104362, https://doi.org/10.1016/j.catena.2019.104362, 2020.
Gaur, N. and Mohanty, B. P.: Evolution of physical controls for soil moisture in humid and subhumid watersheds, Water Resour. Res., 49, 1244–1258, https://doi.org/10.1002/wrcr.20069, 2013.
Ge, F., Xu, M., Gong, C., Zhang, Z., Tan, Q., and Pan, X.: Land cover changes the soil moisture response to rainfall on the Loess Plateau, Hydrol. Process., 36, e14714, https://doi.org/10.1002/hyp.14714, 2022.
Grabs, T., Bishop, K., Laudon, H., Lyon, S. W., and Seibert, J.: Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports, Biogeosciences, 9, 3901–3916, https://doi.org/10.5194/bg-9-3901-2012, 2012.
Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.: Preferred states in spatial soil moisture patterns: Local and nonlocal controls, Water Resour. Res., 33, 2897–2908, https://doi.org/10.1029/97WR02174, 1997.
Gwak, Y. and Kim, S.: Factors affecting soil moisture spatial variability for a humid forest hillslope, Hydrol. Process., 31, 431–445, https://doi.org/10.1002/hyp.11039, 2017.
Han, X., Liu, J., Srivastava, P., Liu, H., Li, X., Shen, X., and Tan, H.: The Dominant Control of Relief on Soil Water Content Distribution During Wet-Dry Transitions in Headwaters, Water Resour. Res., 57, e2021WR029587, https://doi.org/10.1029/2021WR029587, 2021.
Jia, Y.-H., Shao, M.-A., and Jia, X.-X.: Spatial pattern of soil moisture and its temporal stability within profiles on a loessial slope in northwestern China, J. Hydrol., 495, 150–161, https://doi.org/10.1016/j.jhydrol.2013.05.001, 2013.
Jonard, F., Mahmoudzadeh, M., Roisin, C., Weihermüller, L., André, F., Minet, J., Vereecken, H., and Lambot, S.: Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and electromagnetic induction, Geoderma, 207–208, 310–322, https://doi.org/10.1016/j.geoderma.2013.05.024, 2013.
Jones, L. A., Kimball, J. S., Reichle, R. H., Madani, N., Glassy, J., Ardizzone, J. V., Colliander, A., Cleverly, J., Desai, A. R., Eamus, D., Euskirchen, E. S., Hutley, L., Macfarlane, C., and Scott, R. L.: The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO2 Exchange, IEEE T. Geosci. Remote, 55, 6517–6532, https://doi.org/10.1109/TGRS.2017.2729343, 2017.
Joshi, C. and Mohanty, B. P.: Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02, Water Resour. Res., 46, W12503, https://doi.org/10.1029/2010WR009152, 2010.
Kaiser, K. E. and McGlynn, B. L.: Nested Scales of Spatial and Temporal Variability of Soil Water Content Across a Semiarid Montane Catchment, Water Resour. Res., 54, 7960–7980, https://doi.org/10.1029/2018WR022591, 2018.
Kašpar, V., Hederová, L., Macek, M., Müllerová, J., Prošek, J., Surový, P., Wild, J., and Kopecký, M.: Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing, Remote Sens. Environ., 263, 112522, https://doi.org/10.1016/j.rse.2021.112522, 2021.
Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling soil moisture in a high-latitude landscape using LiDAR and soil data, Earth Surf. Proc. Land., 43, 1019–1031, https://doi.org/10.1002/esp.4301, 2018.
Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C., and Luoto, M.: Water as a resource, stress and disturbance shaping tundra vegetation, Oikos, 128, 811–822, https://doi.org/10.1111/oik.05764, 2019.
Kemppinen, J., Niittynen, P., Rissanen, T., Tyystjärvi, V., Aalto, J., and Luoto, M.: Soil Moisture Variations From Boreal Forests to the Tundra, Water Resour. Res., 59, e2022WR032719, https://doi.org/10.1029/2022WR032719, 2023.
