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Abstract. In light of climate change and biodiversity loss,
modeling and mapping soil moisture at high spatiotemporal
resolution is increasingly crucial for a wide range of appli-
cations in Earth and environmental sciences, particularly in
boreal forests, which play a key role in global carbon cy-
cling, are highly sensitive to hydrological changes, and are
experiencing rapid warming and more frequent disturbances.
However, modeling and mapping soil moisture dynamics is
challenging due to the nonlinear interactions among numer-
ous physical and biological factors and the wide range of
spatial and temporal scales at play. This study aims to iden-
tify key spatial and temporal controls on soil moisture us-
ing an empirically based modeling approach. We focused
on a boreal forest landscape in northern Sweden, where we
monitored surface soil moisture with dataloggers at 78 loca-
tions during the summer of 2022. We investigated the rela-
tionships between observed soil moisture variations and nu-
merous environmental and meteorological predictors from
multiple sources at varying spatial resolutions and tempo-
ral scales, and we assessed how these relationships changed
over time. Spatial variation in soil moisture was influenced
not only by topography and by the spatial resolution used
to represent it, but also by soil properties, vegetation, and
land use/land cover (LULC). In addition, the relative impor-
tance of these factors changed over time, with topography
generally explaining more spatial variation during wet pe-
riods, while soil and vegetation were more relevant during
dry periods. This suggests that current soil moisture maps
relying primarily on topographic indices could benefit from
integrating soil, vegetation, and LULC information to bet-

ter capture spatial variability under different wetness condi-
tions, as well as from selecting the optimal spatial resolu-
tion for the specific area of interest. Temporal variation in
soil moisture was better explained by hydrological and me-
teorological variables averaged over 5 to 7 d preceding soil
moisture measurements, highlighting the importance of ac-
counting for both lagged and cumulative effects of weather
conditions. Field predictors generally outperformed remote
sensing and modeled predictors, indicating that soil moisture
mapping based solely on spatially continuous predictors re-
quires improving spatial detail of maps describing soil tex-
ture, structure, and organic matter content. Our findings con-
tribute to improving the accuracy and interpretability of data-
driven methods, such as machine learning, for mapping soil
moisture across space and time for forest management and
nature conservation.

1 Introduction

Soil moisture, often referred to as the water content within
the soil, is a key component in modulating terrestrial ecosys-
tem dynamics, playing a crucial role in the water, energy,
and biogeochemical cycles at the interface between the atmo-
sphere and the land surface (Seneviratne et al., 2010; Ochsner
et al., 2013). In boreal forests, soil moisture has been proven
to affect tree growth (Sikstrom and Hokk&, 2016; Van Sun-
dert et al., 2018; Larson et al., 2024), influence soil nitrogen
availability and, in turn, needle production (Nogovitcyn et
al., 2023), and control the distribution of soil organic car-
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bon stocks (Larson et al., 2023). Modeling the soil moisture
state, along with its spatial and temporal fluctuations, is es-
sential for numerous Earth and environmental sciences ap-
plications, such as weather forecasting (Collow et al., 2014),
water resource management (Dobriyal et al., 2012), forest
fire prediction (Chaparro et al., 2016), forest soil trafficabil-
ity (Schonauer et al., 2024), sustaining ecosystem services
(Vereecken et al., 2016), and monitoring ecosystem response
to climate change (Jones et al., 2017). Spatial heterogeneity
in soil moisture is a key factor in providing diverse habitats,
thereby promoting biodiversity (McLaughlin et al., 2017).
Temporal variations in soil moisture also influence ecosys-
tem composition, with different species communities de-
pending on more stable or variable soil moisture conditions
(Kemppinen et al., 2019). Modeling both components of soil
moisture variability assumes even greater significance in the
context of climate change and biodiversity loss. In order to
accurately model soil moisture, however, it is first necessary
to gain a comprehensive understanding of the controls on
both spatial patterns and temporal dynamics of soil moisture.
Despite the considerable research in this field, most studies
primarily focused on the spatial variability of soil moisture,
often neglecting temporal variations (Kopecky et al., 2021;
Agren et al., 2021; Zhao et al., 2021), restricted analysis to
specific spatial resolutions or temporal scales, overlooking
their effects on soil moisture predictions (de Oliveira et al.,
2021; Tyystjdrvi et al., 2022; Schonauer et al., 2024), or ana-
lyzed a partial subset of soil moisture drivers, while omitting
others (Potopova et al., 2016; Ge et al., 2022; Larson et al.,
2022). For mapping purposes, it is also important to eval-
uate how well spatially continuous variables (e.g., gridded
datasets) perform as predictors of soil moisture compared to
field measurements (Zignol et al., 2023). Identifying key pre-
dictors of both spatial and temporal soil moisture variability —
particularly those derived from remote sensing and modeled
products at multiple spatial resolutions and temporal scales
— can inform and strengthen data-driven approaches, such as
machine learning, by improving both their predictive accu-
racy and interpretability when mapping soil moisture across
space and time.

Factors influencing soil moisture spatiotemporal variabil-
ity can be classified into five broad groups: topographical
features, soil properties, vegetation characteristics, land use/-
land cover (LULC), and meteorological forcings (Petropou-
los et al., 2013; Rasheed et al., 2022). While spatial variations
in soil moisture result from the combined effect of multiple
types of drivers, most studies have focused on one or two
groups (Gwak and Kim, 2017), with topography being con-
sidered the most. Due to the ever-higher spatial resolution
of digital elevation models (DEMs), such as those derived
from airborne light detection and ranging (lidar) measure-
ments, researchers have increasingly relied on terrain indices
to explain local influences on soil moisture (Murphy et al.,
2011; Lidberg et al., 2020; Agren etal., 2021; Kopecky et al.,
2021). However, only a few studies assessed how the spatial
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resolution of these indices might affect the prediction of soil
moisture (Sgrensen and Seibert, 2007, Agren et al., 2014,
Larson et al., 2022). Non-topographical factors usually ex-
plain at least half of the spatial variability in soil moisture
(Western et al., 1999; Baldwin et al., 2017) and should be
taken into account to increase the predictive power of terrain
indices (Larson et al., 2022; Kemppinen et al., 2023). Some
of these drivers include soil texture (Krauss et al., 2010),
soil depth (Tyystjdrvi et al., 2022), organic matter content
(Amooh and Bonsu, 2015), hydraulic conductivity (Gwak
and Kim, 2017), vegetation density (Gwak and Kim, 2017),
vegetation type (Gaur and Mohanty, 2013), snow cover (Po-
topova et al., 2016), tillage (Jonard et al., 2013), and grazing
(Zhao et al., 2011). On the other hand, temporal variations
in soil moisture are mostly driven by meteorological vari-
ables, such as evapotranspiration and precipitation (McMil-
lan and Srinivasan, 2015; Stark and Fridley, 2023), but the
relationship between soil moisture and its controlling factors
strongly changes depending on the temporal scale considered
(Entin et al., 2000; Parent et al., 2006; Chai et al., 2020). A
comprehensive investigation of the role of topography, soil,
vegetation, LULC, and meteorological variables as well as
the effect of their spatial resolution and temporal scale in ex-
plaining soil moisture variations is essential for gaining new
insights into the key factors driving soil moisture and the op-
timal spatial resolutions and temporal scales that should be
used to predict it.

