Articles | Volume 29, issue 19
https://doi.org/10.5194/hess-29-4983-2025
https://doi.org/10.5194/hess-29-4983-2025
Research article
 | 
08 Oct 2025
Research article |  | 08 Oct 2025

Saudi Rainfall (SaRa): hourly 0.1° gridded rainfall (1979–present) for Saudi Arabia via machine learning fusion of satellite and model data

Xuetong Wang, Raied S. Alharbi, Oscar M. Baez-Villanueva, Amy Green, Matthew F. McCabe, Yoshihide Wada, Albert I. J. M. Van Dijk, Muhammad A. Abid, and Hylke E. Beck

Related authors

CAMELS-GB v2: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
Gemma Coxon, Yanchen Zheng, Rafael Barbedo, Hollie Cooper, Felipe Fileni, Hayley J. Fowler, Matt Fry, Amy Green, Tom Gribbin, Helen Harfoot, Elizabeth Lewis, Germano Gondim Ribeiro Neto, Xiaobin Qiu, Saskia Salwey, and Doris E. Wendt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-608,https://doi.org/10.5194/essd-2025-608, 2025
Preprint under review for ESSD
Short summary
Assessing the suitability of global evapotranspiration products over irrigated areas
Pierre Laluet, Chiara Corbari, Oscar Baez-Villanueva, Sophia Walther, Yongqiang Zhang, Joaquín Muñoz-Sabater, Gabriel B. Senay, Clément Albergel, and Wouter Dorigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-5716,https://doi.org/10.5194/egusphere-2025-5716, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Development of the global hydro-economic model (ECHO-Global version 1.0) for assessing the performance of water management options
Taher Kahil, Safa Baccour, Julian Joseph, Reetik Sahu, Peter Burek, Jia Yi Ng, Samar Asad, Dor Fridman, Jose Albiac, Frank A. Ward, and Yoshihide Wada
Geosci. Model Dev., 18, 7987–8015, https://doi.org/10.5194/gmd-18-7987-2025,https://doi.org/10.5194/gmd-18-7987-2025, 2025
Short summary
PyGLDA: a fine-scale python-based global land data assimilation system for integrating satellite gravity data into hydrological models
Fan Yang, Maike Schumacher, Leire Retegui-Schiettekatte, Albert I. J. M. van Dijk, and Ehsan Forootan
Geosci. Model Dev., 18, 6195–6217, https://doi.org/10.5194/gmd-18-6195-2025,https://doi.org/10.5194/gmd-18-6195-2025, 2025
Short summary
Using Satellite Observations with Field Surveys to Monitor Ecosystem Restoration in AlUla, Saudi Arabia
Mateo Barco Largo, Meshal Alarifi, Sami D. Almalki, Shauna K. Rees, Benjamin P. Y.-H. Lee, Ahmed H. Mohamed, Abdalsamad Aldabaa, Kaoru Kakinuma, and Yoshihide Wada
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 183–188, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-183-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-183-2025, 2025

Cited articles

Abbas, A., Yang, Y., Pan, M., Tramblay, Y., Shen, C., Ji, H., Gebrechorkos, S. H., Pappenberger, F., Pyo, J. C., Feng, D., Huffman, G., Nguyen, P., Massari, C., Brocca, L., Jackson, T., and Beck, H. E.: Comprehensive Global Assessment of 23 Gridded Precipitation Datasets Across 16,295 Catchments Using Hydrological Modeling, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-4194, 2025. a, b
Adhikari, A. and Behrangi, A.: Assessment of Satellite Precipitation Products in Relation With Orographic Enhancement Over the Western United States, Earth and Space Science, 9, e2021EA001906, https://doi.org/10.1029/2021EA001906, 2022. a
Adler, R. F., Sapiano, M. R., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., and Nelkin, E.: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. a
Al-Falahi, A. H., Saddique, N., Spank, U., Gebrechorkos, S. H., and Bernhofer, C.: Evaluation the performance of several gridded precipitation products over the highland region of yemen for water resources management, Remote Sens., 12, 2984, https://doi.org/10.3390/rs12182984, 2020. a, b, c
Alharbi, R. S., Dao, V., Jimenez Arellano, C., and Nguyen, P.: Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia, Remote Sens., 16, 703, https://doi.org/10.3390/rs16040703, 2024. a, b, c, d
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Our paper introduces Saudi Rainfall (SaRa), a high-resolution, near-real-time rainfall product for the Arabian Peninsula. Using machine learning, SaRa combines multiple satellite and (re)analysis datasets with static predictors, outperforming existing products in the region. With the fast development and continuing growth in water demand over this region, SaRa could help to address water challenges and support resource management.
Share