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Abstract. We introduce Saudi Rainfall (SaRa), a gridded his-
torical and near-real-time precipitation (P) product specif-
ically designed for the Arabian Peninsula, one of the most
arid, water-stressed, and data-sparse regions on Earth. The
product has an hourly 0.1° resolution spanning 1979 to
the present and is continuously updated with a latency of
less than 2h. The algorithm underpinning the product in-
volves 18 machine learning model stacks trained for dif-
ferent combinations of satellite and (re)analysis P products
along with several static predictors. As a training target,
hourly and daily P observations from gauges in Saudi Ara-
bia (n =113) and globally (n = 14 256) are used. To evalu-
ate the performance of SaRa, we carried out the most com-
prehensive evaluation of gridded P products in the region
to date, using observations from independent gauges (ran-
domly excluded from training) in Saudi Arabia as a refer-
ence (n = 119). Among the 20 evaluated P products, our new
product, SaRa, consistently ranked first across all evaluation
metrics, including the Kling—Gupta efficiency (KGE), cor-

relation, bias, peak bias, wet-day bias, and critical success
index. Notably, SaRa achieved a median KGE — a summary
statistic combining correlation, bias, and variability — of 0.36,
while widely used non-gauge-based products such as CHIRP,
ERAS, GSMaP V8, and IMERG-L V07 achieved values of
—0.07, 0.21, —0.13, and —0.39, respectively. SaRa also out-
performed four gauge-based products such as CHIRPS V2,
CPC Unified, IMERG-F V07, and MSWEP V2.8 which had
median KGE values of 0.17, —0.03, 0.29, and 0.20, re-
spectively. Our new P product — available at https://www.
gloh2o0.org/sara (last access: 24 September 2025) — addresses
a crucial need in the Arabian Peninsula, providing a robust
and reliable dataset to support hydrological modeling, wa-
ter resource assessments, flood management, and climate re-
search.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The Kingdom of Saudi Arabia presents a striking hydro-
logical paradox, experiencing periods of destructive flash
floods and acute water scarcity, often simultaneously. Flash
floods, the Kingdom’s most frequent natural hazard, occur
on average seven times a year across the country, incurring
significant economic losses and social disruption (Al Saud,
2010). Particularly devastating were the flash floods in Jed-
dah in 2009 and 2011, claiming 113 and 10 lives, respec-
tively, and resulting in widespread damage to property, av-
eraging around USD 3 billion (Youssef et al., 2016). More-
over, climate change is projected to shift precipitation (P)
patterns and increase atmospheric water vapor, potentially
leading to more intense storms (Tabari and Willems, 2018;
Almazroui et al., 2020; Fowler et al., 2021). Saudi Arabia
also faces significant challenges in achieving water secu-
rity for its growing population. The arid climate of the re-
gion, combined with an increasing water demand driven by
rapid urbanization, industrialization, and agricultural expan-
sion, puts immense pressure on limited water resources (Al-
Ibrahim, 1991; Sultan et al., 2019). Effective management of
these challenges requires accurate and timely P data, as well
as assessing the impacts of climate change, developing adap-
tation and mitigation strategies, optimizing water resources
management, and improving flash flood early warning sys-
tems. The development of such datasets is also crucial for
achieving the objectives of the National Water Strategy and
Vision 2030 (Ministry of Environment, Water and Agricul-
ture, 2025), which aim to create a sustainable water sector
while providing cost-effective supply and high-quality ser-
vices to foster economic and social development

Over the past few decades, a wide range of gridded P
products have been developed, each with unique design ob-
jectives, spatial and temporal resolutions, coverage, latency,
algorithms, and data sources, ranging from satellite to analy-
sis, reanalysis, gauges, and their combinations. Table 1 pro-
vides an overview of quasi-global and fully global products.
In general, P products contain inherent errors and biases,
making it important to assess their performance to determine
their relative strengths, weaknesses, and suitability for differ-
ent applications and utility for particular regions and geogra-
phies. While several global studies have assessed the perfor-
mance of many of these products, typically using gauge P
observations as reference (e.g., Beck et al., 2017; Sun et al.,
2018; Nguyen et al., 2018), they have often excluded Saudi
Arabia due to the scarcity of local P observations. To date,
only a limited number of evaluations have specifically fo-
cused on the Arabian Peninsula (Kheimi and Gutub, 2015;
Mahmoud et al., 2018; El Kenawy and McCabe, 2016; El Ke-
nawy et al., 2019; Al-Falahi et al., 2020; Helmi and Ab-
delhamed, 2023; Alharbi et al., 2024; Jazem Ghanim et al.,
2024). Two of these studies assessed individual satellite P
products — IMERG (Mahmoud et al., 2018) and PDIR-Now
(Alharbi et al., 2024) — leaving questions about the compar-
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ative performance of these products unresolved. Four other
studies evaluated multiple satellite P products, including
CMORPH, GSMaP, PERSIANN, SM2RAIN-ASCAT, and
TMPA 3B42 (Kheimi and Gutub, 2015; El Kenawy et al.,
2019; Helmi and Abdelhamed, 2023; Jazem Ghanim et al.,
2024). Notably, El Kenawy et al. (2019), Helmi and Abdel-
hamed (2023), and Jazem Ghanim et al. (2024) reported that
the products generally performed poorly and highlighted the
need for caution when using them. Al-Falahi et al. (2020)
evaluated some of the aforementioned satellite P products as
well as the reanalysis ERAS but only focused on the highland
region of Yemen. However, many satellite products evalu-
ated in these studies have been superseded by newer, signif-
icantly improved versions. Additionally, several promising
products have not been evaluated yet, including SM2RAIN-
GPM (Massari et al., 2020), MSWEP V2.8 (Beck et al.,
2019b), and JRA-3Q (Kosaka et al., 2024).

Several gridded P products, such as CHIRPS V2 (Funk
et al., 2015), GPCP (Huffman et al., 2023), MSWEP V2.8
(Beck et al., 2019b), and SM2RAIN-GPM (Massari et al.,
2020; Table 1), leverage multiple P-related data sources to
obtain improved P estimates. These products employ statis-
tical methods to minimize errors and biases inherent in indi-
vidual sources, thereby enhancing P estimation performance
across various regional, seasonal, and temporal scales. Al-
though these products generally outperform single-source P
products (e.g., Beck et al., 2017; Prakash, 2019; Shen et al.,
2020), machine learning (ML) approaches are increasingly
recognized for their ability to efficiently fuse multiple data
sources, while mitigating errors and biases. A wide variety
of ML models, often trained with gauge observations, have
been used for P estimation, including classical models such
as multivariate linear regression (MLR), artificial neural net-
works (ANNs), support vector machines (SVMs), and ran-
dom forests (RF) along with modern deep learning mod-
els such as convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks and hybrid models
(see reviews by Hussein et al., 2022; Dotse et al., 2024; Pa-
pacharalampous et al., 2023; Xu et al., 2024). However, most
ML studies on P estimation have limitations in that (i) they
generally focus on a small region or catchment, which limits
the usefulness and generalizability of the findings; (ii) they
often focus on a monthly (rather than daily or sub-daily)
timescale, which may not meet the needs of all applications;
(iii) they develop models for either near-real-time or histori-
cal P purposes but not both; (iv) they use gauge observations
as predictors, which precludes near-real-time model applica-
tion, given that gauge observations are generally not avail-
able in near-real time; (v) they remain largely theoretical, of-
ten failing to offer a corresponding, accessible P dataset for
users and follow-up studies. Additionally, and crucially, no
study has yet investigated the potential of ML to specifically
enhance P estimates in the Arabian Peninsula region.

Here, we introduce Saudi Rainfall (SaRa), a new grid-
ded near-real-time P product with an hourly 0.1° resolution
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Figure 1. Study area location with SaRa dataset boundaries shown
in red. Land cover data and shaded relief from Natural Earth (https:
/lwww.naturalearthdata.com/, last access: 18 September 2025).

designed to overcome the aforementioned limitations. The
product covers the Arabian Peninsula (Fig. 1) from 1979 to
the present with a latency of less than 2h. It was derived
using ML models trained on a vast database of hourly and
daily gauge P observations from around the world. The ML
models are tailored to various P product combinations to en-
sure optimal performance for each period and location. In the
following section, we describe the data and methods under-
lying the product. Subsequently, we (i) evaluate the perfor-
mance of the ML models, constructed using different gridded
P product combinations as predictors; (ii) assess SaRa’s per-
formance relative to 19 global P products; (iii) examine the
spatial patterns in performance; (iv) discuss the challenges of
estimating P in arid regions; and (v) present trends in aver-
age and extreme P for the Arabian Peninsula based on SaRa.