Research has demonstrated that the relative importance of
controls on soil moisture spatial distribution can also vary
with changing soil wetness conditions over time (Famigli-
etti et al., 1998; Western et al., 2004; Joshi and Mohanty,
2010; Mei et al., 2018; Gao et al., 2020; Wang et al., 2023).
At the catchment level, the wet state is dominated by lateral
surface and subsurface flows, which are influenced by nonlo-
cal controls, primarily macrotopography. Conversely, the dry
state is characterized by vertical water fluxes, such as infil-
tration and evapotranspiration, which are influenced by lo-
cal controls, mainly soil properties and vegetation (Grayson
et al., 1997; Western et al., 1999; Rosenbaum et al., 2012).
In cold-climate regions with seasonal snow cover, the rela-
tionship between topography and soil moisture is strong af-
ter snowmelt but weakens towards the end of the snowless
season when other processes, such as evaporation and tran-
spiration, primarily control soil moisture patterns (Rithimaki
etal., 2021; Kemppinen et al., 2023). Similar results emerged
from analyses comparing different seasons (Takagi and Lin,
2012) and years (Gaur and Mohanty, 2013), showing that to-
pography explains more variability in soil moisture spatial
patterns during the wetter season/year, while soil characteris-
tics play a more prominent role during the drier season/year.
However, recent research reveals a more complex relation-
ship, where the influence of topography on soil moisture does
not necessarily diminish under dry conditions or increase in
wet ones. Instead, the relative importance of terrain metrics
has been found to persist or even increase as catchments be-
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come drier (Liang et al., 2017; Kaiser and McGlynn, 2018;
Han et al., 2021) or to remain low during the wet season (Dy-
mond et al., 2021). Further research is needed to fully un-
derstand how the relationship between soil moisture spatial
variability and its controls changes in response to different
soil wetness conditions. This information holds practical sig-
nificance for predicting and mapping soil moisture not only
spatially, but also over time (e.g., Schonauer et al., 2024).

In predictive models, spatial and temporal variations in
soil moisture are commonly estimated by using one of two
types of predictors: either point-scale field measurements or
gridded datasets derived from remote sensing and other mod-
eling procedures, such as spatial interpolation and data as-
similation (e.g., climate reanalyses). In situ observations are
typically more accurate but lack spatial continuity, and field
campaigns require great efforts in terms of human and fi-
nancial resources, especially when many environmental vari-
ables need to be measured. Conversely, remote sensing and
modeled estimates are spatially continuous and can cover
large geographic areas, with most datasets being freely avail-
able, but they tend to be less accurate than field measure-
ments. Due to advancements in spatial and temporal reso-
lutions, alongside enhanced algorithms, remote sensing and
modeled products are increasingly being employed to predict
spatiotemporal variability in soil moisture, gradually replac-
ing, in most instances, in situ observations. While field mea-
surements have been widely used for validation purposes,
only a limited number of studies have explicitly compared
these two kinds of datasets regarding their predictive capabil-
ities (e.g., KaSpar et al., 2021; Zignol et al., 2023). Remote
sensing and modeled gridded predictors have the potential
to be used to develop dynamic soil moisture maps over ex-
tensive areas, but their predictive performance should be as-
sessed in relation to analogous variables collected in the field.

In this study, we investigated the climatic and environmen-
tal factors that determined spatial patterns and temporal dy-
namics of surface soil moisture measured using 78 datalog-
gers during 3 snow-free months in 2022 across a heteroge-
neous boreal forest landscape in northern Sweden. By tak-
ing advantage of extensive field measurements available for
the well-studied Krycklan catchment (Laudon et al., 2013,
2021), we were able to analyze a broad range of soil moisture
predictors and compare their predictive performance with
those of analogous variables obtained from remote sensing
or modeled datasets. We tested the hypotheses that the spa-
tial resolution of gridded predictors influences the ability to
predict spatial variations in soil moisture and that meteoro-
logical conditions preceding the logger recordings are key to
predicting its temporal variations. Additionally, we examined
whether the relative importance of predictors in explaining
spatial variability in soil moisture changes in response to dif-
ferent wetness conditions throughout the study season. With
the ultimate purpose of providing insights into data-driven
modeling of soil moisture across time and space, we identi-
fied four specific aims: (i) to assess how different variables at
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varying spatial resolutions affect the prediction of soil mois-
ture spatial variability, (ii) to evaluate the relative contribu-
tion of numerous meteorological variables at multiple tem-
poral scales in predicting soil moisture temporal variability,
(iii) to investigate how varying soil wetness conditions over
time impact the ability to explain spatial variations in soil
moisture, and (iv) to compare the predictive performance of
field measurements versus remote sensing and modeled esti-
mates.

2 Material and methods
2.1 Study area

The Krycklan catchment covers an area of about 68 km? in
northern Sweden (Fig. 1), with elevations ranging between
127 and 372 m a.s. 1. (Fig. S1b in the Supplement) (Larson et
al., 2022). Soils, lying on a poorly weathered gneiss bedrock,
consist primarily of unsorted glacial till (51 %) at higher alti-
tudes and postglacial sorted sediments of sand and silt (30 %)
at lower altitudes (Fig. Sla) (Laudon et al., 2013). In the
northern part of the catchment, peat has built up in areas
with low topographic relief, typically forming oligotrophic
minerogenic mires (8.7 %) (Fig. Sla and d) (Laudon et al.,
2021). The landscape is predominantly forested (87.5 %)
(Fig. Slc and d), with Scots pine (Pinus sylvestris) and Nor-
way spruce (Picea abies) as the main tree species (63 %
and 26 %, respectively) and an understory of bilberry (Vac-
cinium myrtillus) and cowberry (Vaccinium vitis-idaea) on
moss mats of Hylocomium splendens and Pleurozium schre-
beri (Laudon et al., 2013). The remaining coverage includes
arable land (2.0 %), open land (0.9 %), lakes (0.8 %), and a
small fraction of urban land (0.03 %) (Fig. S1d) (Lantmai-
teriet, 2023). The area is characterized by a cold temperate
humid climate, with a mean annual temperature of 2.1 °C
and total annual precipitation of 619 mm, over 30 % of which
falls as snow (Larson et al., 2022). Approximately 25 % of
the forested area has been protected since 1922, while the
remaining majority consists of second-growth managed for-
est. Forestry practices have shifted over time, from selective
cutting prior to the 1940s to predominantly rotation forestry
characterized by clear-cutting and subsequent conifer plant-
ing, resulting in a heterogeneous landscape with varying
stand ages and species compositions (Laudon et al., 2021).
Since the 1980s, the Krycklan catchment has supported re-
search on ecosystem dynamics and forest management with
high-quality, long-term climatic, biogeochemical, hydrolog-
ical, and environmental measurements, making it a unique
field infrastructure in boreal forest landscapes (Laudon et
al., 2013). It features 11 gauged streams, around 1000 soil
lysimeters, 150 groundwater wells, over 500 permanent for-
est inventory plots, three automatic weather stations (Fig. 1),
and a 150 m tall ICOS (Integrated Carbon Observation Sys-
tem) tower (Fig. 1) for measuring atmospheric gas concen-
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trations and biosphere—atmosphere exchanges of carbon, wa-
ter, and energy (Laudon et al., 2021). Additionally, high-
resolution multi-spectral lidar measurements and large-scale
experiments have been conducted in the Krycklan catchment
over the past decade.

2.2 Meteorological and environmental data

The extensive field inventory for the Krycklan catchment,
combined with remote sensing and modeled data (e.g., from
spatial interpolation and data assimilation), enabled us to
evaluate a wide range of meteorological and environmen-
tal variables as potential predictors of soil moisture, the re-
sponse variable in our study. We classified predictors into two
groups: “spatial” predictors, which were assumed to be tem-
porally static during the study season but varied spatially and
were used to explain the spatial variability in soil moisture
(Table 1), and “temporal” predictors, which varied tempo-
rally but not spatially across the study area and were used to
explain the temporal variability in soil moisture (Table 2).

2.2.1 Response variable: soil moisture

To measure soil moisture, we selected a subset of 78 plots
(Fig. 1) from a forest survey grid established in 2014 (Larson
et al., 2023). This grid consists of 500 equally spaced plots
(350 m apart), each of 10 m radius, covering the entire Kryck-
lan catchment. Plot selection was informed by previous re-
search (Larson et al., 2022), which classified most of the 500
plots into five soil moisture classes based on the Swedish
National Forest Inventory (NFI) protocol. Our aim was to
capture the full range and distribution of soil moisture condi-
tions — from dry ridges to wet peatlands — observed across the
Swedish forest landscape (see Fig. 3 in Agren et al., 2021).
To achieve this, approximately half of the selected plots were
located in the central part of the catchment (Fig. 1), charac-
terized by a highly heterogeneous landscape with diverse soil
moisture conditions (Fig. S1). The remaining loggers were
distributed throughout the catchment to ensure adequate spa-
tial coverage while maintaining accessibility.