Kendall, M. G.: Rank correlation methods, 4th edn., Charles Griffin, London, 202 pp., ISBN-13: 978-0852641996, 1975.
Kolstela, J., Aakala, T., Maclean, I., Niittynen, P., Kemppinen, J., Luoto, M., Rissanen, T., Tyystjärvi, V., Gregow, H., Vapalahti, O., and Aalto, J.: Revealing fine-scale variability in boreal forest temperatures using a mechanistic microclimate model, Agr. Forest Meteorol., 350, 109995, https://doi.org/10.1016/j.agrformet.2024.109995, 2024.
Kopecký, M., Macek, M., and Wild, J.: Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition, Sci. Total Environ., 757, 143785, https://doi.org/10.1016/j.scitotenv.2020.143785, 2021.
Krauss, L., Hauck, C., and Kottmeier, C.: Spatio-temporal soil moisture variability in Southwest Germany observed with a new monitoring network within the COPS domain, Meteorol. Z., 523–537, https://doi.org/10.1127/0941-2948/2010/0486, 2010.
Lagergren, F. and Lindroth, A.: Transpiration response to soil moisture in pine and spruce trees in Sweden, Agr. Forest Meteorol., 112, 67–85, https://doi.org/10.1016/S0168-1923(02)00060-6, 2002.
Lantmäteriet: Orthophoto, Lantmäteriet [data set], https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/ortofoto-nedladdning/ (last access: 20 August 2024), 2021.
Lantmäteriet: Swedish Property Map, scale 1:10000, Lantmäteriet [data set], https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/topografi-10-nedladdning-vektor/ (last access: 20 August 2024), 2023.
Larson, J., Lidberg, W., Ågren, A. M., and Laudon, H.: Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices, Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, 2022.
Larson, J., Wallerman, J., Peichl, M., and Laudon, H.: Soil moisture controls the partitioning of carbon stocks across a managed boreal forest landscape, Sci. Rep., 13, 14909, https://doi.org/10.1038/s41598-023-42091-4, 2023.
Larson, J., Vigren, C., Wallerman, J., Ågren, A. M., Appiah Mensah, A., and Laudon, H.: Tree growth potential and its relationship with soil moisture conditions across a heterogeneous boreal forest landscape, Sci. Rep., 14, 10611, https://doi.org/10.1038/s41598-024-61098-z, 2024.
Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius, M., and Bishop, K.: The Krycklan Catchment Study – A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape, Water Resour. Res., 49, 7154–7158, https://doi.org/10.1002/wrcr.20520, 2013.
Laudon, H., Hasselquist, E. M., Peichl, M., Lindgren, K., Sponseller, R., Lidman, F., Kuglerová, L., Hasselquist, N. J., Bishop, K., Nilsson, M. B., and Ågren, A. M.: Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study, Hydrol. Process., 35, e14170, https://doi.org/10.1002/hyp.14170, 2021.
Launiainen, S., Guan, M., Salmivaara, A., and Kieloaho, A.-J.: Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach, Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, 2019.
Li, R., Zhang, S., Li, F., Lin, X., Luo, M., Wang, S., Yang, L., and Zhao, X.: Impact of time-lagging and time-preceding environmental variables on top layer soil moisture in semiarid grasslands, Sci. Total Environ., 912, 169406, https://doi.org/10.1016/j.scitotenv.2023.169406, 2024.
Liang, G., Stefanski, A., Eddy, W. C., Bermudez, R., Montgomery, R. A., Hobbie, S. E., Rich, R. L., and Reich, P. B.: Soil respiration response to decade-long warming modulated by soil moisture in a boreal forest, Nat. Geosci., 17, 905–911, https://doi.org/10.1038/s41561-024-01512-3, 2024.
