Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5267-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5267-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hillslope subsurface flow is driven by vegetation more than soil properties in colonized valley moraines along a humid mountain elevation
Fei Wang
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
Genxu Wang
CORRESPONDING AUTHOR
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
Junfang Cui
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
Xiangyu Tang
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
Ruxin Yang
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Kewei Huang
Hubei Key Laboratory of Basin Water Security, Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
Jianqing Du
Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
Li Guo
CORRESPONDING AUTHOR
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
Related authors
No articles found.
Kai Li, Linmao Guo, Genxu Wang, Jihui Gao, Xiangyang Sun, Peng Huang, Jinlong Li, Jiapei Ma, and Xinyu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1795, https://doi.org/10.5194/egusphere-2025-1795, 2025
Short summary
Short summary
We propose a multi-machine learning ensemble (GBM-KNN-ERT) to improve Top-SSF parameter regionalization for flood prediction in ungauged mountainous catchments, overcoming single machine learning limits. Validated in 80 mountainous catchments in southwestern China, the ensemble achieved NSE greater than 0.9 for 90 % of catchments, showing superior accuracy and robustness to climate change and donor catchment variability. The ensemble provides a robust regionalization method.
Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao
Hydrol. Earth Syst. Sci., 27, 599–612, https://doi.org/10.5194/hess-27-599-2023, https://doi.org/10.5194/hess-27-599-2023, 2023
Short summary
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
Cited articles
Akay, O. and Fox, G. A.: Experimental Investigation of Direct Connectivity between Macropores and Subsurface Drains during Infiltration, Soil Sci. Soc. Am. J., 71, 1600–1606, https://doi.org/10.2136/sssaj2006.0359, 2007.
Anderson, A. E., Weiler, M., Alila, Y., and Hudson, R. O.: Subsurface flow velocities in a hillslope with lateral preferential flow, Water Resour. Res., 45, W11407, https://doi.org/10.1029/2008wr007121, 2009.
Angermann, L., Jackisch, C., Allroggen, N., Sprenger, M., Zehe, E., Tronicke, J., Weiler, M., and Blume, T.: Form and function in hillslope hydrology: characterization of subsurface flow based on response observations, Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, 2017.
Bejan, A.: Constructal theory of pattern formation, Hydrol. Earth Syst. Sci., 11, 753–768, https://doi.org/10.5194/hess-11-753-2007, 2007.
Benegas, L., Ilstedt, U., Roupsard, O., Jones, J., and Malmer, A.: Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America, Agric. Ecosyst. Environ., 183, 185–196, https://doi.org/10.1016/j.agee.2013.10.027, 2014.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013.
Bianchi, M., Zheng, C., Wilson, C., Tick, G. R., Liu, G., and Gorelick, S. M.: Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths, Water Resour. Res., 47, W05524, https://doi.org/10.1029/2009wr008966, 2011.
Bogner, C., Mirzaei, M., Ruy, S., and Huwe, B.: Microtopography, water storage and flow patterns in a fine-textured soil under agricultural use, Hydrol. Processes, 27, 1797–1806, https://doi.org/10.1002/hyp.9337, 2013.
Cheng, Y., Ogden, F. L., and Zhu, J.: Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments, Water Resour. Res., 53, 5400–5419, https://doi.org/10.1002/2016wr020258, 2017.
Demand, D., Blume, T., and Weiler, M.: Spatio-temporal relevance and controls of preferential flow at the landscape scale, Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, 2019.
Du, J., Niu, J., Gao, Z., Chen, X., Zhang, L., Li, X., van Doorn, N. S., Luo, Z., and Zhu, Z.: Effects of rainfall intensity and slope on interception and precipitation partitioning by forest litter layer, Catena, 172, 711–718, https://doi.org/10.1016/j.catena.2018.09.036, 2019.
Edery, Y., Guadagnini, A., Scher, H., and Berkowitz, B.: Origins of anomalous transport in heterogeneous media: Structural and dynamic controls, Water Resour. Res., 50, 1490–1505, https://doi.org/10.1002/2013WR015111, 2014.
Ehlers, W., Avci, O., and Markert, B.: Computation of Slope Movements Initiated by Rain–Induced Shear Bands in Small–Scale Tests and In Situ, Vadose Zone J., 10, 512–525, https://doi.org/10.2136/vzj2009.0156, 2011.