At each site, we measured the soil moisture content of the
upper 14 cm of soil at a 15 min resolution using a TOMST
temperature—moisture sensor (TMS) (Wild et al., 2019). We
installed the loggers in June/July 2022 and we downloaded
the data in October 2022, covering 92 d for all sites (from
5 July to 4 October). Because the sensor in the TMS log-
ger relies on the time domain transmission method (Wild et
al., 2019), we converted the raw signals into volumetric wa-
ter content using the universal calibration equation presented
in Kopecky et al. (2021). We also evaluated the soil-specific
conversion functions proposed by Wild et al. (2019), but we
found that some of the resulting volumetric water content
values were nonsensical (e.g., <0% and > 100 %), partic-
ularly in mires. Consistent with findings from other studies
in similar landscapes (e.g., Kemppinen et al., 2023), we con-
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cluded that these conversion functions were unsuitable for
the soil types in Krycklan, specifically peat soils. Because
the conversion did not alter the relative order among sites,
we eventually adopted the universal curve for all plots, which
produced a more realistic range of volumetric water content
values.

We plotted each individual time series and conducted a
thorough visual inspection to identify any anomalies. We
checked for sudden drops in soil moisture that quickly re-
versed, as these often indicate potential loss of contact be-
tween sensor and soil. We carefully removed potentially er-
roneous data to ensure the reliability of our dataset. From the
15 min time series of volumetric water content, we calculated
the mean daily time series for each plot, which served as the
response variables in study aim (iii) (Table 3). We then aggre-
gated these data to generate two additional datasets: the sea-
sonal average of mean daily values for each plot and the spa-
tially averaged mean daily time series across all sites, used as
the response variables in study aims (i) and (ii), respectively
(Table 3). For simplicity, when referring to our analysis, we
use the term “soil moisture” in lieu of “volumetric water con-
tent at a depth of 0—14 cm”.

2.2.2 Spatial predictors: soil, topography, vegetation,
and land use/land cover

In addition to monitoring soil moisture, we collected a vast
array of environmental variables for each of the 78 plots
(Fig. 1 and Table 1). Field variables were selected from the
Krycklan inventory or during our field campaigns, whereas
non-field variables were extracted from existing vector and
raster maps, lidar-derived topographic indices, and other re-
mote sensing products. In the case of topographic indices
and the normalized difference vegetation index (NDVI), we
extracted plot values from layers at different spatial resolu-
tions (0.5, 1, 2, 4, 8, 16, 32, and 64 m for the topographic in-
dices and 0.4, 2, and 30 m for NDVI) to assess how varying
spatial resolutions explained soil moisture spatial variability.
We also tested the effect of different user-defined thresholds,
specifically two vertical distances (2 and 4 m) for the downs-
lope index and six stream initiation thresholds (1, 2, 4, 8, 16,
and 32 ha) for depth to water and elevation above stream. To
facilitate the visualization and interpretation of the results, all
predictors were subdivided into four groups, namely soil, to-
pography, vegetation, and land use/land cover (LULC), and
18 color-coded categories (Table 1). Categories encompass
analogous variables from distinct sources (e.g., land cover),
diverse measures of a common feature (e.g., forest structure),
the same variable at different spatial resolutions and/or user-
defined thresholds (e.g., depth to water), or a combination of
these cases. Note that classes of qualitative variables were
treated as independent predictors in this analysis (e.g., soil
survey). Table 1 lists all the spatial predictors evaluated in
this study. A detailed description of each can be found in the
Supplement.
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Figure 1. Overview of the Krycklan catchment showing the locations of the 78 soil moisture monitoring plots, the three automatic weather
stations, and the ICOS tower, with the ERA5-Land grid superimposed. Orthophoto and water network: Lantmateriet (2021).

2.2.3 Temporal predictors: meteorological forcings

For the temporal analysis, we selected meteorological vari-
ables (Table 2) from three datasets, including reanalysis
data from the land component of the European Centre for
Medium-Range Weather Forecasts (ECMWF) Atmospheric
Reanalysis Fifth Generation (ERAS-Land) (Mufioz-Sabater,
2019; Muioz-Sabater et al., 2021), atmospheric data from
the ICOS tower (Peichl et al., 2024), and three automatic
weather stations (Svartberget Research Station, 2022a, b,
c). For each variable, we generated a single daily time se-
ries from 5 July to 4 October 2022 for the entire catchment
by calculating the spatial average between either the three
weather stations or the six ERAS5-Land cells covering the
Krycklan area (Fig. 1). To evaluate how varying temporal
scales explained temporal variability of soil moisture, we cre-
ated seven additional time series for each variable based on
different temporal scales, including the preceding day and
the average between the 3, 5, 7, 10, 14, and 21 preceding
days. All predictors were subdivided into 12 color-coded cat-
egories to facilitate the visualization of the results. These
categories group together analogous variables from distinct
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sources (e.g., precipitation), any variable measured at dif-
ferent depths (e.g., soil water) or heights (air temperature),
diverse aspects of the same process (e.g., evaporation), or a
combination of these cases. Table 1 lists all the temporal pre-
dictors analyzed in this study, with a detailed description of
each provided in the Supplement.

2.3 Statistical model

To identify significant predictors of soil moisture, we used
orthogonal projections to latent structures (OPLS) analysis,
an enhanced version of partial least-squares regression (PLS)
(Eriksson et al., 2013). OPLS separates the systematic varia-
tion in the predictors (X) into two parts: a predictive compo-
nent (horizontal axis) that is directly associated with the re-
sponse variable of interest (¥') and an orthogonal component
(vertical axis) that represents the variation unrelated to Y.
This method improves interpretability over ordinary PLS as
it allows for identifying key variables for predicting Y while
isolating less important variables that contain noise. OPLS
is particularly well suited for high-dimensional datasets, as
it effectively handles multicollinearity among predictors and

Hydrol. Earth Syst. Sci., 29, 5493-5513, 2025



5498 F. Zignol et al.: Controls on spatial and temporal variability of soil moisture

Table 1. All predictors of soil moisture spatial variability evaluated in this study. The 48 predictors are subdivided into four groups and 18
color-coded categories, listed in alphabetical order within each group and category based on the abbreviation code (“Abbr.” column). The
table also displays the data source (field, non-field raster (N-field r), non-field vector (N-field v)), data type (qualitative (QI) vs. quantitative
(Qn)), and references. Each class of the qualitative variables is considered to be a distinct predictor in the analysis. The number of layers
of the topographic and vegetation indices is reported in parenthesis after the predictor name, and it depends on the following: ! the spatial
resolutions (0.5, 1, 2, 4, 8, 16, 32, and 64 m for the topographic indices and 0.4, 2, and 30 m for NDVI), 2 the stream initiation thresholds
(1, 2, 4, 8, 16, and 32 ha for depth to water and elevation above stream), and 3 the vertical distances (2 and 4 m for the downslope index).
An asterisk denotes the 22 most relevant soil moisture predictors, which are displayed in Fig. 3. The 26 remaining predictors (without an
asterisk) are shown in Fig. S2. The Supplement provides a detailed description of each variable listed in this table.

