Articles | Volume 29, issue 2
https://doi.org/10.5194/hess-29-507-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-507-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially explicit assessment of water stress and potential mitigating solutions in a large water-limited basin: the Yellow River basin in China
Weibin Zhang
College of Water Resources and Architectural Engineering, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Xining Zhao
Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Xuerui Gao
Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Wei Liang
School of Geography and Tourism, Shaanxi Normal University, 710119 Xi'an, Shaanxi Province, China
Junyi Li
School of Geography and Tourism, Shaanxi Normal University, 710119 Xi'an, Shaanxi Province, China
Baoqing Zhang
CORRESPONDING AUTHOR
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 730000 Lanzhou, Gansu Province, China
Related authors
No articles found.
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898, https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tropical land surface processes shape the Earth’s climate, but models often lack accuracy in the tropics due to limited data for validation. We improved the Noah-MP land surface model for the tropics using data from forests in Panama and Malaysia, and an urban site in Singapore. Calibration enhanced simulations of energy and water fluxes, and revealed key vegetation and soil parameters, as well as future directions for model improvement in tropical regions.
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024, https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Short summary
Deep-layer soil desiccation (DSD) can restrict the sustainability of deep-rooted plantations in water-limited areas. Thus, we explored the extreme effects of DSD based on mass data published and measured on the Loess Plateau and found that the permanent wilting point is a reliable indicator of the moisture limitation of DSD, regardless of tree species, with the corresponding maximum root water uptake depth varying among climatic zones. These dimensions increased the risk of planted trees' death.
Huaqing Liu, Xiaodong Gao, Changjian Li, Yaohui Cai, Xiaolin Song, and Xining Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-719, https://doi.org/10.5194/egusphere-2023-719, 2023
Preprint archived
Short summary
Short summary
We conducted a systematic and quantitative study of the effects of plant mixtures on the water cycle. Our results confirmed that plant mixtures help facilitate a positive water cycle through mitigating inefficient water consumption. The positive conclusions we reached, as well as the analyses of the influencing factors, mechanisms, and limitations, are helpful for promoting further in-depth research and encouraging the establishment of more plant mixture systems.
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023, https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Short summary
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Lei Tian, Baoqing Zhang, and Pute Wu
Earth Syst. Sci. Data, 14, 2259–2278, https://doi.org/10.5194/essd-14-2259-2022, https://doi.org/10.5194/essd-14-2259-2022, 2022
Short summary
Short summary
We propose a global monthly drought dataset with a resolution of 0.25° from 1948 to 2010 based on a multitype and multiscalar drought index, the standardized moisture anomaly index adding snow processes (SZIsnow). The consideration of snow processes improved its capability, and the improvement is prominent over snow-covered high-latitude and high-altitude areas. This new dataset is well suited to monitoring, assessing, and characterizing drought and is a valuable resource for drought studies.
Jie Tian, Baoqing Zhang, Xuejin Wang, and Chansheng He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-21, https://doi.org/10.5194/essd-2022-21, 2022
Preprint withdrawn
Short summary
Short summary
Based on soil profile data at depths of 5 cm and 25 cm from 238 sampling sites, and on soil data from 32 soil moisture (SM) stations at depths of 5 cm, 15 cm, 25 cm, 40 cm, and 60 cm, we compiled a soil hydraulic properties (SHP) and SM dataset for a mountainous area, Northeastern QTP. The dataset provides information about SHP variability and SM trends at a large-scale mountainous area, thus offers opportunity for further understanding of water and energy processes over the QTP.
Jie Tian, Zhibo Han, Heye Reemt Bogena, Johan Alexander Huisman, Carsten Montzka, Baoqing Zhang, and Chansheng He
Hydrol. Earth Syst. Sci., 24, 4659–4674, https://doi.org/10.5194/hess-24-4659-2020, https://doi.org/10.5194/hess-24-4659-2020, 2020
Short summary
Short summary
Large-scale profile soil moisture (SM) is important for water resource management, but its estimation is a challenge. Thus, based on in situ SM observations in a cold mountain, a strong relationship between the surface SM and subsurface SM is found. Both the subsurface SM of 10–30 cm and the profile SM of 0–70 cm can be estimated from the surface SM of 0–10 cm accurately. By combing with the satellite product, we improve the large-scale profile SM estimation in the cold mountains finally.