Liang, W.-L., Li, S.-L., and Hung, F.-X.: Analysis of the contributions of topographic, soil, and vegetation features on the spatial distributions of surface soil moisture in a steep natural forested headwater catchment, Hydrol. Process., 31, 3796–3809, https://doi.org/10.1002/hyp.11290, 2017.
Lidberg, W., Nilsson, M., and Ågren, A.: Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape, Ambio, 49, 475–486, https://doi.org/10.1007/s13280-019-01196-9, 2020.
Mackay, D. S., Ewers, B. E., Cook, B. D., and Davis, K. J.: Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin, Water Resour. Res., 43, W03442, https://doi.org/10.1029/2006WR005149, 2007.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., and Thompson, S. E.: Hydrologic refugia, plants, and climate change, Glob. Change Biol., 23, 2941–2961, https://doi.org/10.1111/gcb.13629, 2017.
McMillan, H. K. and Srinivasan, M. S.: Characteristics and controls of variability in soil moisture and groundwater in a headwater catchment, Hydrol. Earth Syst. Sci., 19, 1767–1786, https://doi.org/10.5194/hess-19-1767-2015, 2015.
Mei, X., Zhu, Q., Ma, L., Zhang, D., Liu, H., and Xue, M.: The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes, CATENA, 162, 333–344, https://doi.org/10.1016/j.catena.2017.10.029, 2018.
Menberu, M. W., Marttila, H., Ronkanen, A.-K., Haghighi, A. T., and Kløve, B.: Hydraulic and Physical Properties of Managed and Intact Peatlands: Application of the Van Genuchten-Mualem Models to Peat Soils, Water Resour. Res., 57, e2020WR028624, https://doi.org/10.1029/2020WR028624, 2021.
Meyer, H., Reudenbach, C., Wöllauer, S., and Nauss, T.: Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction, Ecol. Model., 411, 108815, https://doi.org/10.1016/j.ecolmodel.2019.108815, 2019.
Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Murphy, P. N. C., Ogilvie, J., Meng, F.-R., White, B., Bhatti, J. S., and Arp, P. A.: Modelling and mapping topographic variations in forest soils at high resolution: A case study, Ecol. Model., 222, 2314–2332, https://doi.org/10.1016/j.ecolmodel.2011.01.003, 2011.
Naturvårdsverket: The National Land Cover database: soil moisture index map, spatial resolution: 10×10 m, Swedish Environmental Protection Agency [data set], https://geodatakatalogen.naturvardsverket.se/geonetwork/srv/swe/catalog.search#/metadata/cae71f45-b463-447f-804f-2847869b19b0 (last access: 5 September 2024), 2022.
Nogovitcyn, A., Shakhmatov, R., Morozumi, T., Tei, S., Miyamoto, Y., Shin, N., Maximov, T. C., and Sugimoto, A.: Historical variation in the normalized difference vegetation index compared with soil moisture in a taiga forest ecosystem in northeastern Siberia, Biogeosciences, 20, 3185–3201, https://doi.org/10.5194/bg-20-3185-2023, 2023.
Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., Kerr, Y. H., Larson, K. M., Njoku, E. G., Small, E. E., and Zreda, M.: State of the Art in Large-Scale Soil Moisture Monitoring, Soil Sci. Soc. Am. J., 77, 1888–1919, https://doi.org/10.2136/sssaj2013.03.0093, 2013.
de Oliveira, V. A., Rodrigues, A. F., Morais, M. A. V., Terra, M. de C. N. S., Guo, L., and de Mello, C. R.: Spatiotemporal modelling of soil moisture in an Atlantic forest through machine learning algorithms, Eur. J. Soil Sci., 72, 1969–1987, https://doi.org/10.1111/ejss.13123, 2021.
Pan, F.: Estimating Daily Surface Soil Moisture Using a Daily Diagnostic Soil Moisture Equation, J. Irrig. Drain. Eng., 138, 625–631, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000450, 2012.