Group Category Name (number of layers) Abbr. Source  Type Reference
B Organic soil Organic layer thickness * olt Field Qn  Zignol etal. (2025)
Soil depth SGU soil depth map sd-sgu N-fieldr Qn  SGU (2024a)
B Soil moisture Soil moisture survey * sms Field Qn  Zignol etal. (2025)
loamy sand * ss-losa
peat * ss-pt
Soil survey sand ss-sa Field Ql Zignol et al. (2025)
i sandy loam ss-salo
Soil X X
silt loam ss-silo
B Soil type clay to silt st-cs
glacifluvial sediment st-gfs
< postglacial sand st-ps
EGU Quaternary _ N-fieldv QI  SGU (2024b)
eposit map postglacial sand to gravel ~st-psg
peat * st-pt
till st-till
B Depth to water Depth to water (48) * dtw?-1 Lidberg et al. (2020)
Diffuse solar radiation Diffuse solar radiation (8) dfr-!
Zignol et al. (2025)
Direct solar radiation Direct solar radiation (8) * drr-*
B Downslope index Downslope index (16) * di?-
Elevation above stream Elevation above stream (48) * eas?-! N-fieldr Qn
Topography M Landscape wetness Index Landscape wetness index (8) * wilt-!
POSIAPLY P P Lidberg et al. (2020)
Plan curvature Plan curvature (8) * ple-!
Relative topographic position Relative topographic position (8) * rtp-!
B Topographic wetness index ~ Topographic wetness index (8) * twi-!
SLU soil moisture map * sm-slu N SLU (2021)
Topography-based map . . . . N-fieldr Qn
Soil moisture index map * smi Naturvéardsverket (2022)
Biomass above ground bio Field Qn  Zignol et al. (2025)
SLU forest biomass map bio-slu Qn  SLU (2010)
N-field r Lantmiiteriet (2021),
M Forest productivit i i ion i * it »
orest productivity Normalized difference vegetation index (3) ndvi Qn USGS (2022)
Site index by site factors * sis . .
. Field Qn  Zignol et al. (2025)
Stem density stm
Volume of birch species bir Field Zignol et al. (2025)
SLU birch map bir-slu N-field r SLU (2010)
Volume of pine species * pi Field Zignol et al. (2025)
. Species composition X Qn
Vegetation SLU pine map pi-slu N-field r SLU (2010)
Volume of spruce species spr Field Zignol et al. (2025)
SLU spruce map spr-slu N-field r SLU (2010)
Canopy openness co
Basal area weighted mean diameter dgv Field Zignol et al. (2025)
Basal area weighted mean height hgv
B Forest structure X Qn
SLU basal area weighted mean height map hgv-slu  N-field r SLU (2010)
Volume of all tree species vol Field Zignol et al. (2025)
SLU forest volume map vol-slu  N-field r SLU (2010)
Land map — clearcut Im-cut Skogsstyrelsen (2024)
Land map — forest * Im-for N-fieldv QI
Lantmateriet (2023)
Land map — peatland * Im-ptl
LULC Land use/land cover
Land survey — clearcut Is-cut
Land survey — forest * Is-for Field Ql Zignol et al. (2025)
Land survey — peatland * Is-ptl
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Table 2. All predictors of soil moisture temporal variability assessed in this study. The 60 predictors are subdivided into 12 color-coded
categories, listed in alphabetical order within each category based on the abbreviation code (“Abbr.” column). The table also indicates the
unit of measurement, the dataset (ERAS5-Land, ICOS tower, or weather stations), and data source (field vs. non-field (N-field)). Whenever
possible, either the sensor height (field data) or the height of the estimated values (ERAS5-Land) is reported in parenthesis after the predictor
name. An asterisk denotes the 25 most relevant predictors, which are displayed in Fig. 4. The 35 remaining predictors (without an asterisk)
are shown in Fig. S3. The Supplement provides a detailed description of each variable listed in this table.

Category Name (height of sensor or estimated values) Abbr. Unit Dataset Source
2 m dewpoint temperature (2 m) d2m
Skin temperature (0 m) skt ERAS-Land N-field
2 m temperature (2 m) 2m
Air temperature (1.7 m) ta Weather stations
Air temperature . °C
Air temperature level 1 (42 m) tal
Air temperature level 2 (30 m) ta2 Field
1COS tower
Air temperature level 3 (20 m) ta3
Air temperature level 4 (10 m) ta4
Air relative humidity (32.5 m) * th % ICOS tower Field
W Air water
Skin reservoir content * src mm ERAS-Land N-field
Total evaporation e
Evaporation from bare soil ebs
Evaporation Potential evaporation * ep mm, accumulated ERAS-Land N-field
Evaporation from the top of canopy * etc
Evaporation from vegetation transpiration * evt
Soil heat flux level 1 (0 cm) shl .
W/m? ICOS tower Field
M Heat Soil heat flux level 2 (5 cm) sh2
Surface sensible heat flux (0 m) * shf  J/m? accumulated ERAS-Land N-field
Total precipitation * P ERAS-Land N-field
B Precipitation N mm, accumulated
Total precipitation (1.5 m) * pr Weather stations  Field
Air pressure (1.7 m) * pa Weather stations  Field
Surface pressure (0 m) * sp ERAS-Land N-field
B Pressure hPa X
Vapor pressure (1.7 m) vp Weather stations Field
ie
Vapor pressure deficit (32.5 m) * vpd ICOS tower
Category Name (height of sensor or estimated values) Abbr. Unit Dataset Source
Forecast albedo fal dimensionless, 0—1 ERAS5-Land N-field
Long wave incoming radiation (50 m) * Iwi §
. . W/m? ICOS tower Field
Long wave outgoing radiation (50 m) Iwo
Surface net solar radiation (0 m) nsr
Radiation . J/m?, accumulated ERAS5-Land N-field
Surface net thermal radiation (0 m) * ntr
Short wave incoming radiation (50 m) * swi .
W/m? ICOS tower Field
Short wave outgoing radiation (50 m) * SWO
Surface thermal radiation downwards (0 m) * trd J/m?, accumulated ERAS5-Land N-field
Runoff 10
B Runoff Surface runoff (0 m) * ST mm, accumulated ERAS5-Land N-field
Sub-surface runoff st
Soil temperature level 1 (0-7 cm below surface) stl
Soil temperature level 2 (7-28 cm below surface) st2
i ERAS-Land N-field
Soil temperature level 3 (28-100 cm below surface) * st3
X Soil temperature level 4 (100-289 cm below surface) st4
Soil temperature . °C
Soil temperature level 1 (-10 cm) tsl .
i Weather stations
Soil temperature level 2 (-20 cm) ts2 §
Field
Soil temperature level 3 (-30 cm) * ts3
; ICOS tower
Soil temperature level 4 (-50 cm) ts4
Soil water content level 1 (-2.5 cm) * sml
Soil water content level 2 (-5 cm) sm2
ICOS tower Field
Soil water content level 3 (-10 cm) sm3
Soil water content level 4 (-30 cm) sm4
Soil water o %
Volumetric soil water level 1 (0=7 cm below surface) * swl
Volumetric soil water level 2 (7-28 cm below surface) sw2
. ERAS5-Land N-field
Volumetric soil water level 3 (28—100 cm below surface) sw3
Volumetric soil water level 4 (100-289 cm below surface) swé
Leaf area index, high vegetation lai m?/m?* ERAS-Land N-field
Photosynthetic photon flux density below canopy incoming (1.15 m) pbe
B Vegetation Photosynthetic photon flux density diffuse (50 m) pd
. umolPhotons/m?/s ICOS tower Field
Photosynthetic photon flux density incoming (50 m) * pi
Photosynthetic photon flux density outgoing (50 m) * po
10 m u-component of wind * ul0 N
i m/s ERAS5-Land N-field
10 m v-component of wind v10
Wind Wind directi hic north (34.5 m) 4 degreesN
‘ind direction respect to geographic north (34.5 m W egrees
P geograp ¢ 1COS tower Field
Wind speed (34.5 m) * ws m/s
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reduces the risk of overfitting. In this two-dimensional space,
positive or negative loadings on the predictive axis denote
variables that are positively or negatively correlated with Y,
with stronger correlations as distance from the origin in-
creases. Conversely, loadings on the orthogonal axis, farther
from the origin, indicate less correlated variables (i.e., higher
noise). In our study, we used soil moisture measurements
from dataloggers as the response variable (Y).

We created two types of OPLS models (Table 3). The
first type, termed “spatial” OPLS, assessed the role of en-
vironmental predictors (soil, topography, vegetation, and
LULC) (Table 1) in explaining the observed spatial distri-
bution in soil moisture through direct plot-by-plot compar-
ison. In these models, all environmental predictors varied
across Krycklan but were assumed to be constant over time.
Similarly, the response variable was spatially heterogeneous,
but only one time step was included in each model. Specif-
ically, to evaluate the relative importance of environmental
predictors (aim i), we considered the soil moisture seasonal
average, whereas to assess how the contribution of these
predictors changed over time (aim iii), we ran the OPLS
model 92 times using soil moisture daily values as the re-
sponse variable (Table 3). The second type, termed “tempo-
ral” OPLS, evaluated the influence of meteorological predic-
tors (Table 2) on the observed daily variations in soil mois-
ture through direct day-by-day comparison (aim ii). In this
model, all meteorological predictors and the response vari-
able changed daily but were considered uniform across the
study area (i.e., we calculated the spatial average) (Table 3).