Cited articles
Albers, L. T., Schyns, J. F., Booij, M. J., and Zhuo, L.: Blue water footprint caps per sub-catchment to mitigate water scarcity in a large river basin: The case of the Yellow River in China, J. Hydrol., 603, 126992, https://doi.org/10.1016/j.jhydrol.2021.126992, 2021.
Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., Stafford-Smith, M., Wu, J., He, C., Yu, D., Liu, Z., Li, A., Huang, Q., Ren, H., Deng, X., Zheng, H., Niu, J., Han, G., and Hou, X.: China's response to a national land-system sustainability emergency, Nature, 559, 193–204, https://doi.org/10.1038/s41586-018-0280-2, 2018.
Chen, S., Zhang, L., Liu, B., Yi, H., Su, H., Kharrazi, A., Jiang, F., Lu, Z., Crittenden, J. C., and Chen, B.: Decoupling wastewater-related greenhouse gas emissions and water stress alleviation across 300 cities in China is challenging yet plausible by 2030, Nat. Water, 1, 534–546, https://doi.org/10.1038/s44221-023-00087-4, 2023.
Cui, T., Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., Hu, H., Long, D., Shahid, M., Mubeen, A., He, Z., Yong, B., Lu, H., Li, C., Ni, G., Hu, C., and Tian, F.: Non-monotonic changes in Asian Water Towers' streamflow at increasing warming levels, Nat. Commun., 14, 1176, https://doi.org/10.1038/s41467-023-36804-6, 2023.
Degefu, D. M., Weijun, H., Zaiyi, L., Liang, Y., Zhengwei, H., and Min, A.: Mapping monthly water scarcity in global transboundary basins at country-basin mesh based spatial resolution, Sci. Rep., 8, 2144, https://doi.org/10.1038/s41598-018-20032-w, 2018.
Deng, L., Shangguan, Z., Bell, S. M., Soromotin, A. V., Peng, C., An, S., Wu, X., Xu, X., Wang, K., Li, J., Tang, Z., Yan, W., Zhang, F., Li, J., Wu, J., and Kuzyakov, Y.: Carbon in Chinese grasslands: meta-analysis and theory of grazing effects, Carbon Res., 2, 19, https://doi.org/10.1007/s44246-023-00051-7, 2023.
Feng, H., Zou, B., and Luo, J.: Coverage-dependent amplifiers of vegetation change on global water cycle dynamics, J. Hydrol., 550, 220–229, https://doi.org/10.1016/j.jhydrol.2017.04.056, 2017.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lu, Y., Zeng, Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's Loess Plateau is approaching sustainable water resource limits, Nat. Clim. Change, 6, 1019–1022, https://doi.org/10.1038/nclimate3092, 2016.
Florke, M., Kynast, E., Barlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Global Environ. Change, 23, 144–156, 2013.
Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer, G., Tramberend, S., Burtscher, R., Langan, S., and Wada, Y.: Global assessment of water challenges under uncertainty in water scarcity projections, Nat. Sustain., 1, 486-494, 10.1038/s41893-018-0134-9, 2018.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D.: Global water resources affected by human interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014.
Han, S., Leng, G., and Yu, L.: Review of Quantitative Applications of the Concept of the Water Planetary Boundary at Different Spatial Scales, Water Resour. Res., 59, e2022WR033646, https://doi.org/10.1029/2022WR033646, 2023.
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S.: A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use, Hydrol. Earth Syst. Sci., 17, 2375–2391, https://doi.org/10.5194/hess-17-2375-2013, 2013.
Hastie, A. G., Otrubina, V. V., and Stillwell, A. S.: Lack of Clarity Around Policies, Data Management, and Infrastructure May Hinder the Efficient Use of Reclaimed Water Resources in the United States, ACS ES&T Water, 2, 2289–2296, https://doi.org/10.1021/acsestwater.2c00307, 2022.
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B. A.: Future global urban water scarcity and potential solutions, Nat. Commun., 12, 4667, https://doi.org/10.1038/s41467-021-25026-3, 2021.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
Huang, Z., Yuan, X., and Liu, X.: The key drivers for the changes in global water scarcity: Water withdrawal versus water availability, J. Hydrol., 601, 126658, https://doi.org/10.1016/j.jhydrol.2021.126658, 2021.