2 Data and methods

2.1 Gridded precipitation and air temperature
products

Global gridded P products (more details in Table 1) were
used for two purposes: (i) as predictors to generate our new
P product for the Arabian Peninsula (SaRa) and (ii) to eval-
uate the performance of SaRa relative to other P products.
Gridded air temperature (7') data were also used as predic-
tors to account for seasonal differences in error character-
istics and relative performance among products. Through-
out this paper, we refer to these global gridded predictors
as “dynamic” due to their temporal variability — in con-
trast to predictors that are invariant in time, which are re-
ferred to as “static” (see below). We restricted our selec-
tion to P products with a daily or sub-daily temporal res-
olution. The P products included in our study originate
from diverse sources, encompassing satellite observations,
ground-based gauges, reanalyses, analyses, and combina-
tions thereof. The ML models are trained to optimally merge
the P products and mitigate errors and biases using gauge P
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data. The products selected as predictors for developing SaRa
were primarily non-gauge-corrected P datasets to avoid bi-
asing predictor importance, particularly in cases where the
same stations used for training might have been employed
to correct the respective P products. We included both
microwave-based (IMERG-L V07 and GSMaP-MVK V8)
and infrared-based (PERSIANN-CCS-CDR and PDIR-Now)
satellite products as predictors. Among the predictors, the
only gauge-corrected product is the infrared-based satellite-
product PERSIANN-CCS-CDR, which has been corrected
at the monthly scale using the Global Precipitation Climatol-
ogy Project (GPCP) product (V2.3; monthly 2.5° resolution;
Adler et al., 2018). PERSIANN-CCS-CDR was used prior to
2000, before the more accurate microwave-based satellite-
products IMERG and GSMaP became available. For con-
sistency, P and T estimates from ERAS and GDAS were
resampled from 0.25 to 0.1° using nearest neighbor to de-
velop SaRa, while PERSIANN-CCS-CDR and PDIR-Now
were resampled from 0.04 to 0.1° using averaging.

2.2 Static predictors

We used six static predictors to develop our new P prod-
uct (Table 2). The term “static” indicates that these predic-
tors are not time-dependent. Among these predictors, two
are climate-related (Aridity Index, Al; and mean annual P,
Pmean), one pertains to topography (effective terrain height,
ETH), and three are linked to geographic location (latitude,
longitude, and absolute latitude; Lat, Lon, and AbsLat, re-
spectively). Al represents the ratio of mean annual P to
potential evapotranspiration (PET). ETH quantifies the oro-
graphic influence on P patterns by smoothing the topogra-
phy (Daly et al., 2008). We excluded slope from our predic-
tors as it was strongly correlated with ETH. Air temperature
was omitted because it is already included as a dynamic pre-
dictor. Each static predictor was resampled by averaging to
match the resolution of SaRa (0.1°).

2.3 Precipitation observations

We used P observations for two purposes: (i) as a target to
train the ML models underpinning our new P dataset, SaRa,
and (ii) as a reference to evaluate the performance of SaRa
relative to other P products (Fig. 2). Although the SaRa
product was specifically developed for the Arabian Penin-
sula, to account for the lack of hourly P data in the Ara-
bian Peninsula and to enhance the generalizability of the ML
models, we trained the models using P observations from
across the globe. This approach assumes that valuable in-
sights from other regions can help optimize the merging of P
products and reduce errors and biases in the Arabian Penin-
sula. Essentially, knowledge is transferred from data-rich
(gauged) to data-poor (ungauged) regions, akin to regional-
ization techniques typically used in hydrology to tackle Pre-
dictions in Ungauged Basin (PUB) problems, which is con-
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Table 2. Overview of the static predictors used in the ML models to generate our new P product, SaRa.

Name (units)  Data source(s)

Description

Al (-) Mean annual P from CHELSA V2.1 (1 km resolution;  Aridity index (Al) calculated as ratio
Karger et al., 2017) and PET from Trabucco and Zomer of P to PET
(2018, 1 km) for land and ERAS (0.25°) for ocean

Pmean (-) CHELSA V2.1 (1 km resolution; Karger et al., 2017) Mean annual P

ETH (m) Global Multi-resolution Terrain Elevation Data Effective terrain height (ETH)
(GMTED) 2010 (Danielson and Gesch, 2011) calculated following Daly et al. (2008)

Lat (°) - Latitude

Lon (°) - Longitude

AbsLat (°) - Absolute latitude

sidered a “grand challenge” in hydrology (Sivapalan et al.,
2003; Hrachowitz et al., 2013).

For Europe and the conterminous US, our observational P
data sources used for training and as reference were gridded
P datasets based on gauge and radar data. Specifically, we
used the EUropean RADar CLIMatology (EURADCLIM)
dataset (hourly 2 km resolution; 2010-2022; Overeem et al.,
2023) for Europe and the Stage-IV dataset (hourly 4 km reso-
lution; 2002—present; Lin and Mitchell, 2005) for the conter-
minous US. To ensure the highest data quality, we extracted
time series only at gauge locations from these datasets after
resampling the data to the resolution of SaRa (0.1°) using
averaging. We opted for these gauge—radar datasets over di-
rect gauge observations in these regions because they (i) pro-
vide grid-cell averages with probability distributions (e.g.,
peak magnitudes and P frequencies) matching those needed
for SaRa (reducing the point- to grid-scale mismatch; Yates
et al., 2006; Ensor and Robeson, 2008); (ii) are expressed
in UTC, avoiding temporal shifts (Beck et al., 2019b; Yang
et al., 2020); and (iii) have undergone extensive quality con-
trol (Lin and Mitchell, 2005; Overeem et al., 2023).

Outside Europe and the conterminous US, we used daily
and hourly gauge P observations from various national, re-
gional, and global data sources. The daily P data sources
include (i) the Global Historical Climatology Network-
Daily (GHCN-D) dataset (ftp://ftp.ncdc.noaa.gov/pub/data/
ghen/daily/ (last access: 18 September 2025); Menne et al.,
2012; 40867 gauges); (ii) the Global Summary Of the
Day (GSOD) dataset (https://data.noaa.gov, last access: 18
September 2025; 9904 gauges); (iii) the Latin American
Climate Assessment & Dataset (LACA&D) dataset (225
gauges); (iv) the Chile Climate Data Library (712 gauges);
and (v) national datasets for Brazil (10963 gauges; https:
/Iwww.snirh.gov.br/hidroweb/apresentacao, last access: 18
September 2025), Mexico (3908 gauges), Peru (255 gauges),
Iran (3100 gauges), and Saudi Arabia (459 gauges). The
hourly P observations encompassed 2312 gauges from the
Global Sub-Daily Rainfall (GSDR) dataset (Lewis et al.,
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2019) produced as part of the INTEIlligent use of climate
models for adaptatioN to non-Stationary hydrological Ex-
tremes (INTENSE) project (Blenkinsop et al., 2018), 12 585
from the Integrated Surface Database (ISD) stations (Smith
et al., 2011), and national gauges from Brazil (289 gauges).

The training and evaluation of the ML model stacks used
to generate SaRa was carried out for the period 2010-2024.
We used this period instead of the full 1979 to the present
period to reduce the significant memory requirements associ-
ated with hourly data. Additionally, EURADCLIM data start
in 2010, most Saudi Arabian gauge records begin in 2014,
and GDAS data start in 2021.

2.4 Duplicates check and quality control

As we used P observations from a diverse range of data
sources, there was an increased risk of some gauges being
included in multiple sources. To avoid over-representation
of these gauges in the training set and ensure the same data
were not used for both training and evaluation, we removed
these duplicates. To this end, we iterated over all gauges,
and if another gauge was located within a 2km radius, we
gave preference to the source we deemed most reliable. We
used the following order of most to least reliable source:
EURADCLIM, Stage-1V, GHCN-D, GSDR, ISD, Bolivia,
Brazil, Chile, Mexico, Iran, LACA&D, GSOD, and MEWA.