To evaluate the predictive performance of field versus non-
field data (aim iv), we ran both the spatial and temporal
OPLS models using three different subsets of predictors:
(1) only remote sensing and modeled estimates, including
gridded and vector datasets such as topographic and veg-
etation indices and metrics, soil and LULC vector maps,
and ERAS-Land time series; (2) only field measurements
from surveys or permanent stations (i.e., weather stations and
ICOS tower); and (3) a combination of all predictors. To as-
sess the predictive performance of the overall OPLS mod-
els, we considered R? Y (cum), which represents the cumu-
lative variation in the response variable (i.e., soil moisture)
explained by the three subsets of predictors.

To estimate the predictive performance of each variable,
we also calculated the variable importance on projection
for the predictive component (VIPpedictive) for the 94 OPLS
models based on all predictors (Table 3). These values are
normalized such that if each X variable contributed equally
to the model, their VIPpredictive Would be 1. Variables with
a VIPpredictive value greater than 1 are considered relevant
predictors, with higher scores indicating greater predictive
power (Eriksson et al., 2013). We used this metric and thresh-
old to distinguish relevant soil moisture predictors, presented
in Figs. 3 and 4, from less important ones, included in the
Supplement (Figs. S2 and S3). We processed all the data
in R version 4.3.0 (R Core Team, 2023), we generated all
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OPLS models and calculated the related VIPpredictive SCOTes
in SIMCA 17.0, and we drew all the figures using the R
ggplot2 package (Wickham, 2016), ArcGIS Pro (Esri Inc.,
2023), and Adobe Illustrator (Adobe Inc., 2024).

3 Results

3.1 Observed spatial and temporal variability in soil
moisture

Analysis of the logger data revealed large spatial variabil-
ity in both seasonal averages and seasonal standard devia-
tions of soil moisture, ranging from 14 % to 56 % (~ 60 %
= fully saturated) and 0.4 % to 5.6 %, respectively (Fig. 2a).
Among the 78 sites studied, 14 exhibited an increasing trend
in soil moisture over the season, seven a decreasing trend,
and the remaining 57 no trend, based on the nonparamet-
ric Mann—Kendall test (Mann, 1945; Kendall, 1975) at 95 %
confidence level (Fig. 2bc). The magnitude of soil moisture
change over the entire study period, indicated by the trend
Theil-Sen slope (Sen, 1968), varied between —8.4 % and
10% (Fig. 2b, Table S1 in the Supplement), whereas the
strength of the monotonic association between soil moisture
and time, as measured by Kendall’s correlation coefficient
(1), ranged from —0.58 to +0.57 (Table S1). Daily peaks in
soil moisture were typically associated with major precipita-
tion events, although the magnitude of these peaks and subse-
quent declines during dry periods varied considerably across
locations (Fig. 2c¢). Conversely, the daily spatial variability
(i.e., standard deviation) in soil moisture (black line) exhib-
ited a sharp decline during precipitation events (especially in
August and September), followed by a steady increase lead-
ing up to peaks at the culmination of subsequent dry periods
(bottom part of Fig. 2c). The soil moisture time series from
ERAS-Land (brown lines) closely tracked the temporal vari-
ability of the mean across all sites (red line) but underesti-
mated daily soil moisture amounts averaged across all sites
(Fig. 2¢). Overall, Fig. 2 shows that the 78 sites responded
differently to similar weather conditions and that the spatial
variability in soil moisture among all sites is much larger than
the temporal variability in soil moisture observed throughout
the study season.

3.2 Controls on soil moisture variability

OPLS plots served as a means to visualize in two dimen-
sions the relative importance of factors controlling soil mois-
ture variability, with loadings located closer to the horizon-
tal axis (i.e., lower noise) and farther from the vertical axis
(i.e., higher predictive power) indicating the most relevant
predictors. Variables on the right side of the plot are posi-
tively correlated to soil moisture, while those on the left side
are negatively correlated. Remote sensing and modeled es-
timates are represented by circles (raster datasets) or rhom-
buses (vector datasets), whereas field measurements are dis-
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Table 3. All OPLS models developed in this study.
Aim  Model type Predictors (X)  Predictors’ characteristics ~ Predictors’ subsets Response variable (Y) No. of models  Figure
@) Spatial Soil Different spatial 3 (all, only remote Seasonal average of 3x1=3 3
OPLS Topography resolutions and sensing and modeled  mean daily values
Vegetation user-defined estimates, only for each plot
LULC thresholds field data)
(ii) Temporal Meteorological — Different temporal 3 (all, only remote Spatially averaged 3x1=3 4
OPLS forcings scales sensing and modeled  mean daily time
estimates, only series across
field data) all sites
(iii)  Spatial Soil Different spatial 3 (all, only remote Mean daily value 3x92=276 5
OPLS Topography resolutions and sensing and modeled  of any day within
Vegetation user-defined estimates, only the season each plot
LULC thresholds field data)

played as triangles. The size of the symbols is proportional
to either the spatial resolution or the temporal scale of the
potential soil moisture predictors. Variables are grouped to-
gether into color-coded categories to facilitate the reading of
the OPLS plots. When multiple spatial resolutions or tempo-
ral scales were investigated for a certain variable, its load-
ings were connected through guides transitioning from high
to low resolution or scale, and only the optimal resolution or
scale was labeled. The upcoming two sections will focus on
outlining the key features of the spatial OPLS plot (Figs. 3
and S2) and the temporal OPLS plot (Figs. 4 and S3), re-
spectively. Due to the large number of variables analyzed in
this study, Figs. 3 and 4 only present the most relevant pre-
dictors (VIPpredictive greater than 1, marked by an asterisk in
Tables 1 and 2), whereas all remaining variables are included
in the Supplement (Figs. S2 and S3).

3.2.1 Spatial variation

Relative topographic position emerged as the strongest pre-
dictor of soil moisture at a 16 m resolution (rtp-16), but its
predictive performance decreased at lower and higher res-
olutions (Fig. 3). Similar to relative topographic position,
depth to water and elevation above stream were negatively
correlated with soil moisture, with loadings clustered in the
bottom-left quadrant (Figs. 3 and S2). These two indices
showed reduced performance and increased noise for higher
stream initiation thresholds (Fig. S2). However, while coarse
resolution (64 m) was optimal for elevation above stream,
high resolution (0.5 or 1 m) was preferable for depth to wa-
ter (Fig. S2), with eas1-64 and dtw1-05 overall performing
best (Fig. 3). In the top-right quadrant (i.e., positively corre-
lated), the topographic wetness index and landscape wetness
index were good predictors of soil moisture at their optimal
resolutions of 32m (twi-32) and 4 m (wilt-4), respectively
(Fig. 3). At these resolutions, they performed comparably to
the soil moisture index map (smi) and the SLU soil mois-
ture map (sm-slu), with the last one exhibiting slightly higher
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performance (Fig. 3). The downslope index and plan curva-
ture at their optimal vertical distance and/or spatial resolution
(di2-32 and plc-32), also positively correlated with soil mois-
ture, showed slightly lower predictive power but introduced
less noise (loadings closer to the origin) (Fig. 3). Direct so-
lar radiation was only relevant at a coarse resolution (drr-64)
(Fig. 3), while diffuse solar radiation was a less important
predictor (Fig. S2).

As for soil, three field variables — peat soil class (ss-pt),
soil moisture classes (sms), and organic layer thickness (olt)
— were robust predictors, showing a positive correlation with
soil moisture and low noise (Fig. 3). The peat class from the
SGU soil type map (st-pt) was also positively correlated, yet
it explained less variability than the analogous field predictor
(i.e., ss-pt). Both peatland (positively correlated) and forest
(negatively correlated) LULC classes similarly revealed that
the data collected in the field (Is-ptl and Is-for, respectively)
provided slightly better results than using information from
an existing map (Im-ptl and Im-for, respectively). Finally,
the loamy sand class from the soil survey (ss-losa) was, to
a lesser extent, an important predictor, negatively correlated
with soil moisture. The remaining soil and LULC variables,
whether derived from field observations or existing maps,
performed poorly in predicting soil moisture (Fig. S2).