Huang, Z., Yuan, X., Liu, X., and Tang, Q.: Growing control of climate change on water scarcity alleviation over northern part of China, J. Hydrol.: Reg. Stud., 46, 101332, https://doi.org/10.1016/j.ejrh.2023.101332, 2023.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Ji, P., Yuan, X., and Jiao, Y.: Future hydrological drought changes over the upper Yellow River basin: The role of climate change, land cover change and reservoir operation, J. Hydrol., 617, 129128, https://doi.org/10.1016/j.jhydrol.2023.129128, 2023.
Kuang, X. and Jiao, J. J.: Review on climate change on the Tibetan Plateau during the last half century, J. Geophys. Res.-Atmos., 121, 3979–4007, https://doi.org/10.1002/2015JD024728, 2016.
Liang, W., Fu, B., Wang, S., Zhang, W., Jin, Z., Feng, X., Yan, J., Liu, Y., and Zhou, S.: Quantification of the ecosystem carrying capacity on China's Loess Plateau, Ecol. Indicat., 101, 192–202, https://doi.org/10.1016/j.ecolind.2019.01.020, 2019.
Liu, L., Lopez, E., Dueñas-Osorio, L., Stadler, L., Xie, Y., Alvarez, P. J. J., and Li, Q.: The importance of system configuration for distributed direct potable water reuse, Nat. Sustainabil., 3, 548–555, https://doi.org/10.1038/s41893-020-0518-5, 2020.
Liu, X., Tang, Q., Liu, W., Veldkamp, T. I. E., Boulange, J., Liu, J., Wada, Y., Huang, Z., and Yang, H.: A spatially explicit assessment of growing water stress in China from the past to the future, Earth's Future, 7, 1027–1043, https://doi.org/10.1029/2019EF001181, 2019.
Liu, X., Liu, W., Liu, L., Tang, Q., Liu, J., and Yang, H.: Environmental flow requirements largely reshape global surface water scarcity assessment, Environ. Res. Lett., 16, 104029, https://doi.org/10.1088/1748-9326/ac27cb, 2021.
Liu, Y., Xin, Z., Sun, S., Zhang, C., and Fu, G.: Assessing environmental, economic, and social impacts of inter-basin water transfer in China, J. Hydrol., 625, 130008, https://doi.org/10.1016/j.jhydrol.2023.130008, 2023.
Long, D., Yang, W., Scanlon, B. R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., and Wada, Y.: South-to-North Water Diversion stabilizing Beijing's groundwater levels, Nat. Commun., 11, 3665, https://doi.org/10.1038/s41467-020-17428-6, 2020.
Ma, T., Sun, S., Fu, G., Hall, J. W., Ni, Y., He, L., Yi, J., Zhao, N., Du, Y., Pei, T., Cheng, W., Song, C., Fang, C., and Zhou, C.: Pollution exacerbates China's water scarcity and its regional inequality, Nat. Commun., 11, 650, https://doi.org/10.1038/s41467-020-14532-5, 2020a.
Ma, Z. G., Fu, C. B., Zhou, T. J., Li, M. X., Zheng, Z. Y., Chen, L., Lv, M. X., and Yan, Z. W.: Status and ponder of climate and hydrology changes in the Yellow River Basin, Bull. Chinese Acad. Sci., 35, 52–60, https://doi.org/10.16418/j.issn.1000-3045.20191223002, 2020b.
McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revenga, C., Todd, M., and Montgomery, M.: Urban growth, climate change, and freshwater availability, P. Natl. Acad. Sci. USA, 108, 6312–6317, https://doi.org/10.1073/pnas.1011615108, 2011.
Mekonnen, M. M. and Hoekstra, A. Y.: Four billion people facing severe water scarcity, Sci. Adv., 2, e1500323, https://doi.org/10.1126/sciadv.1500323, 2016.
Munia, H. A., Guillaume, J. H. A., Wada, Y., Veldkamp, T., Virkki, V., and Kummu, M.: Future transboundary water stress and its drivers under climate change: a global study, Earth's Future, 8, e2019EF001321, https://doi.org/10.1029/2019EF001321, 2020.