P observations are often subject to systematic, gross, and
random errors (Kochendorfer et al., 2017; Tang et al., 2018),
which can adversely affect the training and evaluation results.
We identified and filtered out potentially erroneous gauges
using the following five criteria: (i) non-zero minimum daily
P, (ii) daily maximum less than 10mmd~! or exceeding
1825 mmd~" (the highest daily rainfall ever recorded; https:
/Iwww.weather.gov/owp/hdsc_world_record, last access: 18
September 2025), (iii) mean annual P less than 5 mm ylr_l
or exceeding 10000 mmyr~!, (iv) fewer than five P events
(using a I mm d~! threshold), and/or (v) fewer than 365 daily
values (not necessarily consecutive) during 2010-2024 (the

Hydrol. Earth Syst. Sci., 29, 4983-5003, 2025
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@ Daily data
@ Hourly data

Figure 2. Global map of the 104 346 gauges remaining after duplication checks and quality control. Stations with hourly data are shown in

blue, while stations with daily data are shown in brown.

training and evaluation period). In total, 75 833 gauges were
discarded out of 104 346 after these steps.

2.5 SaRa precipitation estimation algorithm

The SaRa product was derived using different ML model
stacks trained from different combinations of dynamic P and
T predictors (Sect. 1) along with several static predictors
(Table 2). Each model stack is comprised of four separate
ML submodels (Fig. 3). The first submodel is a daily XG-
Boost model (Chen and Guestrin, 2016) trained using daily
P observations, leveraging the broad availability of P obser-
vations globally and in the Arabian Peninsula (Fig. 2). The
second submodel, also based on XGBoost, disaggregates the
daily estimates to 3-hourly and is trained using 3-hourly P
observations, which are scarce in the Arabian Peninsula. As
such, all of the 3-hourly disaggregation skill originates from
other regions. As the resulting P estimates tend to underes-
timate the variance (i.e., generate excessive drizzle and un-
derestimate peaks) due to the regression towards the mean
phenomenon (see, e.g., He et al., 2016; Ting, 2025), a third
submodel based on random forest (RF; Breiman, 2001) cor-
rects the 3-hourly P probability distribution. The RF sub-
model is trained by separately sorting, for each gauge, (a) the
3-hourly estimates from the second submodel corrected us-
ing the daily estimates from the first submodel and (b) the
3-hourly P observations. To ensure the number of wet days
and low P intensities are also adequately corrected, the P
estimates are square-root-transformed before being fed to
the third submodel and the output of the third submodel is
squared. The fourth submodel disaggregates the 3-hourly es-
timates to hourly and also represents an XGBoost model,
trained using hourly P observations.

Hydrol. Earth Syst. Sci., 29, 4983-5003, 2025

The dynamic predictors span different time periods and
different regions (see Table 1), so we cannot use a single ML
model stack for every time step and grid cell. We therefore
trained a total of 18 different ML model stacks with var-
ious combinations of dynamic predictors (Table 3). These
model stacks are used based on the available dynamic pre-
dictors for a specific time and location (Fig. 4), with prefer-
ence given to the model stack with the lowest number (e.g.,
model_01 is preferred over model_02). The final SaRa P es-
timates were generated by iterating over all 0.1° grid cells,
loading all dynamic and static predictors, and then applying
the preferred ML model stack. To avoid temporal disconti-
nuities, such as around 1983 when PERSIANN-CCS-CDR
was introduced or in 2000 when IMERG and GSMaP were
introduced, the outputs from model_04 and model_05 were
harmonized with the outputs of model_01, which we con-
sider the reference due to its long record (from 2000 to 5d
prior to the present) and high accuracy (owing to the avail-
ability of ERAS, IMERG, and GSMaP). The harmonization
process involved (i) detrending the time series by dividing
by the moving annual average, (ii) cumulative distribution
function (CDF) matching, and (iii) multiplying the result by
the moving annual average (Fig. 4). The detrending serves to
avoid amplification of trends in extreme P (see, e.g., Cannon
etal., 2015).

We implemented the RF models wusing the
scikit-learn package and XGBoost models using
the XGBoost package in Python. The hyperparameters we
used are summarized in Appendix A.

2.6 Training and evaluation

Both the training and evaluation were carried out for the
period 2010-2024, aligning with the temporal coverage of
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Figure 3. Flowchart of ML model stacks used to produce the new SaRa P product presented in this study.

Table 3. The dynamic predictors incorporated in the different ML model stacks.
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EURADCLIM and the Saudi gauge data. From the 28513
gauges that passed the duplicates check and quality control
(Sect. 2.4), we randomly allocated 50 % for training (14 256
gauges) and the remaining 50 % for evaluation. We trained
submodel one using all available daily gauge data, while sub-
models two, three, and four were trained using gauges with
hourly data (aggregated to 3-hourly for submodels two and
three). The specific number of gauges used for training each
model stack depends on the temporal span and spatial cov-

https://doi.org/10.5194/hess-29-4983-2025

erage of the dynamic predictors. Since GDAS covers a rela-
tively short period (2021 to the present), any ML models in-
corporating GDAS were trained using a significantly smaller
number of observations.

The time stamps of the hourly P observations may re-
flect the local time zone instead of coordinated universal time
(UTC), while the daily P observations may represent accu-
mulations ending at various times, not necessarily at mid-
night UTC (Yang et al., 2020). Such discrepancies can lead to

Hydrol. Earth Syst. Sci., 29, 4983-5003, 2025



4990 X. Wang et al.: Saudi Rainfall (SaRa)
C)] 1979 1983 2000 T-5 days T-3 hours T-1 hour
Period A Period B Period C Period D Period E
Prlm:gcrlr(\odel model_05 model_04 model_01 model_07 model_18
Dynamic ERASP&T, ERASP&T, GDASP&T,
predictors BRASP&T P-CCS-CDR | IMERG, GSMaP | IMERG, GSMaP PDIR-Now
Medl'fgé’a"y 0.03 021 0.36 0.39 0.13
(b)
model_05 . . PP
- ~e_ b7 ~Se_ - ‘I -
E Harmonization
g_ _/\_/ model_01 model_18
5 T — model_07
o Harmonization ™~_ ————
model_04 |-~
1979 1983 2000 T-5 days T-3 hours T-1 hour

Figure 4. (a) Different ML model stacks were used for different periods and locations to account for differences in the spatio-temporal
availability of the dynamic predictors. The primary ML model stack, the corresponding dynamic predictors, and the mean daily independent
validation KGE (from Table 4) are also provided. Note that other ML model stacks may be used for a particular period when any dynamic
predictor is not available. (b) Conceptual illustration of how P estimates from different ML model stacks are combined and how outputs
from ML model stacks with long records are harmonized with the reference (model_01).

temporal mismatches between the dynamic predictors on one
side and the gauge P observations on the other, thereby hin-
dering satisfactory model training. To address this issue, we
determined time shifts in the hourly and daily gauge P data
using the hourly satellite-based IMERG-L V07 and GSMaP-
MVK V8 products, similar to Beck et al. (2019b). To deter-
mine hourly gauge data shifts, we shifted the gauge record
by 1h increments from —36 to 436 and calculated the av-
erage Spearman correlations between shifted gauge data and
IMERG-L V07/GSMaP-MVK V8 data. To determine daily
gauge data shifts, we shifted the IMERG-L V07 and GSMaP-
MVK v8 data separately by 1 h increments from —36 to +36,
computed daily P accumulations from the shifted IMERG-
L V07 and GSMaP-MVK V8 data, and calculated the aver-
age Spearman correlations between daily gauge record and
shifted IMERG-L V07/GSMaP-MVK V8 data. The shifts
that yielded the highest correlations were then used to recal-
culate daily values of the dynamic predictors for training ML
submodel one, as well as shifting the hourly gauge records
for training submodels two and four.