Among the vegetation-related variables, volume of pine
(p1) showed the highest predictive performance, followed by
the normalized difference vegetation index at 2 m resolution
(ndvi-2) and the site index by site factors (sis), with pi and
sis being negatively correlated with soil moisture, whereas
ndvi-2 was positively correlated (Fig. 3). While ndvi-2 and
pi slightly outperformed, in terms of predictive power, anal-
ogous predictors at coarser spatial resolutions (ndvi-30 and
pi-slu, respectively), they also introduced more noise (Figs.
3 and S2). The remaining vegetation variables exhibited low
predictive performance or high noise, which made them less
suitable as soil moisture predictors (Fig. S2).
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Figure 2. Spatial and temporal variation of daily mean soil moisture (i.e., volumetric water content) measured by 78 loggers across the
Krycklan catchment from 5 July to 4 October 2022. Panel (a) displays the seasonal average and standard deviation of the measurements.
Panel (b) shows seasonal trends identified using the Mann—Kendall test at a 95 % confidence interval. Panel (c) presents the time series
plot, with logger data grouped by color according to trend type. The graphic includes additional data for comparison: estimates from six
ERAS-Land cells covering the catchment (brown lines), spatial mean (red line) and standard deviation (black line) among sites, and mean
precipitation across Krycklan derived from weather stations (bottom bar plot). For clarity, refer to Fig. 1 for the locations of the ERAS-Land
cells and weather stations. Orthophoto in panels (a) and (b): Lantmiteriet (2021).

3.2.2 Temporal variation lated with the response variable (Y'), though the strength of
the correlation generally decreased and noise increased with
longer temporal scales and deeper soil layers (Fig. S3).

The temporal OPLS analysis revealed that the optimal
temporal scale for most predictors ranged between 5 and 7d
preceding the datalogger recordings, with predictive perfor-
mance decreasing for both shorter and longer temporal scales
(Fig. 4). Skin reservoir content, which accounts for the wa-
ter in the vegetation canopy and in a thin layer on top of the

Soil moisture estimates from ERAS5-Land and ICOS mea-
surements were understandably the two best predictors of the
spatially averaged time series of soil moisture recorded at
the 78 study plots (Fig. 4). Their predictive performance was
highest when selecting the top soil layer and matching the
temporal scale with the response variable (sw1-0 and sm1-0).
Most loadings of these two predictors were positively corre-
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Figure 3. OPLS loading plot showing the relationship between a large array of “spatial” predictors, which vary spatially but remain constant
over time, and the mean seasonal soil moisture (5 July—4 October 2022). Both the spatial predictors (X variables) and the response variable
(Y variable) were gathered for 78 sites across the Krycklan catchment (Fig. 1 for the site locations). The spatial predictors, overall describing
soil, topography, vegetation, and land use/land cover at each site (gray dotted boxes in the figure legend), were either directly measured in
situ (symbolized by triangles) or estimated through remote sensing or modeling techniques (depicted as circles or rhombuses depending on
the dataset format). These predictors were organized into 18 color-coded categories (see Table 1; here only 15 are shown) to enhance plot
readability. Gridded (i.e., raster) predictors are characterized by a certain spatial resolution (expressed in meters, representing the length of
the grid cell side), which is proportional to the size of the circles. To visualize the effects of spatial resolution, guides connect loadings of the
same variable moving from high to low resolutions, with the variable name visible only in correspondence to the optimal resolution (refer
to Table 1 for variable labels). High positive and negative loadings on the predictive axis (pq[1]) represent variables that are positively and
negatively correlated with the response variable (Y), with stronger correlation further away from the origin. The orthogonal axis (poso[1])
indicates how much of the variation for each variable was not correlated with the response variable (Y). This figure only shows the 22 most
relevant predictors (VIPpredictive greater than 1, marked by an asterisk in Table 1). If multiple user-defined thresholds were tested for a certain
topographic index (i.e., depth to water, downslope index, and elevation above stream), the plot displays only the best-performing one. All 26
remaining variables are included in Fig. S2.

soil, at the 7d scale (src-7), emerged as a strong predictor,
positively correlated with soil moisture and associated with
minimal noise. Surface air pressure at the 7 d scale (sp-7 and
pa-7) was also a robust predictor, showing an inverse cor-
relation with soil moisture. Evaporation from the top of the
canopy at the 5d scale (etc-5) is in the vicinity yet towards
higher noise and lower predictive values.

https://doi.org/10.5194/hess-29-5493-2025

The remaining variables explaining the temporal variabil-
ity in soil moisture clustered into three distinct areas (Fig. 4).
On the right side of the OPLS plot, therefore indicating a
positive relationship with soil moisture, two clusters stood
out: air relative humidity (rh-7), surface net thermal radia-
tion (ntr-7), surface sensible heat flux (shf-3), evaporation
from vegetation transpiration (evt-7), and potential evapora-
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tion (ep-5) in the top quadrant and precipitation (pr-7 and
p-5), surface runoff (sr-5), longwave (i.e., thermal) incom-
ing radiation (Iwi-5 and trd-5), and wind speed (ws-5) in the
bottom quadrant. The third cluster, located in the bottom-left
quadrant, consisted of predictors negatively correlated with
soil moisture, including incoming and outgoing shortwave
radiation (swo-5 and swi-5), incoming and outgoing photo-
synthetic photon flux density (po-5 and pi-5), vapor pres-
sure deficit (vpd-7), 10 m u component of wind (x10-5), and
soil temperature (ts3-21 and st3-21). All air temperature vari-
ables, along with other less relevant predictors of soil mois-
ture, are shown in the Supplement (Fig. S3).

3.3 Spatial soil moisture variability under different
wetness conditions

The relative importance of predictors in influencing spa-
tial soil moisture variability remained relatively consistent
over the study period in the Krycklan catchment, with their
VIPpredictive values showing little variation throughout the
season (Figs. 5 and S4). The SLU soil moisture map (sm-slu)
exhibited the smallest variation among all predictors (sea-
sonal standard deviation of VIPpredictive: 0.03) (Fig. 5). In
contrast, two vegetation-related variables and direct solar ra-
diation (ndvi-2, pi, and ddr-64) showed the largest variation
(seasonal standard deviation of VIPpredictive: 0.09), reflecting
generally better performances in the first half of the season
(especially at the transition from July to August) compared
to the second half (Fig. 5).

Most predictors experienced abrupt drops in VIPpredictive
during intense and/or multi-day precipitation occurrences
(e.g., 16 September) (Fig. 5), when the soil moisture variabil-
ity across all 78 sites was also at its lowest (bottom graphic
in Fig. 2c). However, some topographic indices (dtw1-05,
easl-64, and, to a lesser degree, plc-32 and rpt-16) showed
increasing predictive power after the beginning of a precipi-
tation event (e.g., July 15 or September 15) (Fig. 5). During
drying periods (e.g., between late August and almost mid-
September), the VIPpregictive Values of the majority of predic-
tors tended to steadily and slowly decrease, except for three
notable exceptions: the loamy sand soil class (ss-losa), the
site index by site factors (sis), and the downslope index (di2-
32).

3.4 Field measurements compared to remote sensing
and modeled estimates

Field measurements generally outperformed remote sensing
and modeled data by approximately 6 % in both spatial and
temporal OPLS models, with the combination of all predic-
tors yielding the highest performance (Fig. 6a). In the tem-
poral OPLS models, more variance in soil moisture dynam-
ics was explained by data from the ICOS tower and weather
stations (R? Y (cum) = 0.96) compared to ERA5-Land esti-
mates (R2 Y (cum)=0.90). A similar pattern emerged in the
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spatial OPLS models, where soil, vegetation, and LULC data
collected in the field (R? Y(cum)=0.51) better explained
spatial variability in seasonal soil moisture than topographic
indices and existing soil, vegetation, and LULC maps (R?
Y(cum) =0.45).