Niu, C., Chang, J., Wang, Y., Shi, X., Wang, X., Guo, A., Jin, W., and Zhou, S.: A Water Resource Equilibrium Regulation Model Under Water Resource Utilization Conflict: A Case Study in the Yellow River Basin, Water Resour. Res., 58, e2021WR030779, https://doi.org/10.1029/2021WR030779, 2022.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Omer, A., Elagib, N. A., Zhuguo, M., Saleem, F., and Mohammed, A.: Water scarcity in the Yellow River Basin under future climate change and human activities, Sci. Total Environ., 749, 141446, https://doi.org/10.1016/j.scitotenv.2020.141446, 2020.
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat, P.: Accounting for environmental flow requirements in global water assessments, Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, 2014.
Porkka, M., Gerten, D., Schaphoff, S., Siebert, S., and Kummu, M.: Causes and trends of water scarcity in food production, Environ. Res. Lett., 11, 015001, https://doi.org/10.1088/1748-9326/11/1/015001, 2016.
Qin, Y.: Global competing water uses for food and energy, Environ. Res. Lett., 16, 064091, https://doi.org/10.1088/1748-9326/ac06fa, 2021.
Qin, Y., Mueller, N. D., Siebert, S., Jackson, R. B., AghaKouchak, A., Zimmerman, J. B., Tong, D., Hong, C., and Davis, S. J.: Flexibility and intensity of global water use, Nat. Sustainabil., 2, 515–523, https://doi.org/10.1038/s41893-019-0294-2, 2019.
Rodell, M. and Li, B.: Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO, Nat. Water, 1, 241–248, https://doi.org/10.1038/s44221-023-00040-5, 2023.
Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton, R. Q., Jobbagy, E., Kebede, S., Kolusu, S. R., Konikow, L. F., Long, D., Mekonnen, M., Schmied, H. M., Mukherjee, A., MacDonald, A., Reedy, R. C., Shamsudduha, M., Simmons, C. T., Sun, A., Taylor, R. G., Villholth, K. G., Vörösmarty, C. J., and Zheng, C.: Global water resources and the role of groundwater in a resilient water future, Nat. Rev. Earth Environ., 4, 87–101, https://doi.org/10.1038/s43017-022-00378-6, 2023.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., and Colóngonzález, F. J.: Multimodel assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245, https://doi.org/10.1073/pnas.1222460110, 2014.
Song, S., Wang, S., Wu, X., Wei, Y., Cumming, G. S., Qin, Y., Wu, X., and Fu, B.: Identifying regime transitions for water governance in the Yellow River Basin, China, Water Resour. Res., 59, e2022WR033819, https://doi.org/10.1029/2022WR033819, 2023.
Sun, S.: Water use efficiency evolution in the Yellow River Basin: an integrated analysis of spatial-temporal decomposition, Hydrolog. Sci. J., 68, 119–130, https://doi.org/10.1080/02626667.2022.2150552, 2023.
Sun, S., Zhou, X., Liu, H., Jiang, Y., Zhou, H., Zhang, C., and Fu, G.: Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China, Water Res., 194, 116931, https://doi.org/10.1016/j.watres.2021.116931, 2021.
Tang, Y., Tang, Q., Tian, F., Zhang, Z., and Liu, G.: Responses of natural runoff to recent climatic variations in the Yellow River basin, China, Hydrol. Earth Syst. Sci., 17, 4471–4480, https://doi.org/10.5194/hess-17-4471-2013, 2013.
Tong, J., Buda, S., Yanjun, W., Jinlong, H., Cheng, J., Miaoni, G., Guojie, W., Qigen, L., Shan, J., Shuci, L., and Yong, L.: Gridded datasets for population and economy under Shared Socioeconomic Pathways, Science Data Bank, https://doi.org/10.57760/sciencedb.01683, 2024.
UNEP: Options for Decoupling Economic Growth from Water use and Water Pollution, https://www.resourcepanel.org/file/342/download?token=LmsRBoq4 (last access: 15 May 2022), 2015.