The 119 randomly selected evaluation gauges are com-
pletely independent and were not used to train the ML mod-
els, enabling a thorough performance assessment of SaRa
compared to other P products (Table 4). We used several
performance metrics for a comprehensive evaluation: (i) the
Kling—Gupta efficiency (KGE; Gupta et al., 2009; Kling
et al., 2012), which is an aggregate metric combining Pear-
son correlation (rqry), overall bias (8), and variance bias (y);
(i1) monthly Pearson correlation (rmop); (iii) peak bias at the
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99.5th percentile (Bpeak; %); (iv) wet-day bias (Bwet dayss
days; calculated using a 0.5 mm d~! threshold); and (v) Crit-
ical Success Index (CSI), measuring the ratio of hits to the
sum of hits, false alarms, and misses for P events exceeding
10mmd~!. These metrics, selected to encompass all impor-
tant aspects of P time series, were computed for each eval-
uation gauge based on daily data, except for rpo,. We did
not conduct an hourly evaluation due to the lack of hourly
observations in the Arabian Peninsula. For a detailed expla-
nation of the performance metrics, including the equations,
see Appendix B.

3 Results and discussion
3.1 Performance of ML models

To generate the SaRa product, we trained 18 different ML
model stacks with different P product combinations (Ta-
ble 3). The performance of these models in terms of me-
dian KGE, calculated using daily P data from independent
evaluation gauges, ranges from 0.03 for model_05, which
relies solely on one dynamic P predictor (ERAS), to 0.43
for model_06, which incorporates four dynamic P predic-
tors (ERAS, GDAS, IMERG-L V07, and GSMaP-MVK V8;
Table 4). These results align with our expectation that mod-
els incorporating a larger number of dynamic predictors are
able to extract complementary strengths from them, resulting
in better performance. model_01, based on three dynamic P
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Table 4. The performance of the ML model stacks underlying our new P product SaRa (models_01-18) and other state-of-the-art P products
sorted in descending order of median KGE. The values represent medians calculated over all randomly selected independent evaluation
gauges in Saudi Arabia. Note that since the different P products span different temporal periods, the specific evaluation data used for the
evaluation differ between P products. The unit for Bpeyx is %, and the unit for Bye days is the number of days. Ngpg indicates the number

of stations used to assess each product.

KGE r'dly B 1B-1] y ly—=11 rmon Bpeak ‘Bpeak| Byet days [Byet days| CSIjomm  Nobs
model_06 043 055 1.03 0.22  0.94 0.15  0.75 0.83 24.717 0.00 2.89 0.22 119
model_08 041 053 094 0.27 0.95 0.13  0.75 —5.68 28.49 0.39 2.48 0.20 119
model_03 0.39 049 094 0.24 0.98 0.13  0.69 —16.56 26.77 1.38 2.57 0.20 119
model_07 0.39 051 1.01 0.25 0.94 0.14  0.73 3.64 27.67 1.06 3.21 0.21 119
model_09 0.39 051 0.88 0.28 0.99 0.15 0.74 —-14.60 30.84 —-0.39 3.17 0.22 119
model_11 0.37 053 1.02 0.28 0.93 0.15 0.73 —3.34 28.28 0.00 3.12 0.22 119
model_01 0.36 050 1.03 0.24  0.96 0.12 071 -—-11.17 27.01 1.42 2.58 0.21 119
model_02 036 046 093 0.27 1.02 0.12  0.69 —19.14 31.26 0.43 2.08 0.20 119
model_10 034 048 1.02 0.28 0.96 0.13 072 —1042 33.33 0.34 2.62 0.19 119
model_12 032 046 1.01 0.25 0.89 0.13  0.64 —7.59 26.20 3.44 4.35 0.18 119
model_14 032 044 1.06 021 0.84 0.18 0.61 —10.88 22.57 3.71 4.31 0.17 119
model_15 031 045 093 0.30  0.90 0.17 072 —15.25 30.62 1.68 3.28 0.16 119
model_13 029 041 1.04 0.25 0.87 0.15 057 —-3.85 24.42 242 3.35 0.17 119
IMERG-F V07 029 050 1.16 0.27 0.76 024 073 —8.96 28.78 10.92 10.92 0.18 119
model_16 028 040 1.04 0.32 095 0.17 066 —1542 38.45 1.53 3.47 0.14 119
GDAS 024 042 1.09 032 0.72 028 0.66 —20.57 35.23 12.80 12.80 0.12 119
model_17 023 038 0.89 0.37 094 0.18 0.62 —-9.37 40.42 0.44 3.75 0.11 119
CMORPH-RT 021 039 0.69 040 097 021 056 —44.55 48.38 1.66 4.18 0.10 119
model_04 021 038 0.75 0.35 1.05 0.18 0.62 —=37.17 4483 0.20 2.81 0.12 118
ERAS 021 036 0.99 024 075 028 0.61 —30.18 39.06 11.82 11.82 0.11 119
MSWEP V2.8 0.20 042 1.03 0.31 0.64 0.38  0.67 —28.65 44.58 18.77 18.77 0.11 118
SM2RAIN-GPM 0.18 040 0.79 044 0.66 036 060 —47.16 53.43 10.75 11.09 0.00 84
CHIRPS V2 0.17 030 0.96 0.28 0.72 0.28 055 —27.82 38.12 6.25 6.42 0.09 118
model_18 0.13 029 0.90 0.37  0.89 022 045 —-24.39 33.54 4.26 6.98 0.09 119
JRA-3Q 0.12 029 1.16 041 0.72 029 059 -—18.02 38.92 9.79 9.84 0.10 119
PDIR-Now 0.11 032 134 0.47  0.80 0.26 047 —5.89 29.44 16.30 16.30 0.10 119
model_05 0.03 031 0.55 0.53 1.15 0.25 051 —60.18 64.33 —2.55 3.85 0.09 119
CPC-Unified —-0.03 021 0.53 0.54 1.13 0.23 051 —47.80 51.57 —1.84 4.06 0.04 113
CHIRP V2 —-0.07 023 1.10 0.27 0.35 0.65 039 —56.68 57.45 44.36 44.36 0.00 119
GSMaP-MVK V8 —-0.13 046 198 0.98 0.81 0.23  0.62 44.70 45.54 15.74 15.74 0.19 119
PERSIANN-CCS-CDR  —0.18 031 1.84 0.84 0.78 023 049 62.49 62.83 11.36 11.65 0.11 118
CMORPH-RAW —-0.19 044 2.06 1.06 0.82 021 057 77.54 77.54 10.80 10.95 0.18 119
SM2RAIN-ASCAT —-0.20 0.19 1.27 0.34 027 0.73 031 —67.16 67.41 49.68 49.68 0.00 117
SM2RAIN-CCI —-0.24 0.18 042 0.71 033 0.70 038 —83.05 85.41 5.25 20.16 0.00 65
IMERG-L V07 —-0.39 045 222 1.22 0.75 026 0.61 72.91 72.91 14.75 14.75 0.16 119
IMERG-E V07 —-044 042 226 1.26 0.71 031 059 67.20 67.20 19.79 19.79 0.16 119
PERSIANN-CCS —-0.72 031 254 1.54 0.67 033  0.39 114.09 114.09 15.57 15.57 0.09 119

predictors (ERAS, IMERG-L V07, and GSMaP-MVK V8),
is arguably the most important ML model stack as it covers
the largest portion of the record, from 2000 to 5 d prior to the
present, and also performs well, achieving a median KGE of
0.36, a median peak bias (Bpeax) of —11.17 %, a wet-day bias
(Bwet days) of +1.42d, and a median weather event detection
score (CSIjgmm) of 0.21.

The Bpeax value of —11.17 % obtained by model_01 sug-
gests a slight underestimation of high rainfall amounts (Ta-
ble 4). Although ML models are known to underestimate ex-
tremes due to the regression toward the mean phenomenon
(see, e.g., He et al., 2016), the most likely reason is that the
gauge P data used for evaluation represent point measure-
ments, which typically exhibit higher peaks than grid-cell
averages (Ensor and Robeson, 2008). Thus, this apparent un-
derestimation may primarily reflect a scale discrepancy. Sim-
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ilarly, the Byet days value of +1.42d (Table 4), indicating a
minor overestimation of rainfall frequency, might also be at-
tributable to this scale difference. Rainfall frequencies are
generally higher for grid-cell averages than for point mea-
surements (Osborn and Hulme, 1997). Note that a significant
portion of the training data comprises gridded gauge—radar
P data (see Sect. 2.3), which have a 0.1° grid-cell-scale con-
sistent with SaRa.