In the spatial OPLS daily models (Fig. 6b), these two sub-
sets of predictors showed the same relative ranking, with
field measurements (green line) outperforming remote sens-
ing and modeled estimates (blue line) throughout the sea-
son. However, they responded differently to changing wet-
ness conditions. This was most evident between late August
and mid-September, a period marked by 24 nearly rain-free
days followed by 5d of persistent precipitation. R> Y (cum)
of field-based models (green line) increased sharply during
the dry spell, then abruptly dropped by 10 % with the onset of
rain. In contrast, the models using remote sensing and mod-
eled data showed only a marginal improvement during the
dry period and a smaller and more gradual decline (~ 2 %)
during rainfall.

4 Discussion

In this study, we investigated a vast array of climatic and
environmental factors controlling the spatial patterns and
temporal dynamics of surface soil moisture in a boreal for-
est landscape in northern Sweden with the purpose of pro-
viding new insights into modeling and mapping soil mois-
ture. Specifically, we evaluated the ability of numerous vari-
ables extracted from multiple sources, including field mea-
surements, remote sensing retrievals, and modeled data at
different spatial resolutions and temporal scales, to explain
soil moisture variations recorded during 3 snow-free months
in 2022 by 78 dataloggers distributed across the Krycklan
catchment. In the sections that follow, we discuss the primary
findings from our analysis.

4.1 Spatial variation

We found that all four groups of spatial predictors con-
sidered in this analysis, namely topographical features, soil
properties, vegetation characteristics, and land use/land cover
(LULC), played a significant role in explaining spatial vari-
ations in soil moisture (Fig. 3). With the advent of lidar-
derived DEMs at very high spatial resolution, researchers
have increasingly used terrain indices, or a combination of
them, as a proxy for soil moisture (Kemppinen et al., 2018;
e.g., Kopecky et al., 2021; Riihiméki et al., 2021; Winzeler
et al., 2022), including the 10 m resolution soil moisture in-
dex map (smi) (Naturvardsverket, 2022) and the 2 m reso-
lution SLU soil moisture map (sm-slu) (Agren et al., 2021)
that we evaluated in our study. While these maps correlated
well with soil moisture measured in the field, our analysis
revealed that soil predictors, such as organic layer thickness
and soil texture, vegetation-related variables, and land cover
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Figure 4. OPLS loading plot illustrating the relationship between a large array of “temporal” predictors, which do not vary spatially but
change over time, and daily mean soil moisture (i.e., volumetric water content) averaged across 78 sites within the Krycklan catchment (refer
to Fig. 1 for the site locations). Both the temporal predictors (X variables) and the response variable (Y variable) were aggregated at the daily
temporal scale from 5 July to 4 October 2022. The temporal predictors were either directly measured at the ICOS tower or at weather stations
within Krycklan (symbolized by triangles) or extracted from the ERAS-Land dataset (depicted as circles). These predictors were organized
into 12 color-coded categories (see Table 2; here only 11 are shown) to enhance plot readability. All predictors are characterized by a certain
temporal scale, represented by the size of the triangles or circles. To visualize the effects of temporal scale, guides connect loadings of the
same variable moving from high to low scales, with the variable name visible only in correspondence to the optimal scale (refer to Table 2
for variable labels). High positive and negative loadings on the predictive axis (pq[1]) represent variables that are positively and negatively
correlated with the response variable (Y'), with stronger correlation further away from the origin. The orthogonal axis (poso[1]) indicates
how much of the variation for each variable was not correlated with the response variable (Y). This figure only shows the 25 most relevant
predictors (VIPpredictive greater than 1, marked by an asterisk in Table 2), but the 35 remaining predictors are included in Fig. S3.

information distinguishing between mire and forest were also
important. The relevance of integrating soil and terrain infor-
mation to characterize soil moisture patterns in the context of
hydrological modeling was highlighted by similar studies at
the catchment scale (e.g., Baldwin et al., 2017). Previous re-
search has demonstrated that soil properties are determinant
in controlling soil moisture spatial variance at the hillslope
(Wang et al., 2023) and regional (Wu et al., 2020) scales as
well. Consistent with other studies (e.g., Sgrensen and Seib-
ert, 2007; Agren et al., 2014; Lidberg et al., 2020; Larson et
al., 2022), our analysis also indicated that the performance
of any terrain index varies greatly depending on the thresh-
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old and resolution considered, with a 1 ha stream initiation
threshold providing the best results and 0.5 m spatial reso-
lution being the optimal choice only in one case (i.e., depth
to water index). Interestingly, relative topographic position
at 16 m resolution (rtp-16) emerged as the best predictor of
soil moisture spatial variability, capable of identifying wetter
depressions and drier ridges in the landscape (Weiss, 2001).
While several examples in the literature demonstrate the im-
portance of this index in soil moisture estimation (e.g., En-
gstrom et al., 2005; Zhao et al., 2021), it is somewhat sur-
prising that Larson et al. (2022), who used five soil moisture
classes estimated in the field as the response variable (sms
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Figure 5. VIPpredictive values of 92 spatial OPLS models generated using mean daily soil moisture over the study season (5 July—4 Octo-
ber 2022) as the response variable (Y). The lower section of the figure displays the mean precipitation across Krycklan derived from weather
stations (refer to Fig. 1 for their locations). The spatial predictors, overall describing soil, topography, vegetation, and land use/land cover at
each site (gray dotted boxes in the figure legend), were organized into 18 color-coded categories (see Table 1; here only 14 are shown) to
enhance plot readability. Color-coded labels on the right side of the figure are ordered according to their VIPpredictive 0on the last day of the
study season (4 October 2022). To avoid clutter and highlight the key findings, only a subset of predictors is presented, but a graphic with all
22 relevant predictors (VIPpredictive greater than 1) displayed in Fig. 3 is included in Fig. S4.
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variable. Panel (b) displays the R? Y (cum) values of 92 daily spatial OPLS models over the study period (5 July—4 October 2022), with
mean precipitation across Krycklan (from weather stations shown in Fig. 1) plotted below for reference.
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predictor in our study) (see Table 1 and Fig. 3), observed
that relative topographic position was not among the best-
performing variables in the Krycklan catchment. Therefore,
in the pursuit of estimating spatial variability in soil moisture,
we advise caution when selecting terrain indices and their
spatial resolutions and thresholds. We argue that an enhanced
spatial resolution in topographical data does not necessarily
compensate for the absence of soil, vegetation, and LULC
information. We finally reiterate the importance of soil mois-
ture datalogger measurements to validate predictive models.

4.2 Temporal variation

Our research demonstrated that daily soil moisture fluctu-
ations within the Krycklan catchment are strongly influ-
enced by the hydrological and meteorological conditions
over 5 to 7d preceding soil moisture measurements, regard-
less of whether these conditions were estimated (ERAS5-Land
dataset) or measured directly in the field (weather stations
and ICOS tower) (Fig. 4). Among other variables, increased
soil moisture was correlated with lower air pressure, short-
wave radiation, vapor pressure deficit, and evaporation from
the top of the canopy; conversely, it was associated with
higher thermal (longwave) radiation, precipitation, air hu-
midity, evapotranspiration, and wind speed. Averaged con-
ditions over 5 to 7d for all these variables exhibited the
strongest correlation with daily variations in soil moisture in
Krycklan, indicating both lagged and cumulative effects of
these processes on soil moisture. Previous research has also
highlighted the importance of considering multi-day accu-
mulations and time lags between meteorological drivers and
soil moisture response (Williams et al., 2009; Pan, 2012; Li
et al., 2024), with most studies focusing on the precipitation—
soil moisture relationship. Parent et al. (2006) showed that
the transfer of energy from precipitation to soil moisture via
infiltration, percolation, and redistribution processes mostly
occurs over temporal scales ranging between 2 and 14 d. Piao
et al. (2009) proved that precipitation frequency can be a
more crucial factor than precipitation amount in shaping soil
moisture variations, making it essential to account for the
cumulative effect of precipitation over multi-day temporal
scales (Ge et al., 2022). Our study identified soil tempera-
ture (28—100 cm below the surface) as the most notable ex-
ception to the optimal temporal scale of 5 to 7d observed
for almost all other relevant predictors. While we found a
negative correlation between soil temperature and soil mois-
ture as expected (Aalto et al., 2013), the strongest effects
emerged at the 3-week scale (the longest temporal scale con-
sidered in our analysis), possibly because soil temperature
at those depths (28—100cm) also varies more slowly com-
pared to topsoil temperature. Soil temperature, along with
air temperature — which showed weak correlation with soil
moisture in our study — might better correlate with soil mois-
ture over longer temporal scales, such as seasonal or annual
(Liang et al., 2024). In regard to our findings, it is important
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to acknowledge that the optimal temporal scale for estimat-
ing daily fluctuations in soil moisture can vary according to
soil drainage conditions (Parent et al., 2006) and initial wet-
ness conditions characterizing specific climate zones (Chai
et al., 2020) or resulting from different seasonal and annual
variations in large-scale climate patterns (Li et al., 2024).