Gao, M., Li, H.-Y., Liu, D., Tang, J., Chen, X., Chen, X., Blöschl, G., and Ruby Leung, L.: Identifying the dominant controls on macropore flow velocity in soils: A meta-analysis, J. Hydrol., 567, 590–604, https://doi.org/10.1016/j.jhydrol.2018.10.044, 2018.
Gardner, W.: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table, Soil Sci., 85, 228–232, https://doi.org/10.1097/00010694-195804000-00006, 1958.
Gomyo, M. and Kuraji, K.: Effect of the litter layer on runoff and evapotranspiration using the paired watershed method, J. For. Res., 21, 306–313, https://doi.org/10.1007/s10310-016-0542-5, 2016.
Graham, C. B. and Lin, H.: Subsurface Flow Networks at the Hillslope Scale: Detection and Modelling, in: Hydropedology: Synergistic integration of soil science and hydrology, edited by: Lin, H., Academic Press, Waltham, MA, 559–593, https://doi.org/10.1016/b978-0-12-386941-8.00018-6, 2012.
Guevara-Escobar, A., Gonzalez-Sosa, E., Ramos-Salinas, M., and Hernandez-Delgado, G. D.: Experimental analysis of drainage and water storage of litter layers, Hydrol. Earth Syst. Sci., 11, 1703–1716, https://doi.org/10.5194/hess-11-1703-2007, 2007.
Guo, L. and Lin, H.: Chapter two – Addressing Two Bottlenecks to Advances the Understanding of Preferential Flow in Soils, in: Advance in Agronomy, edited by: Sparks, D. L., https://doi.org/10.1016/bs.agron.2017.10.002, 2018.
Hartmann, A. and Blume, T.: The Evolution of Hillslope Hydrology: Links Between Form, Function and the Underlying Control of Geology, Water Resour. Res., 60, e2023WR035937, https://doi.org/10.1029/2023wr035937, 2024.
Hartmann, A., Weiler, M., and Blume, T.: The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines, Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, 2020a.
Hartmann, A., Semenova, E., Weiler, M., and Blume, T.: Field observations of soil hydrological flow path evolution over 10 millennia, Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, 2020b.
Hartmann, A., Weiler, M., Greinwald, K., and Blume, T.: Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence, Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, 2022.
Holbak, M., Abrahamsen, P., Hansen, S., and Diamantopoulos, E.: A Physically Based Model for Preferential Water Flow and Solute Transport in Drained Agricultural Fields, Water Resour. Res., 57, e2020WR027954, https://doi.org/10.1029/2020wr027954, 2021.
Hu, Z., Wang, G., Sun, X., Zhu, M., Song, C., Huang, K., and Chen, X.: Spatial-Patterns of Evapotranspiration Along an Elevation Gradient on Mount Gongga, Southwest China, Water Resour. Res., 54, 4180–4192, https://doi.org/10.1029/2018WR022645, 2018.
Huggett, R. J.: Soil chronosequences, soil development, and soil evolution: a critical review, Catena, 32, 155–172, https://doi.org/10.1016/S0341-8162(98)00053-8, 1998.
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017.
Jarvis, N., Koestel, J., and Larsbo, M.: Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects, Vadose Zone J., 15, 1–11, https://doi.org/10.2136/vzj2016.09.0075, 2016.
Jarvis, N., Coucheney, E., Lewan, E., Klöffel, T., Meurer, K. H. E., Keller, T., and Larsbo, M.: Interactions between soil structure dynamics, hydrological processes, and organic matter cycling: A new soil-crop model, Eur. J. Soil Sci., 75, e13455, https://doi.org/10.1111/ejss.13455, 2024.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality, Eur. J. Soil Sci., 58, 523–546, https://doi.org/10.1111/j.1365-2389.2007.00915.x, 2007.
Kirchner, J. W., Benettin, P., and van Meerveld, I.: Instructive Surprises in the Hydrological Functioning of Landscapes, Annu. Rev. Earth Planet. Sci., 51, 277–299, https://doi.org/10.1146/annurev-earth-071822-100356, 2023.