Among all the trained ML model stacks, model_05 per-
formed the worst, with a median KGE of 0.05. model_05
uses only one dynamic predictor (ERAS5) and is designed pri-
marily for the period before 1983, when only ERAS data
are available (Fig. 4). It also performs worse than ERAS
alone (median KGE of 0.21), which is mainly attributable
to poor bias (8) and peak bias (Bpeax) values. Fortunately,
these issues are largely resolved during the harmonization

Hydrol. Earth Syst. Sci., 29, 4983-5003, 2025
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Figure 5. KGE versus distance to nearest training station for the
evaluation stations (n = 119). The same KGE values are also pre-
sented in Fig. 6a.

step, where the outputs of model_04 and model_05 are har-
monized with those of model_01, which is considered the
reference (Fig. 4).

A key potential limitation of ML-based P estimation is
poor generalizability; models often fail in regions lacking
training data (Xu et al., 2024). To assess whether this applies
to our models, we analyzed KGE values of the evaluation
stations as a function of distance to the nearest training sta-
tion (Fig. 5). The results show no clear decline in KGE with
increasing distance, indicating satisfactory spatial generaliz-
ability. Another potential limitation is the “black-box” na-
ture of ML models, which limits interpretability. To improve
transparency, we computed predictor importance for all four
submodels of model_01 (Table 6). IMERG-L V07 consis-
tently ranked higher than GSMaP-MVK V8 in importance,
indicating a preference for IMERG, in agreement with its su-
perior validation performance (Table 4). ERAS was the most
important predictor for the daily submodel (Submodel 1),
whereas IMERG dominated in the 3-hourly and hourly sub-
models (Submodels 2 and 4, respectively). This likely re-
flects the ability of observational satellite-based datasets like
IMERG to capture event timing more accurately. This also
demonstrates the ability of the models to exploit the comple-
mentary strengths of the different P predictors. Static pre-
dictors were overall much less important than dynamic ones.
Among the static predictors, Lon, Lat, and AbsLat had the
highest importance, accounting for regional variability in P
predictor performance and error characteristics.

3.2 Performance comparison with other gridded P
products

The primary model underlying our newly developed SaRa
product, model_01, exhibited superior performance across
nearly all 12 performance metrics relative to all 19 other
P products (Table 4). Notably, model_01 attained a me-
dian KGE of 0.36, significantly outperforming widely
used P products such as ERAS5, JRA-3Q, CMORPH-
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RT, CHIRPS V2, IMERG-L V07, GSMaP MVK V8, and
MSWEP V2.8, which obtained median KGE values of 0.21,
0.12, 0.21, 0.17, —0.39, —0.13, and 0.2, respectively. Addi-
tionally, model_O1 performed well in terms of high P inten-
sities, exhibiting a low peak bias (Bpeak) of —11.17 %, while
the aforementioned other P products showed higher biases
of —30.18 %, —18.02 %, —44.55 %, —27.82 %, +72.91 %,
+44.7 %, and —28.65 %, respectively. In terms of detecting
P events (CSIiomm), model_01 scored a median value of
0.22, surpassing the other products with values ranging from
0.09 to 0.19.

Although SaRa was derived using an algorithm trained on
gauge P observations (from stations excluded in the eval-
uation), it was not directly corrected using gauge obser-
vations. Despite this, SaRa outperformed products entirely
based on gauge observations (CPC Unified) or corrected us-
ing gauge observations (CHIRPS V2, IMERG-F V07, and
MSWEP V2.8). This mainly reflects the limited availability
of gauge observations from Saudi Arabia in global databases
like GHCN-D (Menne et al., 2012; Kidd et al., 2017). Addi-
tionally, the lower performance of CHIRPS V2 and IMERG-
F V07 may stem from their 5d and monthly gauge correc-
tions, respectively, which are less effective at improving per-
formance on a daily timescale.

Among the purely (re)analysis-based products (ERAS,
GDAS, and JRA-3Q), GDAS performed best with a me-
dian KGE of 0.24, outperforming ERAS5 (median KGE
of 0.21) and JRA-3Q (median KGE of 0.12; Table 4).
Among the microwave satellite-based products (CMORPH-
RT and -RAW, GSMaP-MVK V8, IMERG-L and IMERG-
E V07, and SM2RAIN-GPM), CMORPH-RT emerged as
best (median KGE of 0.21), followed by SM2RAIN-GPM
(median KGE of 0.18) and GSMaP-MVK V8 (median
KGE of —0.13). Among the purely infrared satellite-based
products (PERSIANN-CCS and PDIR-Now), PDIR-Now
performed best (median KGE of 0.11). PDIR-Now also
outperformed some microwave-based products (GSMaP-
MVK V8, IMERG-L, and IMERG-E V07). Among the
SM2RAIN products (SM2RAIN-GPM, SM2RAIN-ASCAT,
and SM2RAIN-CCI), SM2RAIN-GPM obtained the best
overall performance (median KGE of 0.18). SM2RAIN-
ASCAT and SM2RAIN-CCI performed poorly, exhibiting
CSIipmm values of 0.00, underscoring the limited capabil-
ity of algorithms that infer P based on soil moisture sig-
nals to detect P events > 10 mmd~! over the Arabian Penin-
sula. This is likely due to the extremely arid conditions in
the Arabian Peninsula, where the soil dries out rapidly fol-
lowing P events, reducing the effectiveness of soil moisture-
based detection methods. These results are in agreement with
Jazem Ghanim et al. (2024), who also found SM2RAIN-
ASCAT to perform poorly in the Arabian Peninsula.

Previous studies that evaluated P datasets for the Ara-
bian Peninsula include Kheimi and Gutub (2015), Mahmoud
et al. (2018), El Kenawy and McCabe (2016), El Kenawy
et al. (2019), Al-Falahi et al. (2020), Helmi and Abdel-
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hamed (2023), Alharbi et al. (2024), and Jazem Ghanim et al.
(2024). Comparing our results to these studies is challenging
because they assessed fewer P products and used outdated
versions. However, Alharbi et al. (2024) reported a mean
raty of 0.33 for PDIR-Now, which is comparable to our me-
dian value of 0.32 (Table 4). Similarly, Helmi and Abdel-
hamed (2023) reported KGE, gy, #mon, and CSIjomm values
for PERSIANN-CCS-CDR, CHIRPS, and IMERG-F that are
also consistent with our results.

3.3 Spatial distribution of performance metrics

To illustrate SaRa’s performance, Fig. 6 shows the spatial
distribution of its performance relative to other widely used
P datasets. Figure 6a and b display the spatial distribu-
tion of SaRa’s KGE and CSI;omm, respectively, as obtained
by SaRa (model_01) during its evaluation over independent
rain gauges across Saudi Arabia. The differences in perfor-
mance between SaRa and three widely used global products
(CHIRPS V2, ERAS, and IMERG-L V07) are also shown
for both metrics (Fig. 6¢c-h), highlighting SaRa’s overall su-
perior performance. At first glance, the spatial distribution
of both metrics appears random, with clusters of good per-
formance adjacent clusters of poor performance, lacking a
clear spatial organization. This randomness may be partly
due to rain gauge measurement errors (Ciach, 2003; Daly
et al., 2007; Sevruk et al., 2009), compounded by scale dis-
crepancies between point-scale measurements and grid-scale
averages (Yates et al., 2006).

To examine whether performance patterns are related
to specific climatic or topographic factors, we calculated
Spearman rank correlation coefficients between climatic and
topographic attributes of the evaluation rain gauges (Ta-
ble 2) and the performance scores (Sect. 2.6) for SaRa’s
model_01, SaRa’s model_06, MSWEP V2.8, IMERG-
L V07, GSMaP MVK VS8, and ERAS5 (Table 5). Over-
all, the correlations were slightly weaker for model_01 and
model_06 compared to the P products, suggesting more sta-
ble performance, which is expected, given that (i) the ML
models leverage the complementary strengths of the P pre-
dictors and (ii) the climatic and topographic variables were
included as predictors in the models.