Parajuli, K., Jones, S. B., Tarboton, D. G., Hipps, L. E., Zhao, L., Sadeghi, M., Rockhold, M. L., Torres-Rua, A., and Flerchinger, G. N.: Stone Content Influence on Land Surface Model Simulation of Soil Moisture and Evapotranspiration at Reynolds Creek Watershed, J. Hydrometeorol., 21, 889–1904, https://doi.org/10.1175/JHM-D-19-0075.1, 2020.
Parent, A.-C., Anctil, F., and Parent, L.-É.: Characterization of temporal variability in near-surface soil moisture at scales from 1 h to 2 weeks, J. Hydrol., 325, 56–66, https://doi.org/10.1016/j.jhydrol.2005.09.027, 2006.
Peichl, M., Nilsson, M., Smith, P., Marklund, P., De Simon, G., Löfvenius, P., Dignam, R., Holst, J., Mölder, M., Andersson, T., Kozii, N., Larmanou, E., Linderson, M., and Ottosson-Löfvenius, M.: ETC L2 Meteo, Svartberget, 2018-12-31–2023-12-31, ICOS RI [data set], https://hdl.handle.net/11676/kF7lHD8qztNl_5HdsSPWUmHs (last access: 20 May 2024), 2024.
Petropoulos, G. P., Griffiths, H. M., Dorigo, W., Xaver, A., and Gruber, A.: Surface Soil Moisture Estimation: Significance, Controls, and Conventional Measurement Techniques, in: Remote Sensing of Energy Fluxes and Soil Moisture Content, CRC Press, ISBN-13:9 78-0429096549, 2013.
Petropoulos, G. P., Ireland, G., and Barrett, B.: Surface soil moisture retrievals from remote sensing: Current status, products & future trends, Phys. Chem. Earth, Parts A/B/C, 83–84, 36–56, https://doi.org/10.1016/j.pce.2015.02.009, 2015.
Piao, S., Yin, L., Wang, X., Ciais, P., Peng, S., Shen, Z., and Seneviratne, S. I.: Summer soil moisture regulated by precipitation frequency in China, Environ. Res. Lett., 4, 044012, https://doi.org/10.1088/1748-9326/4/4/044012, 2009.
Potopová, V., Boroneanþ, C., Možný, M., and Soukup, J.: Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic, Int. J. Climatol., 36, 3741–3758, https://doi.org/10.1002/joc.4588, 2016.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria [computer software], https://www.r-project.org/ (last access: 20 March 2025), 2023.
Rasheed, M. W., Tang, J., Sarwar, A., Shah, S., Saddique, N., Khan, M. U., Imran Khan, M., Nawaz, S., Shamshiri, R. R., Aziz, M., and Sultan, M.: Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review, Sustainability, 14, 11538, https://doi.org/10.3390/su141811538, 2022.
Riihimäki, H., Kemppinen, J., Kopecký, M., and Luoto, M.: Topographic Wetness Index as a Proxy for Soil Moisture: The Importance of Flow-Routing Algorithm and Grid Resolution, Water Resour. Res., 57, e2021WR029871, https://doi.org/10.1029/2021WR029871, 2021.
Romano, N.: Soil moisture at local scale: Measurements and simulations, J. Hydrol., 516, 6–20, https://doi.org/10.1016/j.jhydrol.2014.01.026, 2014.
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale, Water Resour. Res., 48, W10544, https://doi.org/10.1029/2011WR011518, 2012.
Schönauer, M., Ågren, A. M., Katzensteiner, K., Hartsch, F., Arp, P., Drollinger, S., and Jaeger, D.: Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts, Hydrol. Earth Syst. Sci., 28, 2617–-2633, https://doi.org/10.5194/hess-28-2617-2024, 2024.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
SGU (Sveriges geologiska undersökning): Soil depth map, SGU [data set], spatial resolution: 10×10 m, https://resource.sgu.se/dokument/produkter/jorddjupsmodell-beskrivning.pdf (last access: 20 August 2024a), 2024a.