Klaus, J. and Jackson, C. R.: Interflow Is Not Binary: A Continuous Shallow Perched Layer Does Not Imply Continuous Connectivity, Water Resour. Res., 54, 5921–5932, https://doi.org/10.1029/2018wr022920, 2018.
Klaus, J. and Zehe, E.: A novel explicit approach to model bromide and pesticide transport in connected soil structures, Hydrol. Earth Syst. Sci., 15, 2127-2144, https://doi.org/10.5194/hess-15-2127-2011, 2011.
Koestel, J. and Larsbo, M.: Imaging and quantification of preferential solute transport in soil macropores, Water Resour. Res., 50, 4357–4378, https://doi.org/10.1002/2014wr015351, 2014.
Laine-Kaulio, H., Backnäs, S., Koivusalo, H., and Laurén, A.: Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope, Geoderma, 259–260, 23–34, https://doi.org/10.1016/j.geoderma.2015.05.004, 2015.
Lange, B., Lüescher, P., and Germann, P. F.: Significance of tree roots for preferential infiltration in stagnic soils, Hydrol. Earth Syst. Sci., 13, 1809–1821, https://doi.org/10.5194/hess-13-1809-2009, 2009.
Li, J., Zheng, B., Yang, X., Xie, Y., Zhang, L., Ma, Z., and Xu, S.: Glaciers of Tibet, Science Press, Beijing, China, ISBN 130313274, https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=BFB3A95B30EFB414E984AED5E785B465F000 (last access: 10 October 2025), 1986 (in Chinese).
Li, W., Germaine, J. T., and Einstein, H. H.: A Three-Dimensional Study of Wormhole Formation in a Porous Medium: Wormhole Length Scaling and a Rankine Ovoid Model, Water Resour. Res., 58, e2021WR030627, https://doi.org/10.1029/2021WR030627, 2022.
Li, X., Xiao, Q., Niu, J., Dymond, S., McPherson, E. G., van Doorn, N., Yu, X., Xie, B., Zhang, K., and Li, J.: Rainfall interception by tree crown and leaf litter: An interactive process, Hydrol. Processes, 31, 3533–3542, https://doi.org/10.1002/hyp.11275, 2017.
Lin, H.: Linking principles of soil formation and flow regimes, J. Hydrol., 393, 3–19, https://doi.org/10.1016/j.jhydrol.2010.02.013, 2010.
Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J., and Zehe, E.: Picturing and modeling catchments by representative hillslopes, Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, 2017.
Luo, L., Lin, H., and Halleck, P.: Quantifying soil structure and preferential flow in intact soil using X-ray computed tomography, Soil Sci. Soc. Am. J., 72, 1058–1069, https://doi.org/10.2136/sssaj2007.0179, 2008.
Luo, L., Lin, H., and Li, S.: Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography, J. Hydrol., 393, 53–64, https://doi.org/10.1016/j.jhydrol.2010.03.031, 2010.
Luo, Z., Niu, J., Xie, B., Zhang, L., Chen, X., Berndtsson, R., Du, J., Ao, J., Yang, L., and Zhu, S.: Influence of root distribution on preferential flow in deciduous and coniferous forest soils, Forests, 10, 986, https://doi.org/10.3390/f10110986, 2019.
McDonnell, J. J., Spence, C., Karran, D. J., van Meerveld, H. J., and Harman, C. J.: Fill-and-Spill: A Process Description of Runoff Generation at the Scale of the Beholder, Water Resour. Res., 57, https://doi.org/10.1029/2020wr027514, 2021.
Nespoulous, J., Merino-Martín, L., Monnier, Y., Bouchet, D. C., Ramel, M., Dombey, R., Viennois, G., Mao, Z., Zhang, J.-L., Cao, K.-F., Le Bissonnais, Y., Sidle, R. C., and Stokes, A.: Tropical forest structure and understorey determine subsurface flow through biopores formed by plant roots, Catena, 181, 104061, https://doi.org/10.1016/j.catena.2019.05.007, 2019.
Nieber, J. L. and Sidle, R. C.: How do disconnected macropores in sloping soils facilitate preferential flow?, Hydrol. Processes, 24, 1582–1594, https://doi.org/10.1002/hyp.7633, 2010.