Veldkamp, T. I. E., Wada, Y., Aerts, J. C. J. H., Döll, P., Gosling, S. N., Liu, J., Masaki, Y., Oki, T., Ostberg, S., Pokhrel, Y., Satoh, Y., Kim, H., and Ward, P. J.: Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century, Nat. Commun., 8, 15697, https://doi.org/10.1038/ncomms15697, 2017.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability, Hydrol. Earth Syst. Sci., 15, 3785–3808, https://doi.org/10.5194/hess-15-3785-2011, 2011.
Wada, Y., de Graaf, I. E. M., and van Beek, L. P. H.: High-resolution modeling of human and climate impacts on global water resources, J. Adv. Model. Earth Syst., 8, 735–763, https://doi.org/10.1002/2015MS000618, 2016a.
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., and Wiberg, D.: Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, 2016b.
Wang, F., Duan, K., Fu, S., Gou, F., Liang, W., Yan, J., and Zhang, W.: Partitioning climate and human contributions to changes in mean annual streamflow based on the Budyko complementary relationship in the Loess Plateau, China, Sci. Total Environ., 665, 579–590, https://doi.org/10.1016/j.scitotenv.2019.01.386, 2019.
Wang, J., Li, Y., Huang, J., Yan, T., and Sun, T.: Growing water scarcity, food security and government responses in China, Global Food Secur., 14, 9–17, https://doi.org/10.1016/j.gfs.2017.01.003, 2017.
Wang, T., Yang, D., Yang, Y., Zheng, G., Jin, H., Yao, T., and Cheng, G.: Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate, Sci. Bull., 68, 1105–1108, https://doi.org/10.1016/j.scib.2023.04.037, 2023.
Wang, X., Xiao, X., Zou, Z., Dong, J., Qin, Y., Doughty, R. B., Menarguez, M. A., Chen, B., Wang, J., Ye, H., Ma, J., Zhong, Q., Zhao, B., and Li, B.: Gainers and losers of surface and terrestrial water resources in China during 1989–2016, Nat. Commun., 11, 3471, https://doi.org/10.1038/s41467-020-17103-w, 2020.
Webber, M., Han, X., Rogers, S., Wang, M., Jiang, H., Zhang, W., Barnett, J., and Zhen, N.: Inside-out: Chinese academic assessments of large-scale water infrastructure, WIREs Water, 8, e1556, https://doi.org/10.1002/wat2.1556, 2021.
Xie, P., Zhuo, L., Yang, X., Huang, H., Gao, X., and Wu, P.: Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a large river basin: A case for the Yellow River basin, J. Hydrol., 590, 125222, https://doi.org/10.1016/j.jhydrol.2020.125222, 2020.
Xu, Z., Cheng, L., Liu, P., Hou, Q., Cheng, S., Qin, S., Liu, L., and Xia, J.: Investigating the spatial variability of water security risk and its driving mechanisms in China using machine learning, J. Clean. Product., 362, 132303, https://doi.org/10.1016/j.jclepro.2022.132303, 2022.
Yang, Y., Chen, S., Zhou, Y., Ma, G., Huang, W., and Zhu, Y.: Method for quantitatively assessing the impact of an inter-basin water transfer project on ecological environment-power generation in a water supply region, J. Hydrol., 618, 129250, https://doi.org/10.1016/j.jhydrol.2023.129250, 2023.
Yao, C., Zhang, H., Zhang, S., Dang, C., Mu, D., Zhang, Y., and Lyu, F.: A categorical quantification of the effects of vegetation restorations on streamflow variations in the Loess Plateau, China, J. Hydrol., 628, 130577, https://doi.org/10.1016/j.jhydrol.2023.130577, 2024.
Yin, Y., Tang, Q., Liu, X., and Zhang, X.: Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin, Hydrol. Earth Syst. Sci., 21, 791–804, https://doi.org/10.5194/hess-21-791-2017, 2017.
Yin, Y., Wang, L., Wang, Z., Tang, Q., Piao, S., Chen, D., Xia, J., Conradt, T., Liu, J., Wada, Y., Cai, X., Xie, Z., Duan, Q., Li, X., Zhou, J., and Zhang, J.: Quantifying water scarcity in Northern China within the context of climatic and societal changes and South-to-North Water Diversion, Earth's Future, 8, e2020EF001492, https://doi.org/10.1029/2020EF001492, 2020.