SGU (Sveriges geologiska undersökning): Soil types map, scale 1:25000, SGU [data set], https://resource.sgu.se/dokument/produkter/jordarter-25-100000-beskrivning.pdf (last access: 20 August 2024b), 2024b.
Sikström, U. and Hökkä, H.: Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance, Silva Fenn., 50, 1416, https://doi.org/10.14214/sf.1416, 2016.
Skogsstyrelsen: Utförda avverkningar (clearcuts carried out), Skogsstyrelsen [data set], https://geodpags.skogsstyrelsen.se/geodataport/feeds/UtfordAvverk.xml (last access: 2 April 2025), 2024.
SLU (Sveriges lantbruksuniversitet): SLU Forest Map, SLU [data set], spatial resolution: 25×25 m, Department of Forest Resource Management, https://www.slu.se/en/environment/statistics-and-environmental-data/environmental-data-catalogue/slu-forest-map (last access: 7 April 2025), 2010.
SLU (Sveriges lantbruksuniversitet): SLU Soil Moisture Map, spatial resolution: 2×2 m, Department of Forest Ecology and Management, SLU [data set], https://www.slu.se/en/environment/statistics-and-environmental-data/environmental-data-catalogue/slu-soil-moisture-maps/ (last access: 8 April 2025), 2021.
Sørensen, R. and Seibert, J.: Effects of DEM resolution on the calculation of topographical indices: TWI and its components, J. Hydrol., 347, 79–89, https://doi.org/10.1016/j.jhydrol.2007.09.001, 2007.
Stark, J. R. and Fridley, J. D.: Topographic Drivers of Soil Moisture Across a Large Sensor Network in the Southern Appalachian Mountains (USA), Water Resour. Res., 59, e2022WR034315, https://doi.org/10.1029/2022WR034315, 2023.
Svartberget Research Station: Meteorological data from Stortjärn, platform, 2016-07-02–2022-11-22, Swedish Infrastructure for Ecosystem Science (SITES) [data set], https://meta.fieldsites.se/objects/SwldWWD0fJ6VIl7VCCrGknQT (last access: 20 May 2024), 2022a.
Svartberget Research Station: Meteorological data from Svartberget, Åheden AWS, 2022, Swedish Infrastructure for Ecosystem Science (SITES) [data set], https://hdl.handle.net/11676.1/v0bn_ufBJ4vgq8Nen9d-Vqe5 (last access: 20 May 2024), 2022b.
Svartberget Research Station: Meteorological data from Svartberget, Hygget AWS, 2022, Swedish Infrastructure for Ecosystem Science (SITES) [data set], https://hdl.handle.net/11676.1/ztFYjWV-ljPFra7V0z7NKHvg (last access: 20 May 2024), 2022c.
Takagi, K. and Lin, H. S.: Changing controls of soil moisture spatial organization in the Shale Hills Catchment, Geoderma, 173–174, 289–302, https://doi.org/10.1016/j.geoderma.2011.11.003, 2012.
Teuling, A. J. and Troch, P. A.: Improved understanding of soil moisture variability dynamics, Geophys. Res. Lett., 32, L05404, https://doi.org/10.1029/2004GL021935, 2005.
Tyystjärvi, V., Kemppinen, J., Luoto, M., Aalto, T., Markkanen, T., Launiainen, S., Kieloaho, A.-J., and Aalto, J.: Modelling spatio-temporal soil moisture dynamics in mountain tundra, Hydrol. Process., 36, e14450, https://doi.org/10.1002/hyp.14450, 2022.
USGS (U.S. Geological Survey): Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Level 2 Science Product (Surface Reflectance), Path 194, Row 015, Collection 2, Tier 1, USGS [data set], https://earthexplorer.usgs.gov/ (last access: 16 September 2024), 2022.