The metric rqiy, which evaluates the ability of models or
products to estimate daily P variability, is primarily sensi-
tive to random errors and less influenced by systematic bi-
ases, which are relatively easy to correct. In all models and
products, rgiy shows a positive correlation with aridity in-
dex (AI), indicating reduced performance in arid regions.
This conforms with previous large-scale P product evalua-
tions (e.g., Beck et al., 2017; Sun et al., 2018; Abbas et al.,
2025) and reflects the brief, intense, and localized nature of
rainfall in such regions. Additionally, r4jy exhibited negative
correlations with effective terrain height (ETH) for all mod-
els and products, indicating lower performance in the moun-
tainous southwest where orographic P predominates. This is
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also consistent with other P product evaluations (e.g., Ebert
etal., 2007; Derin et al., 2016; Beck et al., 2019a) and reflects
the greater heterogeneity of P in regions of complex terrain.
Additionally, satellite retrieval of P in mountainous regions
is particularly challenging due to the shallow nature of oro-
graphic P (Yamamoto et al., 2017; Adhikari and Behrangi,
2022).

Performance metrics related to systematic biases in mag-
nitude (8 and Bpeak) generally showed negative correlations
with mean precipitation (Pmean) and positive correlations
with the aridity index (AI). These correlations were partic-
ularly strong for IMERG-L V07, suggesting that this product
could benefit from bias correction using climate indices.

3.4 Challenges of precipitation estimation in arid
regions

Although SaRa outperformed all other P products, its per-
formance metrics might seem underwhelming. For instance,
the daily Pearson correlation (rqy) of 0.50 achieved by
model_01 (SaRa’s primary model; Table 4) indicates that
only 25 % (100 x 0.50?) of the daily variability in P observa-
tions is captured, while other products perform worse. Sim-
ilarly, a CSIjomm of 0.21 suggests a moderate ability to de-
tect P events exceeding 10mmd~!. These results align with
prior large-scale evaluations reporting lower accuracy of P
products in arid regions (e.g., Beck et al., 2017; Sun et al.,
2018; Abbas et al., 2025), reflecting the inherent challenge
of precipitation estimation in these environments.

The challenges in arid regions stem from several key fac-
tors:

1. P events in arid regions are typically short-duration,
highly intense, and spatially localized, making them dif-
ficult to detect with satellites, simulate with models,
or measure with gauges. This contrasts with temperate
and cold climates, where P events are generally longer-
lasting, less intense, and spatially broader (El Kenawy
et al., 2019; Ebert et al., 2007).

2. Reanalyses like ERAS and JRA-3Q and analyses like
GDAS are based on numerical weather prediction
(NWP) models, which struggle to simulate the complex
convective processes prevalent in arid regions, including
deep convection initiation, rapid cell dissipation, and the
effects of dry boundary layers (Yano et al., 2018; Peters
et al., 2019; Lin et al., 2022).

3. Virga P, which evaporates before reaching the ground,
adds another layer of complexity. It is estimated to ac-
count for nearly half of all events in some arid regions,
leading to significant false detections by satellite ra-
diometers (Wang et al., 2018).

4. Errors in gauge measurements — due to wind deflection,
evaporation within the gauge, splashing, and wetting
losses — can also play a significant role (Ciach, 2003;
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Figure 6. Performance of the primary SaRa ML model (model_01) in terms of (a) Kling—Gupta efficiency (KGE) and (b) detection of P
events (CSIjgmm)- (¢, e, g) Difference in KGE between model_01 and CHIRPS V2, ERAS, and IMERG-L V07, respectively. (d, f, h) Differ-
ence in CSIjomm between model_01 and CHIRPS V2, ERAS, and IMERG-L V07, respectively. Each data point represents an independent
evaluation gauge (n = 119).

Daly et al., 2007; Sevruk et al., 2009). In arid regions,
higher evaporation rates exacerbate wetting losses, and
the sparse, short-lived nature of rainfall events amplifies
sampling errors (Villarini et al., 2008).

. Discrepancies between point measurements from
gauges and grid-cell averages derived from satellite or
model products also contribute to lower performance

Hydrol. Earth Syst. Sci., 29, 4983-5003, 2025

scores (Yates et al., 2006; Ensor and Robeson, 2008).
In arid regions, this mismatch is likely particularly sig-
nificant, due to the highly localized nature of P.

Time shifts between daily P totals from gauges and
satellite or (re)analysis products (Yang et al., 2020;
Beck et al., 2019b) further reduce performance scores,
especially in arid regions due to the short duration

https://doi.org/10.5194/hess-29-4983-2025



X. Wang et al.: Saudi Rainfall (SaRa)

4995

Table 5. Spatial Spearman rank correlation coefficients between rain gauge attributes (related to location, climate, and topography; see
Table 2) and performance scores (KGE, rqly, B, etc.; see Sect. 2.6) for six key P products and ML model stacks. The correlations were

computed using independent evaluation gauges in Saudi Arabia (n = 119).

Model Predictor KGE rdly B 1B-1] v ly—1 rmon  Bpeak  |Bpeakl  Bwetdays  |Bwet daysl CSLiomm
Lat 0.09 0.39 0.26 0.03 0.04 0.17 0.17 0.31 0.09 —0.30 —0.38 0.40
Lon 0.05 0.17 —0.01 0.08 0.06 —0.04 0.32 0.07 0.01 0.05 0.42 —0.04
model_01 Pmean —-0.13 —-042 -0.32 0.00 0.00 —-0.08 —-024 —-0.29 —0.02 0.22 0.48 —-0.39
Al 0.14 0.43 028 —0.01 0.00 0.09 0.24 0.28 0.03 —-0.24 —-0.47 0.40
ETH -0.13 -042 -0.13 —-0.08 —0.13 0.03 —-033 -021 —0.07 0.34 0.36 —-0.28
Lat 0.13 0.24 0.03 —0.03 0.45 0.07 0.15 0.09 —0.44 —-0.39 0.04
Lon —0.06 0.06 0.22 020 —-0.10 —0.05 0.12 0.19 0.12 0.03 0.34 0.02
model_06 Pmean —-0.05 -0.20 0.01 -0.02 -036 —-0.04 —-0.13 —-0.12 —0.13 0.32 0.48 0.03
Al 0.08 0.24 0.00 0.01 0.40 0.02 0.12 0.15 0.12 —-0.35 —0.48 —0.01
ETH 008 -0.16 -0.12 —-0.22 —-0.17 -0.19 -0.29 —0.33 0.19 0.31 0.08
Lat 0.47 0.68 0.34 —0.05 0.19 —-0.24 0.53 0.50 -0.21 —-0.71 —-0.72 0.67
Lon -022 -0.01 -—-0.12 0.20 0.00 0.08 0.08 —0.11 0.09 0.26 0.26 —-0.23
ERAS Pmean —-0.44 -0.64 —0.33 0.11 0.00 —-0.48 —0.42 0.18 0.69 0.71 —0.57
Al 0.47 0.67 032 —0.08 0.06  —0.06 0.51 0.42 —0.20 —-0.72 —0.73 0.58
ETH -022 -050 -0.15 0.01 -0.02 -0.02 -041 —0.28 0.01 0.51 0.53 —0.36
Lat 0.25 0.40 0.12  —0.05 043  —0.37 0.24 0.47 —0.12 —0.81 —0.81 0.19
Lon —0.08 0.05 —0.20 0.14 0.15 0.05 0.13  —-0.23 0.12 0.16 0.18 —-0.22
MSWEP V2.8 Pmean —-0.17 -0.29 -0.21 —-0.02 -0.35 029 -0.17 —-0.60 0.17 0.79 0.80 —0.18
Al 0.21 0.29 0.16 —0.01 037 —-0.29 0.17 0.57 —0.15 —-0.82 —0.83 0.19
ETH -0.03 -022 -—-0.12 —-0.19 -0.36 —-0.20 —-0.48 0.12 0.60 0.60 —0.01
Lat —0.41 0.24 0.42 042 —0.14 0.16 —0.08 0.48 0.48 —0.31 —0.31 —0.03
Lon 0.05 0.18 —-0.02 —0.02 0.02 0.04 040 —0.11 —0.13 0.43 0.44 0.08
IMERG-L V07 Pmean 052 -031 -052 —-0.52 027 —-0.29 0.04 —0.61 —0.61 0.28 0.28 0.08
Al —0.53 0.29 0.53 0.54 —-0.25 027 —0.07 0.62 0.62 —-0.27 —-0.27 —0.08
ETH 039 —-037 —0.41 —0.40 033 =037 -—0.15 —0.47 —0.46 0.08 0.08 0.09
Lat —-0.21 0.39 0.23 023  —0.27 0.12 0.20 0.20 0.19 —0.48 —0.48 0.21
Lon 0.32 0.14 -027 —-0.26 027 —=0.20 0.38 —0.19 —0.15 0.08 0.08 0.25
GSMaP-MVK V8  Pmean 036 —-033 -038 —0.37 040 -023 -020 —0.32 —0.30 0.48 0.48 —0.05
Al —-0.33 0.35 0.35 0.35 —-0.37 0.20 0.32 0.30 —0.49 —-0.49 0.08
ETH 0.07 -034 -0.12 -0.12 0.16 —-0.03 -035 -0.17 —0.15 0.54 0.54 —0.06

Table 6. Predictor importance (%) for each submodel of model_01. Predictors are ranked in descending order of importance for Submodel 1.