Nimmo, J. R.: The processes of preferential flow in the unsaturated zone, Soil Sci. Soc. Am. J., 85, 1–27, https://doi.org/10.1002/saj2.20143, 2021.
Rasoulzadeh, A. and Homapoor Ghoorabjiri, M.: Comparing hydraulic properties of different forest floors, Hydrol. Processes, 28, 5122–5130, https://doi.org/10.1002/hyp.10006, 2013.
Sammartino, S., Lissy, A.-S., Bogner, C., Van Den Bogaert, R., Capowiez, Y., Ruy, S., and Cornu, S.: Identifying the functional macropore network related to preferential flow in structured soils, Vadose Zone J., 14, 1–16, https://doi.org/10.2136/vzj2015.05.0070, 2015.
Schiavo, M.: Probabilistic delineation of subsurface connected pathways in alluvial aquifers under geological uncertainty, J. Hydrol., 615, https://doi.org/10.1016/j.jhydrol.2022.128674, 2022.
Schiavo, M.: Entropy, fractality, and thermodynamics of groundwater pathways, J. Hydrol., 623, 129824, https://doi.org/10.1016/j.jhydrol.2023.129824, 2023.
Shavelzon, E., Zehe, E., and Edery, Y.: Linking chemical weathering, evolution of preferential flowpaths and transport self-organisation in porous media using non-equilibrium thermodynamic, ESS Open Archive, https://doi.org/10.22541/essoar.173687429.91307309/v2, 2025.
Sidle, R. C., Noguchi, S., Tsuboyama, Y., and Laursen, K.: A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization, Hydrol. Processes, 15, 1675–1692, https://doi.org/10.1002/hyp.233, 2001.
Šimùnek, J., Genuchten, M. T., and Šejna, M.: Recent Developments and Applications of the HYDRUS Computer Software Packages, Vadose Zone J., 15, 1–25, https://doi.org/10.2136/vzj2016.04.0033, 2016.
Šimùnek, J., Van Genuchten, M. T., and Šejna, M.: HYDRUS: Model use, calibration, and validation, Trans. ASABE, 55, 1263–1274, https://doi.org/10.13031/2013.42239, 2012.
Šimùnek, J., Jarvis, N. J., van Genuchten, M. T., and Gärdenäs, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 14–35, https://doi.org/10.1016/S0022-1694(02)00252-4, 2003.
Sněhota, M., Císlerová, M., Amin, M. G., and Hall, L. D.: Tracing the Entrapped Air in Heterogeneous Soil by Means of Magnetic Resonance Imaging, Vadose Zone J., 9, 373–384, https://doi.org/10.2136/vzj2009.0103, 2010.
Tokunaga, T. K. and Wan, J.: Approximate boundaries between different flow regimes in fractured rocks, Water Resour. Res., 37, 2103–2111, https://doi.org/10.1029/2001WR000245, 2001.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, https://doi.org/10.1029/2004WR003800, 2006.
Uchida, T., Kosugi, K. i., and Mizuyama, T.: Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan, Water Resour. Res., 38, 24-21–24-14, https://doi.org/10.1029/2001wr000261, 2002.
van der Meij, W. M., Temme, A. J. A. M., Wallinga, J., and Sommer, M.: Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns, SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, 2020.
Vogel, H. J.: Scale issues in soil hydrology, Vadose Zone J., 18, 190001, https://doi.org/10.2136/vzj2019.01.0001, 2019.
Vogel, H.-J., Cousin, I., Ippisch, O., and Bastian, P.: The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment, Hydrol. Earth Syst. Sci., 10, 495–506, https://doi.org/10.5194/hess-10-495-2006, 2006.
Vogel, H. J., Gerke, H. H., Mietrach, R., Zahl, R., and Wöhling, T.: Soil hydraulic conductivity in the state of nonequilibrium, Vadose Zone J., 22, e20238, https://doi.org/10.1002/vzj2.20238, 2023.
Wang, F., Wang, G., Cui, J., Guo, L., Tang, X., Yang, R., and Huang, K.: Hillslope-scale variability of soil water potential over humid alpine forests: Unexpected high contribution of time-invariant component, J. Hydrol., 617, 129036, https://doi.org/10.1016/j.jhydrol.2022.129036, 2023.