4.3 Temporal stability of soil moisture patterns

Different initial wetness conditions can also influence the
processes controlling spatial variability in soil moisture
(Famiglietti et al., 1998; Western et al., 2004; Joshi and
Mohanty, 2010; Mei et al., 2018; Gao et al., 2020; Wang
et al., 2023). Although the ranking among predictors re-
mained nearly constant over the study season, we observed
that their predictive power changed nonuniformly in relation
to daily fluctuations in wetness conditions (i.e., variables re-
sponded differently to the same wetness conditions in any
day) (Fig. 5). Previous studies have indicated that, under dry-
ing conditions, lateral water movement is gradually replaced
by vertical water movement (Grayson et al., 1997; Western
et al., 1999; Rosenbaum et al., 2012), and the spatial vari-
ability in soil moisture is likely due to diverse infiltration and
evapotranspiration rates related to the spatial distribution of
soil and vegetation features (Teuling and Troch, 2005; Tak-
agi and Lin, 2012; Jia et al., 2013; Launiainen et al., 2019).
Conversely, the soil moisture spatial variability under rewet-
ting conditions is mostly determined by topographical struc-
tures that guide lateral subsurface flow and surface runoff
(Grayson et al., 1997; Gaur and Mohanty, 2013). These find-
ings are in line with the results of our study, suggesting
that higher infiltration rates in loamy sand soils compared
to other soil types and diverse evapotranspiration rates asso-
ciated with different vegetation (i.e., different site index val-
ues) increasingly contributed to the observed spatial distribu-
tion of soil moisture, particularly during drying periods (e.g.,
late August to mid-September in our case), while most to-
pographic variables became steadily less relevant during this
time. On the other hand, during large precipitation events,
topographic indices showed an initial drop in the predictive
power, likely due to the accumulation of water in the top soil
layer and the consequent reduced spatial variability in soil
moisture among sites, followed by a time-lagged peak in the
predictive power, likely associated with the beginning of lat-
eral subsurface flow driven by topographical features (Grabs
et al., 2012). Regarding vegetation, we also observed a clear
seasonal pattern: during the peak of the growing season, gen-
erally characterized by warmer and longer days, the spatial
heterogeneity of vegetation usually had a larger effect on soil
moisture distribution. This may be due to stronger effects of
increased transpiration or shading during this period, leading
to more pronounced differences across plots, whereas this
influence diminished towards the end of the summer, when
days were usually cooler and shorter. Seasonal patterns in so-
lar radiation affected evapotranspiration rates and soil mois-
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ture levels differently not only in forests compared to peat-
lands, with forests responding more strongly due to higher
canopy cover and biomass (Mackay et al., 2007), but also de-
pending on tree species composition, with pine being poten-
tially more responsive to high radiation than spruce (Lager-
gren and Lindroth, 2002). These findings reiterate the im-
portance of considering the temporal stability of spatial soil
moisture patterns under changing wetness conditions (Wang
etal., 2023), and we suggest that future research should focus
on modeling soil moisture dynamics over longer timescales,
beyond a single growing season, particularly in high-latitude
environments, where this remains an underexplored topic.

4.4 Mapping spatiotemporal variability in soil
moisture

While extensive literature exists assessing the accuracy of
remote sensing and modeled estimates of soil moisture
based on analogous data measured in situ (Romano, 2014;
Petropoulos et al., 2015; Dorigo et al., 2021), we are not
aware of any study explicitly comparing the ability of nu-
merous field versus non-field environmental and climate pre-
dictors in explaining spatial and temporal variations in soil
moisture. Field measurements generally outperformed re-
mote sensing and modeled data in terms of both overall
model performance (Fig. 6) and when comparing pairs of
analogous variables from different sources, especially in the
case of spatial variability (Figs. 4 and S2). However, field
data alone, which included soil, vegetation, and LULC in-
formation, did not yield the highest performance, as DEM-
derived topographic information also proved essential, with
both types of predictors influencing soil moisture differently
depending on prevailing weather conditions (Figs. 5 and
6). We also acknowledge that, even when combining both
field and non-field environmental variables in our models,
the spatial distribution of soil moisture was not fully cap-
tured. In part, this may be explained by temporal discrep-
ancies in data collection, with some data obtained prior to
the 2022 study season (see the Supplement), and measure-
ment inaccuracies, including errors in soil moisture datalog-
ger recordings. In particular, calibrating TOMST sensors in
organic-rich peat soils remains challenging, and volumetric
water content measurements in these soils may not reflect full
saturation (Menberu et al., 2021; Kemppinen et al., 2023).
Moreover, we assumed spatial homogeneity for meteorolog-
ical forcings across the Krycklan catchment, a reasonable as-
sumption for variables like precipitation but less so for vari-
ables such as soil and air temperatures (Aalto et al., 2022;
Kolstela et al., 2024), whose fine-scale variations likely in-
fluenced soil moisture patterns. At even finer spatial scales,
variations in soil moisture may have stemmed from local fac-
tors not represented by our predictors, such as soil discon-
tinuities, small understory vegetation, and the presence of
stones (Parajuli et al., 2020). Future studies should focus on
analyzing soil moisture datasets with higher temporal vari-

Hydrol. Earth Syst. Sci., 29, 5493-5513, 2025

F. Zignol et al.: Controls on spatial and temporal variability of soil moisture

ability (e.g., covering the entire snow-free season, including
post-snowmelt periods, and multiple seasons or years), eval-
uating more accurate lidar-derived vegetation metrics, ac-
counting for microclimatic variations, and comparing catch-
ments with diverse characteristics (e.g., spanning a large lat-
itudinal gradient). For future soil moisture mapping, greater
efforts should be devoted to improving the quality and res-
olution of spatially continuous soil information. The lack
of detailed soil maps describing soil properties such as tex-
ture, structure, and organic matter content was most likely
the major cause behind the relatively lower predictive per-
formance of remote sensing and modeled data compared to
field data. Enhanced soil maps would benefit not only data-
driven approaches to soil moisture mapping but also phys-
ically based modeling efforts that rely on such inputs. In-
formed by the results of this study, we are now able to select
a smaller subset of key spatial and temporal predictors of
soil moisture, which, in the future, could be integrated into
a machine learning model to generate dynamic soil moisture
maps for Krycklan. While machine learning models can han-
dle high-dimensional data, pre-selecting variables enhances
interpretability, reduces overfitting, and ensures that inputs
reflect the variation most relevant to soil moisture dynam-
ics (Meyer et al., 2019). Due to their ability to process large
volumes of data, such models can leverage detailed spatial
and temporal information from multiple sources to poten-
tially map soil moisture at both high spatial and temporal
resolutions across vast geographic areas.

5 Conclusions

The Krycklan field infrastructure provided a unique setting
for designing a comprehensive study to advance our under-
standing of the relationship between surface soil moisture
and its controls in a forest boreal landscape. By combin-
ing remote sensing and modeled data with field measure-
ments across 78 sites in the Krycklan catchment, this study
is among the first to examine such a broad range of climatic
and environmental factors at different spatial resolutions and
temporal scales, focusing on both the spatial and temporal
components of soil moisture variability. Our findings suggest
that topographical features, soil properties, vegetation char-
acteristics, land use/land cover, and meteorological forcings
should all be included when modeling and mapping varia-
tions in soil moisture. We highlight the importance of identi-
fying the optimal spatial resolution and temporal scale for
each predictor and considering the dynamic nature of the
relationship between soil moisture and its controls, which
varies over time. Our results support the development of
more accurate and interpretable data-driven models for map-
ping soil moisture in space and time.
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