YSubmodel 2 Tepresents the 3-hourly P output of Submodel 2.

Predictor Submodel 1  Submodel 2 Submodel 3  Submodel 4
ERA5 P 41.85 14.96 - 13.47
IMERG-L V07 35.59 59.60 - 43.77
GSMaP-MVK V8 5.48 9.72 - 28.85
Lat 2.81 3.21 - 2.64
Lon 2.85 1.95 - 2.00
Pmean 2.67 1.92 0.46 1.63
ERA5 T 2.42 2.46 0.41 2.83
AbsLat 2.36 2.40 0.99 1.87
Al 2.00 1.85 - 1.36
ETH 1.96 1.94 - 1.59
YSubmodel 2 - - 98.14 -

of rainfall events. The boundary between daily totals
from satellite or (re)analysis products is midnight UTC,
whereas it varies for daily gauge totals depending on re-
gional reporting practices. In Saudi Arabia, the average
boundary time was determined to be 05:00 AM UTC
(08:00 AM Ilocal time; see Sect. 2.6). Consequently, for

https://doi.org/10.5194/hess-29-4983-2025

a brief event of 1h, there isa 100 x 5/24 = 21 % chance
that it will be assigned to the “wrong” day.

. In arid regions, where rainfall is infrequent and there-

fore measurements are often considered unnecessary,
the number of stations is usually limited (Menne et al.,
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2012; Kidd et al., 2017). As a result, P products may
not be evaluated in these areas during development, po-
tentially leading to lower performance.

However, it should be kept in mind that a hypothetical
baseline P product predicting only the mean would achieve
a KGE of —0.41 (Knoben et al.,, 2019), making SaRa’s
model_01 median KGE of 0.36 quite reasonable, situated be-
tween this baseline and an (unattainable) perfect score of 1.
Furthermore, performance improves markedly when data are
averaged over longer periods, as evidenced by the median
monthly Pearson correlation (rmen) of 0.71 for model_01
(Table 4), indicating that more than twice as much variability
is captured at the monthly scale compared to the daily scale.
Similarly, performance is enhanced at larger spatial scales,
for example when computing regional averages or when driv-
ing a hydrological model for a catchment. This improved per-
formance reflects the reduced impact of errors due to spatial
aggregations within catchments and regions (O and Foelsche,
2019).

3.5 Precipitation climatology and trends in Saudi
Arabia

According to the newly developed SaRa P product, the
mean annual P for Saudi Arabia during the period 1991-
2020 is 54mmyr~! (Fig. 7a). However, although SaRa’s
median B score is 1.03 (Table 4), indicating negligible
bias according to this metric, the gauge-based mean (rather
than median) P is nonetheless 18 % higher than the SaRa-
based mean P across all evaluation gauges, likely reflect-
ing the tendency of ML models to attenuate extremes
(see, e.g., He et al., 2016; Ting, 2025). Consequently, an
adjusted estimate of 54 x 1.18 =64 mmyr~—' may repre-
sent the best estimate for mean annual P in Saudi Ara-
bia. This value is significantly lower than the estimate of
102mmyr~! for the period 1991-2020 from the Climatic
Research Unit (CRU) gridded Time Series (TS) dataset (Har-
ris et al., 2020), as published on the World Bank web-
site (https://climateknowledgeportal.worldbank.org/country/
saudi-arabia/climate-data-historical, last access: 18 Septem-
ber 2025). However, the CRU climatology is based on inter-
polation of a small number of gauges (approximately 10) in
Saudi Arabia (New et al., 1999), whereas SaRa was trained
using 113 stations in the country. The mean annual P esti-
mate of 84 mm yr*1 from Almazroui (2011), based on TMPA
3B42 (Huffman et al., 2007) bias-corrected using 29 stations,
comes closer to our estimate, although it covers a different
period (1998-2009).

In addition to annual totals, SaRa provides insights into
P frequency and peak P magnitudes. The average annual
maximum daily P in Saudi Arabia is 19 mm d-! (Fig. 7c¢).
While this value is modest compared to the global best-
estimate mean of 56 mmd~! (from the global gauge-based
Precipitation Probability DISTribution — PPDIST — dataset
V1.0; Beck et al., 2020), such P extremes can nonetheless
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cause severe flooding due to the region’s low soil infiltration
capacity, sparse vegetation, and insufficient flood manage-
ment infrastructure (Othman et al., 2023). The average an-
nual maximum hourly P is 6.9 mmh~!. On average, Saudi
Arabia experiences 10 rainy days per year (defined as days
with P > 0.5mmd~!; Fig. 7e) and 51 rainy hours per year
(defined as hours with P > 0.1 mm h’]). For context, the
global average number of rainy days per year is 30, based
on PPDIST, using the same threshold of 0.5 mmd~!. Across
all metrics — mean annual P, P frequency, and P extremes —
the highest values occur along the western slopes of the Asir
Mountains, where orographic effects enhance P (Hasanean
and Almazroui, 2015).

Trend analysis from 1979 to 2023 based on SaRa reveal
declines in mean annual P, daily P frequency, and annual
maximum daily P at rates of —0.50 % yr—!, —0.11 % yr—!,
and —0.58 % yr~!, respectively (see Fig. 7b, d, and f, respec-
tively). Over the 45-year period, these rates correspond to cu-
mulative reductions of —22.5 %, —5.0 %, and —26.1 %, re-
spectively. Our results align with Almazroui (2020), who re-
ported a mean annual P trend of —0.65 % yr~! during 1978
2019 based on 25 stations in Saudi Arabia. They are also
consistent with Munir et al. (2025), who analyzed Standard-
ized Precipitation Index (SPI) time series from 28 stations
in Saudi Arabia for 1985-2023, finding negative trends at 16
stations and positive trends at 10. Furthermore, the strong de-
clines observed in southeastern Saudi Arabia (Fig. 7b) align
with Patlakas et al. (2021), who analyzed trends for 1986—
2015 using a regional atmospheric model. These trends re-
sult from multiple factors, including internal climate variabil-
ity, external natural influences, and human-induced climate
change.

However, it is important to note that these trend estimates
are mostly statistically insignificant (p value > 0.05) and
subject to substantial uncertainty due to large interannual
variability, as well as considerable errors in gauge, reanal-
ysis, and satellite P estimates (see Sect. 3.4). In addition to
random errors, satellite datasets are affected by transitions
in data sources and radar sensors used for calibration (e.g.,
TRMM to GPM circa 2015; see Huffman, 2019), while re-
analyses are affected by updates in data assimilation, such
as the progressive inclusion of new satellite datasets (e.g.,
the TOVS to ATOVS transition in 2000), as well as the con-
catenation of different production streams (Hersbach et al.,
2020). These discontinuities propagate through and are re-
flected in SaRa, contributing to the observed uncertainties
and hindering the detection of significant trends. Despite
historical declines, future projections from climate models
in the sixth phase of the Coupled Model Intercomparison
Project (CMIP6) indicate that increases in all three metrics
(mean annual P, annual maximum daily P, and annual rainy
days) are likely across most regions of Saudi Arabia (Iturbide
et al., 2022; IPCC, 2023), highlighting the need and value of
data-driven P approaches in resolving potential discrepan-
cies in P distributions and spatio-temporal patterns.
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(b) Mean annual P trend (% yr™)
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Figure 7. Mean and trend values (1979-2023) based on the new SaRa P product for (a—b) mean annual P, (c—d) annual maximum daily P,
and (e—f) annual number of wet days (using a threshold of 0.5 mm d_l). Grid cells with statistically significant trends (p value < 0.05) are

marked with black dots. Note that panel (a) uses a non-linear color scale.