Wang, F., Wang, G., Cui, J., Guo, L., Mello, C. R., Boyer, E. W., Tang, X., and Yang, Y.: Preferential flow patterns in forested hillslopes of east Tibetan Plateau revealed by dye tracing and soil moisture network, Eur. J. Soil Sci., 73, 13294, https://doi.org/10.1111/ejss.13294, 2022.
Wang, F., Wang, G., Cui, J., Guo, L., Tang, X., Yang, R., Du, J., and Sadegh Askari, M.: The nonlinear rainfall–quick flow relationships in a humid mountainous area: Roles of soil thickness and forest type, J. Hydrol., 641, 131854, https://doi.org/10.1016/j.jhydrol.2024.131854, 2024.
Wang, J., Pan, B., Zhang, G., Cui, H., Cao, B., and Geng, H.: Late Quaternary glacial chronology on the eastern slope of Gongga Mountain, eastern Tibetan Plateau, China, Sci. China Earth Sci., 56, 354–365, https://doi.org/10.1007/s11430-012-4514-0, 2012.
Weiler, M. and McDonnell, J. J.: Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes, Water Resour. Res., 43, W03403, https://doi.org/10.1029/2006wr004867, 2007.
Wienhöfer, J. and Zehe, E.: Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths, Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, 2014.
Wienhöfer, J., Germer, K., Lindenmaier, F., Färber, A., and Zehe, E.: Applied tracers for the observation of subsurface stormflow at the hillslope scale, Hydrol. Earth Syst. Sci., 13, 1145–1161, https://doi.org/10.5194/hess-13-1145-2009, 2009.
Xiong, J., Wang, G., Sun, X., Hu, Z., Li, Y., Sun, J., Zhang, W., and Sun, S.: Effects of litter and root inputs on soil CH4 uptake rates and associated microbial abundances in natural temperature subalpine forests, Sci. Total Environ., 912, 168730, https://doi.org/10.1016/j.scitotenv.2023.168730, 2024.
Zehe, E., Blume, T., and Bloschl, G.: The principle of “maximum energy dissipation”: a novel thermodynamic perspective on rapid water flow in connected soil structures, Phil. Trans. R. Soc. B, 365, 1377–1386, https://doi.org/10.1098/rstb.2009.0308, 2010.
Zehe, E., Loritz, R., Edery, Y., and Berkowitz, B.: Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work, Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, 2021.
Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and Westhoff, M.: A thermodynamic approach to link self-organization, preferential flow and rainfall–runoff behaviour, Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, 2013.
Zehe, E., Loritz, R., Jackisch, C., Westhoff, M., Kleidon, A., Blume, T., Hassler, S. K., and Savenije, H. H.: Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes, Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, 2019.
Zhang, J., Wang, S., Fu, Z., Wang, F., Wang, K., and Chen, H.: Regulation of Preferential Flow by Soil Thickness on Small Hillslopes With Complex Topography Through Intensive High-Frequency Soil Moisture Monitoring, Geophysical Research Letters, 52, e2024GL112674, https://doi.org/10.1029/2024GL112674, 2025.
Zhao, L., Meng, P., Zhang, J., Zhang, J., Sun, S., and He, C.: Effect of slopes on rainfall interception by leaf litter under simulated rainfall conditions, Hydrol. Processes, 36, e14659, https://doi.org/10.1002/hyp.14659, 2022.
Zhu, H., Wang, G., Yinglan, A., and Liu, T.: Ecohydrological effects of litter cover on the hillslope-scale infiltration-runoff patterns for layered soil in forest ecosystem, Ecol. Eng., 155, 105930, https://doi.org/10.1016/j.ecoleng.2020.105930, 2020.
Short summary
We investigated preferential flow paths and ground layers in coniferous and broadleaf forests in valley moraines along an elevation gradient. The results show that the percentage of preferential flow paths involved in subsurface flow was relatively low and comparable in both forests, mainly driven by vegetation-related properties. The presence of the ground layer facilitates rapid lateral flow towards downslope positions, leading to earlier and greater peak flow.
We investigated preferential flow paths and ground layers in coniferous and broadleaf forests in...