Zan, B., Ge, J., Mu, M., Sun, Q., Luo, X., and Wei, J.: Spatiotemporal inequality in land water availability amplified by global tree restoration, Nat. Water, 2, 863–874, https://doi.org/10.1038/s44221-024-00296-5, 2024.
Zhang, B., Tian, L., He, C., and He, X.: Response of erosive precipitation to vegetation restoration and its effect on soil and water conservation over China's Loess Plateau, Water Resour. Res., 59, e2022WR033382, https://doi.org/10.1029/2022WR033382, 2023a.
Zhang, Q., Shen, Z., Pokhrel, Y., Farinotti, D., Singh, V. P., Xu, C.-Y., Wu, W., and Wang, G.: Oceanic climate changes threaten the sustainability of Asia's water tower, Nature, 615, 87–93, https://doi.org/10.1038/s41586-022-05643-8, 2023b.
Zhang, S., Yang, Y., McVicar, T., and Yang, D.: An analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework, Water Resour. Res., 54, 519–537, https://doi.org/10.1002/2017WR022028, 2018.
Zhang, W., Zha, X., Li, J., Liang, W., Ma, Y., Fan, D., and Li, S.: Spatiotemporal change of blue water and green water resources in the Headwater of Yellow River Basin, China, Water Resour. Manage., 28, 4715–4732, https://doi.org/10.1007/s11269-014-0769-x, 2014.
Zhang, W., Liang, W., Tian, L., and Zhao, X.: Climatic and different human influences on annual and seasonal streamflow with considering the soil water storage change in the middle reaches of the Yellow River basin, China, J. Hydrol., 619, 129298, https://doi.org/10.1016/j.jhydrol.2023.129298, 2023c.
Zhang, W., Liang, W., Gao, X., Li, J., and Zhao, X.: Trajectory in water scarcity and potential water savings benefits in the Yellow River basin, J. Hydrol., 130998, https://doi.org/10.1016/j.jhydrol.2024.130998, 2024.
Zhao, X., Liu, J., Liu, Q., Tillotson, M. R., Guan, D., and Hubacek, K.: Physical and virtual water transfers for regional water stress alleviation in China, P. Natl. Acad. Sci. USA, 112, 1031–1035, https://doi.org/10.1073/pnas.1404130112, 2015.
Zhou, F., Bo, Y., Ciais, P., Dumas, P., Tang, Q., Wang, X., Liu, J., Zheng, C., Polcher, J., Yin, Z., Guimberteau, M., Peng, S., Ottle, C., Zhao, X., Zhao, J., Tan, Q., Chen, L., Shen, H., Yang, H., Piao, S., Wang, H., and Wada, Y.: Deceleration of China's human water use and its key drivers, P. Natl. Acad. Sci. USA, 117, 7702–7711, https://doi.org/10.1073/pnas.1909902117, 2020.
Zhou, X., Yang, Y., Sheng, Z., and Zhang, Y.: Reconstructed natural runoff helps to quantify the relationship between upstream water use and downstream water scarcity in China's river basins, Hydrol. Earth Syst. Sci., 23, 2491–2505, https://doi.org/10.5194/hess-23-2491-2019, 2019.
Zhou, X., Polcher, J., and Dumas, P.: Representing human water management in a land surface model using a supply/demand approach, Water Resour. Res., 57, e2020WR028133, https://doi.org/10.1029/2020WR028133, 2021.
Zhuo, L., Mekonnen, M. M., Hoekstra, A. Y., and Wada, Y.: Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009), Adv. Water Resour., 87, 29–41, https://doi.org/10.1016/j.advwatres.2015.11.002, 2016.
Short summary
The Yellow River basin shows worsening water stress indicators (WSIs) over 1965‒2020. Water withdrawal is the main factor driving WSI before 2000, balanced by water availability. Local water yield and upstream flows are key drivers of sub-basin water availability. Water demand is expected to rise by 6.5 % in the 2030s, creating an 8.36 km³ surface water deficit. Enhanced irrigation efficiency can cut this deficit by 25 %, maintaining the stress level but worsening it for 44.9% of the population.
The Yellow River basin shows worsening water stress indicators (WSIs) over 1965‒2020. Water...