4 Conclusions

The SaRa dataset, a high-resolution, gridded and near-real-
time P product, was developed to satisfy the critical need for
more accurate and robust P data in the Arabian Peninsula.
SaRa offers hourly data at a 0.1° resolution spanning 1979 to
the present, with a latency of less than 2 h. The algorithm un-
derpinning the product involves 18 ML model stacks tailored
to various P product combinations to ensure optimal per-
formance for each period and location. These models were
trained using daily and hourly gauge P observations from
across the globe to enhance their accuracy. Our primary find-
ings are summarized as follows:

1. Among the 18 model stacks, model_06, which incorpo-
rates four dynamic predictors (ERAS, GDAS, IMERG-
L V07, GSMaP-MVK V8), achieved the highest me-
dian KGE (0.43). model_01, the primary model span-
ning the longest period (2000 to 5 d before the present)
and incorporating three dynamic predictors (ERAS,

https://doi.org/10.5194/hess-29-4983-2025

IMERG-L V07, GSMaP-MVK V38), also demonstrated
strong performance (median KGE of 0.36). Most mod-
els showed minimal bias in peak rainfall and wet-
day frequency, reinforcing the idea that product per-
formance can be enhanced by leveraging the com-
plementary strengths of diverse P datasets. However,
model_05, relying solely on ERAS, performed rela-
tively poorly (median KGE of 0.03) due to significant
bias issues, although these were mitigated through har-
monization with model_O1.

. We carried out the most comprehensive daily evalua-

tion of gridded P products in the Arabian Peninsula to
date. SaRa outperformed all 19 other gridded P prod-
ucts across nearly all 12 performance metrics, achiev-
ing a median KGE of 0.36. Notably, it demonstrated
superior event detection and lower peak bias compared
to state-of-the-art products such as ERAS5, JRA-3Q,
CMORPH, and IMERG-F V07. Among the evaluated
products, microwave-based satellite products generally
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performed better than infrared-based satellite products
and (re)analyses.

3. The spatial performance analysis of SaRa’s model_01
across Saudi Arabia, based on KGE and CSI;gmm met-
rics, reveals a seemingly random distribution of per-
formance, with clusters of high and low performance
influenced by rain gauge errors and scale discrepan-
cies between point and grid measurements. Correlations
with climatic and topographic variables suggest rela-
tively stable performance, as these variables were in-
corporated as predictors in the model. Performance in
estimating daily P variability (rq1y) decreases in arid re-
gions and mountainous areas, reflecting challenges with
localized, intense rainfall and shallow orographic P.

4. Despite outperforming all other products, SaRa’s per-
formance may nonetheless seem somewhat under-
whelming, highlighting the inherent difficulty in esti-
mating P in arid regions, where events are typically
localized, brief, and intense. For example, SaRa’s pri-
mary model, model_01, captured only 25 % of daily P
variability and the other P products less, possibly due
to challenges including virga, short-duration, and highly
variable rainfall. However, it is worth noting that achiev-
ing perfect scores is impossible due to inherent gauge
errors, scale discrepancies, and time shifts in daily ac-
cumulations.

5. Mean annual P across Saudi Arabia was estimated as
64mmyr~! over the period from 1991-2020, which is
significantly lower than prior estimates based solely on
rain gauges. Saudi Arabia averages 10 rainy days and
51 rainy hours annually, with higher and more frequent
P in the southwestern Asir mountains due to orographic
effects. From 1979 to 2023, P trends show a decline in
annual totals, frequency, and extremes (up to —26.1 %),
driven by climate variability and anthropogenic factors.
In contrast to the historical trends, climate projections
suggest potential future increases.

Our study addresses the long-standing need for more ac-
curate P estimates and provides a comprehensive evaluation
of gridded P products in Saudi Arabia, one of the most arid,
water-stressed, and data-sparse regions on Earth. The SaRa
dataset, available at https://www.gloh20.org/sara (last access:
24 September 2025), equips researchers, professionals, and
policymakers with the tools needed to tackle pressing envi-
ronmental and socio-economic challenges in Saudi Arabia
and serves not only as a potential framework for filling this
data gap in other arid and dryland regions but also as a frame-
work that could be applied globally to develop a consistent
long-term dataset. The product delivers a high-resolution,
near-real-time resource designed to support a diverse range
of applications, including water resource management, hy-
drological modeling, agricultural planning, disaster risk re-
duction, and climate studies.
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Appendix A: ML model hyperparameters

The hyperparameters used for the RF and XGBoost mod-
els are described in Tables A2 and Al, respectively. These
hyperparameters were selected to balance model complexity
and training time, while also minimizing the risk of overfit-
ting.

Table Al. Hyperparameters for the XGBoost models.

Hyperparameter Value
n_estimators 100
max_depth 12
min_child_weight 5
colsample_bytree 0.7
gamma 2
reg_alpha 0.5
reg_lambda 0.5
learning_rate 0.2

Table A2. Hyperparameters for the RF models.

Hyperparameter Value
n_estimators 100
max_depth 15
min_samples_split 5
min_samples_leaf 5
max_features 0.7

Appendix B: Performance metrics calculation

The Kling—Gupta efficiency (KGE) is given by

KGE=1—/(r = >+ (B— 2+ (y = 2, (B1)

where r is the Pearson correlation coefficient, 5 is the overall
bias (mean simulated value to mean observed value), and y
is the variance bias (ratio of simulated variance to observed
variance).

The Critical Success Index (CSI) is calculated for events
exceeding a threshold of 10mmd~" as

H

CSI= 9
H+M+F+10™

(B2)

where H is the number of hits (correctly predicted events),
M is the number of misses (events missed by the product),
and F is the number of false alarms (incorrectly predicted
events). An epsilon value is added to prevent division by
Zero.

Peak bias at the 99.5th percentile (Bpeax; %) is calculated
as the percentage difference between the 99.5th percentile of

https://doi.org/10.5194/hess-29-4983-2025


https://www.gloh2o.org/sara

X. Wang et al.: Saudi Rainfall (SaRa)

the estimated and observed data:

Pygs — O
Bpeak = 100 x —22— 2223 (B3)

0995
where Pgg 5 and Ogg 5 are the 99.5th percentiles of the esti-
mated and observed values, respectively.
Wet day bias (Bwet days; days) is calculated as the percent-
age difference in the number of wet days (days exceeding a
0.5mmd ! threshold) between simulated and observed data:

P—0
Buet days = 365.25 x ——., (B4)

where P and O are the number of wet days in the estimated
and observed time series, respectively, and N is the total
number of values.

Code availability. The code used to generate the figures is available
from the corresponding author upon request.

Data availability. CPC ~ Unified is available from the
NOAA NOAA Physical Sciences Laboratory (PSL) website
(https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html,

last access: 18 September 2025 ). IMERG V07 is accessible
from the NASA Global Precipitation Measurement (GPM)
website (https:/gpm.nasa.gov/data, last access: 18 Septem-
ber 2025 ). JRA-3Q is available through the National Center
for Atmospheric Research (NCAR) Research Data Archive
(RDA; https://gdex.ucar.edu/datasets/d640000/dataaccess/#,
last access: 23  September 2025). SM2RAIN-ASCAT,
SM2RAIN-CCI, and GPM+SM2RAIN are hosted on Zenodo
(https://doi.org/10.5281/zenodo.10376109, Brocca et al., 2023;
https://doi.org/10.5281/zenodo.1305021, Ciabatta et al., 2018b;
and https://doi.org/10.5281/zenodo.3854817, Massari, 2020,
respectively). ERAS data can be obtained from the Copernicus
Climate Data Store (CDS; https://cds.climate.copernicus.eu/
datasets/reanalysis-eraS-single-levels?tab=overview, last access:
18 September 2025). CHIRP and CHIRPS V2 are available via
the University of California, Santa Barbara, Climate Hazards
Center (CHC) website (https://www.chc.ucsb.edu/data/chirps/,
last access: 18 September 2025). MSWEP V2.8 is accessible
from the GloH20 website (https://www.gloh20.org/mswep/, last
access: 18 September 2025). PERSIANN-CCS-CDR and PDIR-
Now are available from the Center for Hydrometeorology and
Remote Sensing (CHRS) website (https://chrsdata.eng.uci.edu/,
last access: 18 September 2025). CHELSA is accessible at
https://chelsa-climate.org (last access: 18 September 2025).
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