Van Sundert, K., Horemans, J. A., Stendahl, J., and Vicca, S.: The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric, Biogeosciences, 15, 3475–3496, https://doi.org/10.5194/bg-15-3475-2018, 2018.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. c., Schwen, A., Šimùnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and Young, I. M.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, vzj2015.09.0131, https://doi.org/10.2136/vzj2015.09.0131, 2016.
Wang, F., Wang, G., Cui, J., Guo, L., Tang, X., Yang, R., and Huang, K.: Hillslope-scale variability of soil water potential over humid alpine forests: Unexpected high contribution of time-invariant component, J. Hydrol., 617, 129036, https://doi.org/10.1016/j.jhydrol.2022.129036, 2023.
Weiss, A. D.: Topographic position and landforms analysis, in: Topographic position and landforms analysis, ESRI Users Conference, San Diego, CA, 9–13 July 2001, https://env761.github.io/assets/files/tpi-poster-tnc_18x22.pdf (last access: 8 January 2025), 2001.
Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., and McMahon, T. A.: Observed spatial organization of soil moisture and its relation to terrain indices, Water Resour. Res., 35, 797–810, https://doi.org/10.1029/1998WR900065, 1999.
Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Blöschl, G., and Wilson, D. J.: Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes, J. Hydrol., 286, 113–134, https://doi.org/10.1016/j.jhydrol.2003.09.014, 2004.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, 2nd edn., Springer, New York, NY, ISBN-13: 978-3319242750, 2016.
Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., and Haase, T.: Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement, Agr. Forest Meteorol., 268, 40–47, https://doi.org/10.1016/j.agrformet.2018.12.018, 2019.
Williams, C. J., McNamara, J. P., and Chandler, D. G.: Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain, Hydrol. Earth Syst. Sci., 13, 1325–1336, https://doi.org/10.5194/hess-13-1325-2009, 2009.
Winzeler, H. E., Owens, P. R., Read, Q. D., Libohova, Z., Ashworth, A., and Sauer, T.: Topographic Wetness Index as a Proxy for Soil Moisture in a Hillslope Catena: Flow Algorithms and Map Generalization, Land, 11, 2018, https://doi.org/10.3390/land11112018, 2022.
Wu, D., Wang, T., Di, C., Wang, L., and Chen, X.: Investigation of controls on the regional soil moisture spatiotemporal patterns across different climate zones, Sci. Total Environ., 726, 138214, https://doi.org/10.1016/j.scitotenv.2020.138214, 2020.
Zhao, Y., Peth, S., Reszkowska, A., Gan, L., Krummelbein, J., Peng, X., and Horn, R.: Response of soil moisture and temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia, Plant Soil, 340, 89–89, 2011.
Zhao, Z., Yang, Q., Ding, X., and Xing, Z.: Model Prediction of the Soil Moisture Regime and Soil Nutrient Regime Based on DEM-Derived Topo-Hydrologic Variables for Mapping Ecosites, Land, 10, 449, https://doi.org/10.3390/land10050449, 2021.
Zignol, F., Kjellström, E., Hylander, K., Ayalew, B., Zewdie, B., Rodríguez-Gijón, A., and Tack, A. J. M.: The understory microclimate in agroforestry now and in the future – a case study of Arabica coffee in its native range, Agr. Forest Meteorol., 340, 109586, https://doi.org/10.1016/j.agrformet.2023.109586, 2023.
Zignol, F., Lidberg, W., Greiser, C., Larson, J., Hoffrén, R., and Ågren, A. M.: Data repository: Controls on spatial and temporal variability of soil moisture across a heterogeneous boreal forest landscape, V1, Mendeley Data [data set], https://doi.org/10.17632/s8zg5ymkh6.1, 2025.
Short summary
We investigated the factors influencing spatial and temporal variations in soil moisture across a boreal forest catchment in northern Sweden. We found that soil moisture is shaped by topography, soil properties, vegetation characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
We investigated the factors influencing spatial and temporal variations in soil moisture across...